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Abstract

Background: Although indirect evidence suggests the male genital tract as a possible source of persistent HIV shedding in
semen during antiretroviral therapy, this phenomenon is poorly understood due to the difficulty of sampling semen-
producing organs in HIV+ asymptomatic individuals.

Methodology/Principal Findings: Using a range of molecular and cell biological techniques, this study investigates SIV
infection within reproductive organs of macaques during the acute and chronic stages of the disease. We demonstrate for
the first time the presence of SIV in the testes, epididymides, prostate and seminal vesicles as early as 14 days post-
inoculation. This infection persists throughout the chronic stage and positively correlates with blood viremia. The prostate
and seminal vesicles appear to be the most efficiently infected reproductive organs, followed by the epididymides and
testes. Within the male genital tract, mostly T lymphocytes and a small number of germ cells harbour SIV antigens and RNA.
In contrast to the other organs studied, the testis does not display an immune response to the infection. Testosteronemia is
transiently increased during the early phase of the infection but spermatogenesis remains unaffected.

Conclusions/Significance: The present study reveals that SIV infection of the macaque male genital tract is an early event
and that semen-producing organs display differential infection levels and immune responses. These results help elucidate
the origin of HIV in semen and constitute an essential base to improving the design of antiretroviral therapies to eradicate
virus from semen.
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Introduction

While semen represents the main vector of human immunode-

ficiency virus type 1 (HIV-1) dissemination worldwide, the origin

of the free HIV-1 particles and infected seminal leukocytes

contaminating this bodily fluid is poorly understood. A number of

studies have shown that semen represents a viral compartment

distinct from the blood [1–13], suggesting that local sources within

the male genital tract (MGT) contribute virus particles and

infected cells to semen.

Semen is composed of secretions and cells from the testes,

epididymides, prostate, seminal vesicles and urethral glands. To

shed light onto the origin of HIV in semen, a necessary

prerequisite is to determine whether and which semen-producing

organs are productively infected by the virus and susceptible to

seed virus or infected cells into semen. Importantly, despite

antiretroviral therapy achieving an undetectable blood viral load,

virus release can persist in semen [3,14–18], leading to an increase

in sexual transmission of drug resistant strains [19–21]. Therefore,

identification of the different HIV sources within the MGT is

critical for more efficient control of HIV transmission.

While HIV-1 and simian immunodeficiency virus (SIV) were

found in a number of male genital organs from AIDS deceased

men [22–24] and macaques [25], very little is known about HIV/

SIV infection of the male reproductive tract during the

asymptomatic phase of the infection. However, model estimates

suggest HIV transmission rates to be highest during the acute stage

of the infection, when semen is the most infectious [26,27], and

lowest during the chronic phase [28–31]. Whether this reflects

differential levels of contamination of the male genital organs

during the course of the infection has never before been

investigated.

There are a number of practical and ethical reasons which

prevent the design of time-course studies of HIV infection of the

MGT in men. To verify the hypothesis that various male genital

tract organs are infected early and could thus represent a primary

source of virus shed in the semen, it is therefore necessary to use an

appropriate animal model. Since the experimental infection of

macaques by SIV represents the best animal model in which to

study HIV infection in vivo [32], the testes, epididymides, and

accessory glands (prostate and seminal vesicles) of SIV-infected

macaques in the acute and chronic stages of the disease were
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examined during this study. Using molecular- and cell biological

techniques, we established the kinetics of infection within the

MGT and correlation with blood viremia. Furthermore, we

identified viral target tissues and cells and demonstrated that all

infected organs except testis showed an inflammatory response.

Materials and Methods

Animals and infection
Fourteen adult male cynomolgus macaques (Macaca fascicularis)

(3–4 years old, body weight.5 Kg, all mature as attested by the

presence of full spermatogenesis) imported from Mauritius were

included in the present study, having been previously screened for

pathogens [33]. Animals were housed at the primate facilities of

CEA, France and handled in accordance with EC guidelines

(Journal Officiel des Communautés Européennes, L358, December 18,

1986). Eleven macaques were intravenously inoculated with 50

AID50 (50% animal infectious dose) of pathogenic cell-free

SIVmac251 in 1 ml of phosphate-buffered saline (PBS). The

generation and titration of the SIVmac251 virus stock have been

described elsewhere [33].

Specimen collection and blood viral load measurement
Blood was periodically collected throughout the infection and at

the time of euthanasia. Plasma viral loads (PVLs) and peripheral

CD4 cell counts were assessed as previously described [34].

Tissues were collected immediately after euthanasia and exsan-

guinations of the animals, extensively washed and cut into

fragments weighing about 300 mg each. The fragments were

either stored at 280uC or fixed in 4% formaldehyde.

Nucleic acids extraction
Total RNA and DNA were extracted from 2 distinct fragments

of each tissue using the RNeasy isolation maxi kit or the QIAamp

DNA maxi kit (both Qiagen, Courtaboeuf, France), respectively.

RNA samples were depleted of contaminating DNA by DNase

treatment (Promega, Charbonnières, France) and submitted to RT

reactions, using random hexamer primers (Boehringer-Man-

nheim, Mannheim, Germany) and M-MLV-Reverse Transcrip-

tase (Invitrogen, Cergy-Pontoise, France). Total DNA from

PBMC were isolated using a commercial kit (Genomic DNA

from tissue, Macherey-Nagel, GmbH & KG, Germany).

Nested PCR
A previously described, sensitive nested PCR [35] was used to

detect SIV DNA. In order to increase the chances of detection of

focal infection of the genital tissues, 2 independent fragments of

each tissue were assayed in a minimum of 54 PCR reactions, each

performed on 500 ng of extracted DNA. The sensitivity was 100%

for a detection threshold of 10 copies of SIVmac251 gag DNA

plasmid in 500 ng of exogenous DNA, and 33% for a detection

threshold of 1 copy. Results were expressed as percentages of SIV

gag positives PCR.

Viral DNA quantification
DNA extracted from 2 independent fragments was analyzed in

duplicate in real time PCR Taqman assay using the Platinium

qPCR SuperMix UDG kit (Invitrogen) and previously described

SIV gag primers and probe [34]. The reaction, data acquisition

and analysis were performed with the ABI PRISM 7000 Sequence

detection System (Applied Biosystems, Foster City, CA, USA). SIV

DNA copy number in unknown samples was inferred by plotting

the threshold cycle (Ct) value against a calibration curve (gag

SIVmac251 DNA plasmid, linear dynamic range 10 to 107 copies).

Genomic normalizing GAPDH gene was simultaneously

amplified, using previously published primer set and probe [36].

Results were expressed as SIV DNA copy numbers per copy of

GAPDH.

Cloning and phylogenetic analysis
Genital tissues DNA and PBMC DNA as well as blood plasma

cDNA were submitted to nested PCR to amplify a 590-bp

fragment encompassing the V1-V2 region of the SIV envelope

gene, as previously described [37]. To reduce the possibility that

differences between MGT, blood and serum sequences were

caused by sampling errors, we performed the extraction,

amplification and direct sequencing of the PCR products at least

twice. Clones were sequenced from each of the two or three

extractions as described below. PCR products were inserted into a

plasmid with the TOPO 4TA cloning kit (Invitrogen). Ecoli Top10

(Invitrogen) were transformed and a minimum of 10 colonies were

selected by PCR using inner primers. The inserts from purified

plasmid were sequenced using an automated sequencer (Qiagen).

Sequences accession numbers are AM397301 to AM397432. V1-

V2 sequences were then submitted to phylogenetic analysis. After

hand correction of crude sequences in MEGA3, alignments were

performed using the reference sequences from SIVmac239 as root

(Ac# M33262). Multiple sequences were aligned using CLUS-

TALW (1.8) [38] and adjusted using the alignment editor Se-Al

(version 2.0; available from http://evolve.zoo.ox.ac.uk). Ambigu-

ous regions and all sites including a gap were removed from the

alignment. Phylogenetic trees were built using PAUP* version

4b10 [39] using a sequence evolution model chosen with

Modeltest v3.06 [40]. The reliability of the branching order was

estimated by performing bootstrap analysis (100 replicates). Only

significant values above 50% were indicated on the branches.

Immunohistochemistry
The following human mAbs and matching isotype controls were

used at the indicated concentrations: anti-HLA-DR (TAL.1B5,

0,6 mg/ml), anti-CD68 (KP1, 1.2 mg/ml), anti-CD3 (F7.2.38,

6.75 mg/ml) (all from DAKO), anti-CD4 (1F6, Novocastra,

2.5 mg/ml), anti-TIA-1 (2G9, Immunotech, 1 mg/ml), anti-Pen5

(5H10 clone [41], neat) with mouse IgG1 isotype control (DAKO);

anti-SIV gag p27 (ARP 397, CFAR, 1/100), anti-CD20 (L26,

DAKO, Trappes, France, 0.44 mg/ml), anti-CCR5 (2D7, BD

Biosciences, 25 mg/ml), anti-CXCR4 (12G5, NIBSC, 25 mg/ml)

with mouse IgG2a control (BD Biosciences). A rabbit polyclonal

Ab to DEAD-box protein 4 (DDX4, Abcam, 2 mg/ml) was used

with rabbit IgG isotype control (Jackson Immunoresearch

Laboratories, West Grove, PA, USA) to specifically stain

spermatogenic cells [42]. Immunohistochemistry was performed

as previously described [43]. No staining was ever observed with

isotope control antibodies or control serum. A minimum of three

sections from distinct areas were observed per animal. For

quantitative and semi-quantitative measurement, cell counts were

performed using the Cast software (Olympus) on two sections from

three animals per group. In uninfected animals, stained positive

cells were counted in 100 randomly selected fields/section at a

magnification of 406. For CD3+T cell infiltrates semi-quantitative

analysis, whole sections were examined.

In situ hybridization and immunohistochemistry
SIV gag in situ hybridization combined with immunohisto-

chemistry for cell markers was performed as previously described

[44], using a 743 bp SIVmac251 gag cDNA fragment (Genbank

accession number M19499, nucleotides 1386-2129) to generate

35S-UTP-labeled riboprobes. The specificity of the hybridization
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signal was systematically checked by hybridizing sense probes on

parallel sections and anti-sense probes on uninfected genital

tissues. SIV positive cells co-labelled or not with cell markers were

counted in a minimum of 30 adjacent sections/experiment, in

three independent experiments. The total surface area counted

was determined using the Cast Grid software (Olympus, France).

Cytokine mRNAs quantification
TaqMan quantitative real-time PCR assays were performed on

100 ng (cytokine) or 40 ng (18 s) of equivalent RNA from 2

independent tissue fragments run in duplicate with the ABI7500

using commercially available master mix and following human

target probes (Applied Biosystems): Hs00174097_m1 (IL1b),

HsOO174086_m1 (IL10), Hs00998133_m1 (TGFb),

Hs99999901 _s1 (18s). Primers and probes for simian IFNc and

TNFa were described elsewhere [45]. The Ct values of each gene

were calculated with the ABI Sequence Detection System 1.9

program and normalized to the level of 18s RNA. The absolute

gene expression level was calculated by the standard curve method

using plasmid standards encoding for simian IFNc, TNFa, IL1b,

IL10 and TGFb (kindly provided by Dr Villinger, Emory

University School of Medicine, Atlanta, USA) or PCR product

(18 s). Results were expressed as copy numbers of the mRNA of

interest per copy of 18s RNA.

Hormone assays
The testosterone and LH assays were conducted in the Yerkes

National Primate Research Center (Emory University, Atlanta,

USA) on macaques’ serum samples collected prior and after

infection. Serum levels of testosterone were measured by RIA

(Diagnostic Systems Laboratories, Webster, TX). The sensitivity of

the assay was 0.05 ng/ml; the intra- and interassay coefficients of

variations were 6.3% and 5.95% at 0.68 ng/ml and 4.14% at

5.67 ng/ml, respectively. Serum levels of LH were measured by a

mouse Leydig cells bioassay, as previously described [46]. The

sensitivity of the assay was 0.2 ng/ml; the intra- and interassay

coefficients of variations were 5.44% and 18.4%, respectively.

Samples were assayed in duplicates and results expressed as the

median +/2 quartiles for each time point.

Statistical analyses
The non-parametric unpaired Kruskal-Wallis test was used to

assess differences according to infection status/blood viremia (SIV

DNA detection, cytokine quantification) whilst the non-parametric

paired Wilcoxon test was used to assess differences within one

animal group (variation in SIV DNA detection and cell

quantification amongst organs, hormones level variations during

time course). Coefficients of correlation (r) between blood viremia

and frequency of detection of SIV in male genital organs (nested

PCR for SIV DNA) were calculated using the Spearman rank test.

All analyses were performed using the statistical software R.

Results

Identification and quantification of SIV/HIV target cells
Throughout the MGT of uninfected macaques, immune cell

subsets and localization were similar to previous observations in

humans [47,48]: HLA-DR+ cells, CD3+ T lymphocytes, CD68+
macrophages and CD4+ cells were found within the testicular

interstitial tissue (Figure 1A–C), the stroma of the epididymis

(Figure 1G–I) and accessory glands (data not shown) and inserted

within the epididymal epithelial cells (Figure 1G–I). Similar

localization was observed for CCR5+ and CXCR4+ cells

(Figure 1D–F, J–L). Quantification of potential HIV target cells

(i.e. macrophages and CD4+ T lymphocytes) revealed that the

testis displayed significantly lower number of macrophages than

the other organs (on average over 16 fold less than in epididymis

and seminal vesicles and 10 fold less than in prostate) (Figure 1M).

CD4+ cells were also lower in the testis than in the seminal vesicles

(on average 10 fold less), the prostate (6 fold less) and epididymis (3

fold less), although the difference was not statistically significant for

the latter (Figure 1M). In all organs but testis, macrophages

predominated over CD4+ T cells (Figure 1M).

Figure 1. Localization and quantification of SIV/HIV target cells
in the male genital tract. Testis (A–F) and epididymis (G–L)
immunolocalization of HLA-DR (A, G), CD68 (B, H), CD3 (C, I), CD4 (D,
J), CCR5 (E, K) and CXCR4 (F, L) positive cells in uninfected macaques.
Arrows show immunopositive cells in contact with the epithelium of
the epididymis. Note the presence of testicular macrophages within the
peritubular wall bordering the seminiferous tubules of the testis
(Figure 1H, arrow heads).Scale bars = 20 mm. (M): Quantification of HIV
potential target cells (CD68+ and CD4+ stained positive cells) in the
male reproductive organs of uninfected macaques. Stars indicate
statistical difference between the number of CD68+ cells and CD4+ cells
within an organ (Wilcoxon signed rank test, p,0.05;). The number of
CD68+ cells was significantly lower in the testis when compared with
the other MGT organs (Wilcoxon signed rank test, p,0.05, not shown
on the graph). The number of CD4+ cells in the testis was significantly
lower than in the prostate and seminal vesicles (Wilcoxon signed rank
test, p,0.05, not shown on the graph).
doi:10.1371/journal.pone.0001792.g001
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Characteristics of infected animals
Four macaques were euthanized at peak blood viremia

(Figure 2A) [named below ‘‘primary-infected macaques’’], and

seven were euthanized during the chronic asymptomatic stage

(Figure 2B). Amongst the latter, two groups were distinguished

(Figure 2B): -four macaques displayed a blood plasma viral load

(PVL),4 Log six weeks post-infection (p.i.) (a time point at which

viremia level is highly predictive of the outcome of the infection

[49]). Two of these four animals had completely controlled viremia

at the time of sacrifice (Figure 2B, animal 6420 & 9204), whilst the

other two (6442 & 6394) presented a PVL,3 Log. These four

animals were called ‘‘low chronics’’ in subsequent analysis; -three

animals, classified as ‘‘high chronics’’, displayed a PVL.5 Log by

six weeks post-infection and still displayed PVL.4 Log at the time

of sacrifice. Of note, no persistent CD4+ cell depletion was

observed in any of the chronically-infected macaques tested (refer

to Figure S1 for CD4+T cell counts of primary and chronically-

infected animals).

Detection of viral DNA
Nested PCR detected SIV-DNA in the testis, epididymis and

accessory glands of all acutely-infected animals (Figure 3A).

During this phase, SIV detection rate in the MGT was

significantly higher than during chronic phase. Furthermore,

MGT infection was significantly reduced in low chronic animals

when compared to high chronics (Figure 3A). A positive

correlation was found between the frequency of detection of SIV

in the MGT and blood viremia (Figure 3B). Throughout the

infection, the testis displayed the lowest rate of infection amongst

the organs tested, a finding confirmed in primary-infected animals

by measurement of reproductive tissues viral load (VL) in real time

PCR: prostate and seminal vesicles VL were on average 1 Log

higher than epididymis mean VL (Figure 3C), whilst testis VL was

consistently below the quantification threshold of the real time

PCR. Of note, semen-producing organs VLs were at least 1 Log

lower than mesenteric lymph node VL.

SIV localization
SIV p27 positive cells were found within the stroma and close to

the secretory epithelium of the seminal vesicles (Figure 4A),

prostate and epididymides (data not shown) of primary-infected

animals. Positive staining was observed in the interstitium and

seminiferous tubules of the testis (Figure 4B, B’). In situ

hybridization for SIV gag RNA also revealed positive cells in

the stroma and, occasionally, within the epithelium of the seminal

vesicles (Figure 4C), epididymides (Figure 4E, E’) and prostate

(Figure 4F) of primary-infected animals. Within the testis, SIV

RNA+cells were observed in the interstitium (Figure 4D),

occasionally bordering the seminiferous tubules (data not shown).

In all tissues, these infected cells were mainly T lymphocytes (60–

97% of SIV RNA+ cells co-labeled with CD3, the highest

proportion being found in the prostate and seminal vesicles)

(Figure 4C, E’, F), and some macrophages (0–25% of cells co-

labeled with CD68, the highest rate being consistently found in the

epididymis) (Figure 4E). Interestingly, in the testis SIV gag positive

cells that never co-localized with either HLA-DR, CD3 or CD68

were occasionally observed within the seminiferous tubules

(Figure 4D’) (on average 1 positive cell for 300 seminiferous

tubules). These positive cells systematically co-localized with

VASA, a specific germ cell marker [42]. Their distribution and

localization, from the base to the middle of the tubules, suggested

an association of SIV with pre-meiotic and meiotic germ cells. In

chronically infected macaques, the same pattern of SIV localiza-

tion was observed, but fewer cells were affected. Importantly,

however, a few SIV+ cells were detected within the MGT of an

animal with undetectable blood viremia (data not shown). A

quantitative measurement of the number of SIV+ cells per tissue

surface in a primary-infected animal evidenced that seminal

vesicles and prostate displayed a higher number of positive cells

when compared to the epididymides and testes (Figure 4G).

Viral populations in the MGT
The genotype of the virus strains present in the reproductive

organs (obtained from different PCR rounds and pooled) was

compared with those isolated from PBMCs and blood plasma in

one high viral load chronically-infected macaque (Figure 5). We

evidenced four main clusters of clones in the MGT, which were

linked, but statistically distant from, the main viral population

present in the blood, as indicated by the high bootstrap value 99,

100. However, a few sequences from the prostate were close to

RNA sequences from blood, suggesting a continuous re-seeding of

the resident sequences in MGT. Interestingly, only a partial

Figure 2. Blood PVLs from time of intravenous SIVmac251 inoculation to necropsy. (A) Four animals were sacrificed at 14 days p.i.; (B)
Seven animals, sacrificed between 15 to 37 weeks p.i., were distinguished into one group of 3 ‘‘high chronic animals’’ (triangles) and one group of 4
‘‘low chronics’’ (circles), based on PVL at necropsy. Mean viral loads are represented by a blue line for the primary-infected, a red line for the
chronically-infected animals with high PVL and a green line for the chronically infected animals with low PVL.
doi:10.1371/journal.pone.0001792.g002
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segregation could be seen between the different compartments of

the reproductive tissues: the neighbour-joined tree showed highly

heterogeneous viral populations that could be separated into four

major clusters closely related altogether (Figure 5A). However, we

observed a relative enrichment of some tissue specific clones in the

different populations (Figure 5B). Thus epididymis sequences are

found mainly in cluster III and from seminal vesicle in population

IV. Similar observations were done in a low viral load chronically

infected animal despite a lower number of available sequences

(Figure S2).

Local immune responses in the MGT
The morphology of the seminal vesicles, epididymides and testes

was similar in acutely-infected animals (Figure 6E, H, K) when

compared to uninfected ones (Figure 6D, G, J). However, HLA-

DR+ cell foci were observed within the prostate during the acute

phase of the infection (Figure 6B versus Figure 6A). In low chronic

animals, cell foci were never observed (data not shown). In contrast,

in high chronic animals, outsized HLA-DR+ cell infiltrates were

observed in the stroma of the prostate (Figure 6C), seminal vesicles

(Figure 6F) and epididymides (Figure 6I), but were never found

within the testis (Figure 6L). During both the primary and chronic

stage of the disease, the cellular infiltrates were mainly composed of

CD3+ T lymphocytes and comprised a mix of CD4+ T helper and

TIA-1+ cytotoxic cells (Figure 7E, F, G and M, N, O) whilst only

very few cells labelled with the NK marker Pen5 (Figure 7H and P);

only a few CD20+ B lymphocytes (Figure 7C and K) and CD68+
myeloid cells (Figure 7B and J) were present. Semi-quantitative

analysis indicated that there were no marked differences between the

sizes and number of CD3+ T cell foci amongst the epididymis and

accessory glands of chronically-infected macaques with high PVL.

Although the prostate of primary-infected animals displayed similar

numbers of small size CD3+ infiltrates (15–50 cells) than the prostate

of high chronic macaques, medium size foci (51–250 cells) were 2.7

fold less numerous and large size foci (251–1000 cells) were never

encountered (Figure 7Q).

Testes of chronically infected animals with high blood viremia

displayed similar number of CD3+ T cells and CD68+
macrophages than the uninfected ones (Figure 7R).

Within the testis, the levels of expression of the immunosup-

pressive cytokines IL-10 and TGFb and pro-inflammatory

cytokines IFNc, IL-1b, TNFa transcripts was not significantly

changed following infection (Figure 8).

Of note, IL-10 and TGFb mRNAs levels in both the uninfected

and infected testis were about 10 fold that of uninfected prostate, in

concordance with the previously reported immuno-suppressed status

of this organ [48]. In the prostate of primary-infected macaques, a

significant increase in IL-10 transcript expression was detected when

compared to uninfected animals, while the expression of other

cytokines was not significantly modified (Figure 8). In contrast, in

addition to IL-10, IFNc, TNFa and IL-1b mRNAs were significantly

enhanced in the prostate of high chronic macaques (Figure 8). In the

prostate of low chronic animals, cytokine mRNAs expression was

similar to that of uninfected animals, suggesting that the absence of

cell infiltrates was due to lack of local immune activation rather than

to an enhanced immunosuppressive response (Figure 8).

Impact of the infection on the exocrine and endocrine
testicular functions

Normal spermatogenesis was observed in the testis of all infected

animals (Figure 6K, L) and packs of spermatozoa were found

within the epididymis lumen (Figure 6H, I) indicating that the

infection did not impair sperm production. Sperm quality was not

assessed. Interestingly, an increase in testosteronemia was

observed 10 weeks p.i., while luteinizing hormone (LH) level

remained unchanged (Figure 9).

Discussion

Understanding the spacio-temporal colonization of the MGT by

HIV is crucial in any attempt to prevent its transmission and to

improve the antiretroviral therapies. The few studies that addressed

this question have focused mainly on the late stage of the disease

(reviewed in [50]). Using a macaque model, this work provides the

first extensive description of SIV interactions with a number of

Figure 3. SIV DNA detection and quantification in the male
genital organs. (A) Frequency of detection of SIV DNA in the testis,
epididymis (Epid.), prostate and seminal vesicle (Sem. Ves.) of SIV-
infected macaques, using nested SIV gag PCR. Each bar represents the
mean +/2 SEM of gag+ PCR for each organ within a group of animals.
Statistical difference (Kruskal Wallis test, p,0.05) was found between
the MGT of primary-infected, high chronic and low chronic animals (not
shown on the graph); p values shown on the graph indicate statistical
difference between the organs, according to Wilcoxon signed rank test.
(B) Frequencies of detection of SIV gag DNA in genital organs of
primary and chronically-infected animals were tested for association
with blood viremia by Spearman rank test. The different organs are
depicted by different symbols. Positive correlation was found for all
male genital tract organs levels of infection and blood viral load. (C) SIV
DNA viral load in mesenteric lymph nodes (LN), epididymides, prostate
and seminal vesicles of primary SIV-infected macaques, in quantitative
real time PCR. Mean of 4 animals is represented by black bars. Squares
with the same pattern show viral load for 2 independent fragments of
the same organ. Stars indicate statistical difference between the
epididymis and the other organs (Wilcoxon signed rank test, p,0.05).
doi:10.1371/journal.pone.0001792.g003
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organs crucially involved in the production of semen, both during the

acute and chronic asymptomatic phases of the infection.

We demonstrate the presence of SIV in the testes, epididymides,

prostate and seminal vesicles of acutely and chronically-infected

macaques, using different but complimentary techniques. Similar

early viral dissemination had been reported for several other

lymphoid and non-lymphoid organs, independent of the route of

infection [51–53]. For the first time, we establish a positive

correlation between the frequency of detection of SIV in the

reproductive organs and plasma viremia throughout the infection.

Of note is that such a correlation had been described for semen

from men and macaques during the acute [26,54] and chronic

Figure 4. SIV localization within the male genital tract. Detection of SIV positive cells in the seminal vesicles (A, C), testes (B–B’, D–D’),
epididymides (E, E’) and prostate (F) of primary-infected macaques using immunohistochemistry for SIVp27 (A, B) and in situ hybridization (ISH) for
SIV gag RNA (C–F). The phenotype of SIV positive cells was determined using ISH for SIV gag RNA (visualized as black silver grains) combined with
immunostaining for cell markers (visualized as brown staining): combined ISH for viral RNA and immunostaining for CD3 revealed black silver grains
clustered over brown cells in the seminal vesicles (C), prostate (F), and epididymis (E’), indicating infection of CD3+T lymphocytes. Co-labelling of SIV
RNA+ cells with the myeloid cell marker CD68 was also observed, as shown here for the epididymis (E). In the testis, SIV RNA was detected within the
interstitium in HLA-DR+ cells (D) and within the seminiferous tubules in VASA+ germ cells (D’). Inserts show enlargement of SIV RNA positive cells co-
stained for cell markers. I: testicular interstitium; ST: seminiferous tubules. Scale bars = 20 mm. (G) SIV RNA+ cells were counted in a minimum of 30
tissue sections/experiment in 3 independent experiments on a primary-infected macaque MGT. Results show the mean positive cell number/tissue
area +/2 SEM.
doi:10.1371/journal.pone.0001792.g004
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stage of the infection [4,55–57], as well as for other tissues [58].

Virus colonizes the male genital tract during the primary infection,

at a time when blood viral load is at its peak and thus likely to

favour diffusion of free viral particles and infected leukocytes

amongst the organs.

Markedly different levels of infection were found amongst the

semen-producing organs. The prostate and seminal vesicles

appeared the most highly infected organs, followed by the

epididymis, while the testis consistently displayed the lowest

infection rate. In rhesus macaques with AIDS, the testis was

similarly found to be the least infected organ within the MGT

[25]. This low level of infection probably results from the overall

smaller number of potential target cells (i.e. macrophages and

CD4+ cells) that we evidenced in the uninfected testes when

compared to the other MGT organs, as previously described in

humans [48]. In addition, the testis specific environment is likely to

reduce immune cell infectivity in situ and infected cell migration in

this organ. Thus androgens and testicular immunosuppressive

factors are known to inhibit inflammation and T-cell activity in the

testis [59–63]. Indeed, immune cell infiltrates were never

encountered in the infected testis.

In our study, T lymphocytes represented the main infected cell

population throughout the MGT while macrophages were

predominant over CD4+ T cells in the epididymis and accessory

glands prior to infection. This may reflect the migration of blood-

borne infected lymphocytes into these tissues and/or the

preferential infection of this cell type rather than resident

macrophages. In contrast, earlier studies on the MGT of men

and rhesus macaques with AIDS described macrophages as the

most infected cell types throughout the MGT [23,25]. In AIDS

Figure 5. Viral populations in the MGT. (A) Phylogenetic analyses of V1-V2 sequences from quasi-species obtained from reproductive tissues
(white symbols) and blood (black symbols) of a high chronic macaque at necropsy. Trees were built with PAUP* version 4b10. Major significant
phylogenetic clusters in the MGT are rounded in black and numbered I to IV. The numbers near nodes indicate the percentage of bootstrap replicate
(100 resamplings). The scale refers to the distance between sequences. (B) Tissue origins of the clones present in the different viral populations.
doi:10.1371/journal.pone.0001792.g005
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rhesus macaques, epididymis was the most infected organ [25], as

opposed to the prostate and seminal vesicles in our study. These

differences could reflect CD4+ T lymphocytes depletion at the late

stage of the disease. Thus, the persistence of infected macrophages

in the MGT tissues whilst CD4+T cells are depleted may induce

modifications in tissue viral load. In asymptomatic SIV and SHIV-

infected pigtail macaques, both infected T lymphocytes and

macrophages were found in the testis and epididymis [64].

Importantly, it has been demonstrated that experimental infection

of cynomolgus macaques from Mauritius with SIVmac251, as

used in this study, leads to virological and immunological

evolution profiles that more closely mimics HIV infection in

humans than the model of SIV-infected rhesus macaques of

Indian origin [33,65–67]. Indeed, infection in rhesus macaques of

Indian origin is characterized by profiles of high viral load and

rapid decrease of CD4+ T cell counts associated with atypical anti-

SIV immune response that may not be relevant to the human

situation [67].

Inflammatory lesions have previously been evidenced at all

levels of the reproductive tract of men and macaques with AIDS

[23,25]. In our study, acutely-infected animals did not display any

inflammatory foci in the epididymis and seminal vesicles and only

small/medium size cell foci were detected in the prostate. Pro-

inflammatory cytokine IL-1b, IFNc and TNFa mRNAs levels

were not significantly modified in the prostate of these animals

compared with uninfected ones, while the immunosuppressive

cytokine IL-10 mRNA expression was enhanced. This differs from

the situation described in PBMCs and lymph nodes of acutely-

infected cynomolgus macaques [68,69] and humans [70–72]

where increased expression of both pro-inflammatory and

immunosuppressive cytokine mRNAs was reported. Of note is

that pro-inflammatory cytokines expression in tissues has been

shown to positively correlate viral RNA level [73]. Thus, the low

level of infection of MGT organs may not be sufficient to trigger

their expression during the acute stage. In contrast, in the prostate

of chronically-infected macaques with high PVL, both IL-10 and

pro-inflammatory cytokines mRNAs were found to be elevated.

This was associated with enlarged CD3+ cell foci composed of

activated helper and cytotoxic T lymphocytes and may reflect a

high level of activation of the immune system in these animals.

The persistent recruitment of activated T cells to male genital

organs is likely to increase the tissue viral load by providing a

source of target cells for the virus. Although it cannot be ascertain,

the enhanced expression of IL-10, IFNc, TNFa and IL-1b
transcripts in the prostate may reflect protein expression as all

these cytokines are known to be up-regulated in immune cells

during the course of HIV and SIV infection [74,75]. Moreover, in

HIV negative men with chronic inflammation of the prostate,

elevated levels of IL-10 and inflammatory cytokines are found in

the seminal plasma [76–78], indicating protein production. In

contrast to macaques with relatively high level of MGT infection,

neither immune infiltrates nor changes in cytokine expression

levels were observed in the organs of the animals displaying low

level MGT infection. This strongly suggests that local immune

Figure 6. Immune activation in the male genital organs. Immunohistochemical detection of HLA-DR+ cells in the prostate (A–C), seminal
vesicle (D–F), epididymis (G–I) and testis (J–L) of uninfected (A, D, G, J), primary-infected (B, E, H, K) or high chronic macaques (C, F, I, L). Scale
bars = 100 mm.
doi:10.1371/journal.pone.0001792.g006
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activation represents an important determinant of the tissue viral

load in chronic animals.

No immune response was observed in the testis throughout the

infection, in contrast to the other MGT organs. Although this

could be due to the very low level of testicular infection, it is likely

that the immuno-protected status of the testis plays an important

role [48]. Amongst the various mechanisms that attenuate

immune responses in this organ [48,79–84], elevated levels of

the immunosuppressive TGFb together with diminished levels of

pro-inflammatory cytokines expression have been reported

following bacterial exposure [84]. This is consistent with our

results in the SIV-infected macaques testis.

For a number of years, the question as to whether blood and

MGT represent distinct viral compartments has been debated

(reviewed in [50,85]). In the subject study, the presence of

productively-infected cells in the MGT of an animal with

undetectable blood viremia, further reinforces the previous

indirect evidence indicating viral compartmentalization within

the MGT [50,85]. Other evidence that viral compartmentalization

exists was our finding that MGT and blood viral populations were

Figure 7. Characterization and semi-quantitative analysis of immune response in the infected reproductive organs. (A–P)
Immunohistochemical characterization of immune cells present in the prostate of primary-infected macaques (A–H) and in the seminal vesicle of
chronically infected macaques with high blood viremia (I–P): serial tissue sections (each column represents 4 serial sections) were stained with anti-
HLA-DR (A, I), anti-CD68 (B, J), anti-CD20 (C, K), anti-CD3 (D, E, L, M), anti-CD4 (F, N), anti-TIA-1 (G,O) or anti-Pen5 (natural killer marker) antibodies
(H,P). Note the presence of HLA-DR+ and CD68+ cells in the seminal vesicle lumen (I, J). Scale bars = 20 mm. (Q) Semi-quantitative analysis of CD3+ cell
foci in the male genital organs of infected macaques. The number of CD3+ cells in each focus was determined using the Cast software. The number of
foci in each category (15–50 cells, 51–250 cells, 251–1000 cells) was counted on whole sections of epididymis, seminal vesicles and prostate from
chronically-infected macaques with high PVL, and prostate from primary infected macaques. (R) Quantitative analysis of CD68+ and CD3+ stained
positive cells in the testes of non-infected macaques (non inf.) and macaques chronically infected with SIV and displaying high PVL (high chronic).
doi:10.1371/journal.pone.0001792.g007
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linked but clustered distinctly. This indicates that local virus

production and blood re-seeding occur and explains the previous

findings of both different [1–13] and identical [1,86] HIV-1

variants in semen and in blood. Interestingly, some of the male

genital tract specific viral populations were shared amongst the

reproductive organs, suggesting free virus drainage and/or

infected cell migration at this level. Similar intermingling had

been reported in human prostate and testis from HIV-1 infected

individuals [87]. This could result from viral particles and infected

cells circulation within the MGT, due to the inter-vascular

connections which exist in between the reproductive organs [88].

It may also be facilitated by the transit of secretions and cells along

the excretory ducts during ejaculation, as well as by retrograde

contamination of these organs [89]. Independent evolution of viral

variants in the MGT may induce the formation of variants that

harbour the ability to escape the effects of immune system and

drugs, vary tropism and pathogenicity. In presence of sub-optimal

drug penetration, the MGT could participate in seeding the

systemic compartment.

The detection of infected immune cells adhering to the

epididymides and accessory glands epithelium of the SIV-infected

macaques suggests that virus particles and infected cells are

susceptible to be released into the seminal fluid and contribute to

its viral load, as described in other tissues (reviewed in [90]). Since

the seminal vesicles and prostate represent the two most infected

organs and their respective secretions constitute 60% and 30% of

the seminal fluid [91], they are likely to be the source of most viral

particles in the semen. In favor of this hypothesis, prostate massage

has been shown to significantly increase HIV RNA shedding in

seminal plasma [92]. The lower level of infection of the testes and

epididymides detected here strongly suggests that these organs are

lower contributors to the viral load in semen. This is compatible

with the fact that vasectomy has little effect on the level of seminal

HIV RNA [93,94]. It is believed that the epididymis represents the

main source of lymphocytes and macrophages in semen [95].

Indeed, our results show that it is in this organ that infected T

lymphocytes and macrophages are the most frequently encoun-

tered within the secretory epithelium. Our findings that T

lymphocytes represent the predominant infected cell type in the

MGT also correlates with the fact that infected T cells are the

main infected cell population in semen [96].

Whether or not testicular germ cells can be contaminated in

humans has been controversial (pro: [22,24,97,98]; anti:

[23,87,99]). We demonstrate here that occasional detection of

SIV RNA and antigens associated with isolated germ cells within

the seminiferous tubules of acutely and chronically-infected

macaques can occur. This is in agreement with another recent

finding, in post-acute asymptomatic SIV and SHIV-infected

pigtail macaques [64], but contrast with an earlier study on

Figure 8. Cytokine mRNAs expression. Pro-inflammatory and
immunosuppressive cytokines transcripts expression in testis and
prostate tissues, as measured by quantitative real time RT-PCR. Each
point represents the mean cytokine copy number of 2 independent
fragments from one animal. Stars indicate statistical difference between
non-infected and infected-macaques (Kruskal-Wallis test, p,0.05).
doi:10.1371/journal.pone.0001792.g008

Figure 9. Testosterone and LH levels measured in macaques’
serum. Results are expressed as the median value +/2 Q3 and Q1
quartiles. Pre-infection testosterone and LH values each represents the
pool of three measures performed on twelve macaques at different
time points prior to infection. For each time point p.i., 12 animals were
tested. * indicates statistical difference to the pre-infection level
(Wilcoxon test, p,0,05).
doi:10.1371/journal.pone.0001792.g009
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moribund SIV-infected rhesus macaques [25]. This latter

discrepancy could be explained by differences in technique

sensitivities, sizes of sampling, testicular morphology according

to disease stage or species. How HIV/SIV binds and/or infects

germ cells remains unknown. Using immunohistochemistry, we

did not find any expression of CD4, CXCR4 and CCR5 in the

seminiferous tubules. However, germ cells may express low levels

of one or several of those receptors that would not be detected

using this technique. The alternative HIV receptor GalCer has

previously been detected on germ cells [100] and could allow HIV

binding and/or infection of these cells [101–103]. The presence of

infected immune cells within the peritubular wall could also

contribute to virus transmission to germ cells.

The present study establishes that normal spermatogenesis

occurs in the acute and chronically SIV-infected macaques. A

finding similar was reported in asymptomatic men in whom

infected germ cell have been detected [98]. Furthermore we

observed a transient increase in testosteronemia during the post-

acute stage in macaques. This is likely to reflect a direct effect of

the infection on Leydig cell steroidogenesis as no change in LH

serum levels was observed. However, we did not find infection of

Leydig cells in our SIV-infected macaques, in agreement with our

previous work on HIV/SIV infection of human testis [43,104]. As

no modification in the production of cytokines was observed in the

testis of infected macaques, the observed testosterone increase is

likely to result from direct interactions of infected macrophages/

lymphocytes with Leydig cells [105], or from secretion of

unidentified factors [106]. The effect of the infection on sperm

quality could not be assessed in this study as semen was not

available. Of note is that in HIV-1+ men, semen parameters can

be altered [50,107–109]. However it is not clear whether this

results from the infection itself or from the antiretroviral

treatments. In men and macaques suffering from AIDS, various

stages of germ cell degeneration were reported (reviewed in [85]).

This probably results from the decreased testosterone levels often

observed in these patients (reviewed in [85]).

In conclusion, the present study reveals that SIV infection of the

macaque MGT is an early event and that semen-producing organs

display differential infection levels and immune responses.

Although there may be differences between humans and

macaques, these results strongly suggest that in the absence of

treatment, several male genital organs may be involved in HIV

shedding in semen throughout the infection. Analyses of split

ejaculates from infected macaques would be useful to further trace

the source of infected cells in semen back to specific organs in the

MGT. Our data pave the way for further experiments aimed at

establishing whether one or several of these organs constitute a

viral reservoir(s) that could lead to the persistent seminal HIV

shedding observed in men under antiretroviral therapy [3,14–18],

such as the analysis of SIV infection of male genital organs and

semen of macaques under HAART. Identifying the nature of the

viral sanctuaries within the MGT is of crucial importance for the

design of new antiviral therapies.

Supporting Information

Figure S1 CD4+ T cell counts in primary-infected macaques (A)

and chronically-infected macaques with high plasma viral load

(PVL) (B) or with low PVL (C). CD4+ cells were measured in the

blood of macaques at several time points prior (Pre-inf.) and post-

infection (Post-inf.) and at the time of euthanasia (except for

animals 6420 & 6442, data not available at the time of euthanasia).

The different animals are depicted by different symbols.

Found at: doi:10.1371/journal.pone.0001792.s001 (0.07 MB

DOC)

Figure S2 (A) Phylogenetic analyses of V1-V2 sequences from

quasi-species obtained from testis, prostate and seminal vesicle

tissues (white symbols) and blood (black symbols) of a low viral load

chronically infected macaque at necropsy. No viral DNA was

isolated from the epididymis tissue of this animal. Trees were built

with PAUP* version 4b10. Major significant phylogenetic clusters

in the MGT are rounded in black and numbered I to IV. The

numbers near nodes indicate the percentage of bootstrap replicate

(100 resamplings). The scale refers to the distance between

sequences. (B) Tissue origins of the clones present in the different

viral populations.

Found at: doi:10.1371/journal.pone.0001792.s002 (0.08 MB TIF)
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