C. Huze, S. Bauche, P. Richard, F. Chevessier, E. Goillot et al., Identification of an Agrin Mutation that Causes Congenital Myasthenia and Affects Synapse Function, The American Journal of Human Genetics, vol.85, issue.2, pp.155-167, 2009.
DOI : 10.1016/j.ajhg.2009.06.015

URL : https://hal.archives-ouvertes.fr/inserm-00409064

F. Chevessier, E. Girard, J. Molgo, S. Bartling, J. Koenig et al., A mouse model for congenital myasthenic syndrome due to MuSK mutations reveals defects in structure and function of neuromuscular junctions, Human Molecular Genetics, vol.17, issue.22, pp.3577-3595, 2008.
DOI : 10.1093/hmg/ddn251

URL : https://hal.archives-ouvertes.fr/hal-00335021

S. Lefebvre, L. Burglen, S. Reboullet, O. Clermont, P. Burlet et al., Identification and characterization of a spinal muscular atrophy?determining gene The promoters of the survival motor neuron gene (smn) and its copy (smnc) share common regulatory elements, Cell Am J Hum Genet, vol.8064, pp.1365-1370, 1995.

S. Lefebvre, L. Burglen, J. Frezal, A. Munnich, and J. Melki, The role of the SMN gene in proximal spinal muscular atrophy, Human Molecular Genetics, vol.7, issue.10, pp.1531-1536, 1998.
DOI : 10.1093/hmg/7.10.1531

S. Lefebvre, P. Burlet, Q. Liu, S. Bertrandy, O. Clermont et al., Correlation between severity and SMN protein level in spinal muscular atrophy, Nature Genetics, vol.76, issue.3, pp.265-269, 1997.
DOI : 10.1016/0006-8993(72)90398-8

J. Melki, Deletion of murine smn exon 7 directed to skeletal muscle leads to severe muscular dystrophy, J Cell Biol, vol.152, pp.1107-1114, 2001.

C. Cifuentes?diaz, N. S. Velasco, M. Borra?cebrian, C. Panozzo, C. Frugier et al., Neurofilament accumulation at the motor endplate and lack of axonal sprouting in a spinal muscular atrophy mouse model, Human Molecular Genetics, vol.11, issue.12, pp.1439-1447, 2002.
DOI : 10.1093/hmg/11.12.1439

J. Melki, Nuclear targeting defect of smn lacking the c?terminus in a mouse model of spinal muscular atrophy, Hum Mol Genet, vol.9, pp.849-858, 2000.

A. Gubitz, W. Feng, and G. Dreyfuss, The SMN complex, Experimental Cell Research, vol.296, issue.1, pp.51-56, 2004.
DOI : 10.1016/j.yexcr.2004.03.022

U. Fischer, Q. Liu, and G. Dreyfuss, The SMN???SIP1 Complex Has an Essential Role in Spliceosomal snRNP Biogenesis, Cell, vol.90, issue.6, pp.1023-1029, 1997.
DOI : 10.1016/S0092-8674(00)80368-2

Q. Liu, U. Fischer, F. Wang, and G. Dreyfuss, The Spinal Muscular Atrophy Disease Gene Product, SMN, and Its Associated Protein SIP1 Are in a Complex with Spliceosomal snRNP Proteins, Cell, vol.90, issue.6, pp.1013-1021, 1997.
DOI : 10.1016/S0092-8674(00)80367-0

G. Meister, S. Hannus, O. Plottner, T. Baars, E. Hartmann et al., SMNrp is an essential pre-mRNA splicing factor required for the formation of the mature spliceosome, The EMBO Journal, vol.20, issue.9, pp.2304-2314, 2001.
DOI : 10.1093/emboj/20.9.2304

R. Olaso, V. Joshi, J. Fernandez, N. Roblot, S. Courageot et al., Activation of RNA metabolism-related genes in mouse but not human tissues deficient in SMN, Physiological Genomics, vol.24, issue.2, pp.97-104, 2006.
DOI : 10.1152/physiolgenomics.00134.2005

Z. Zhang, F. Lotti, K. Dittmar, I. Younis, L. Wan et al., SMN Deficiency Causes Tissue-Specific Perturbations in the Repertoire of snRNAs and Widespread Defects in Splicing, Cell, vol.133, issue.4, pp.585-600, 2008.
DOI : 10.1016/j.cell.2008.03.031

D. Shafey, P. Cote, and R. Kothary, Hypomorphic Smn knockdown C2C12 myoblasts reveal intrinsic defects in myoblast fusion and myotube morphology, Experimental Cell Research, vol.311, issue.1, pp.49-61, 2005.
DOI : 10.1016/j.yexcr.2005.08.019

H. Chang, D. Dimlich, T. Yokokura, A. Mukherjee, M. Kankel et al., Modeling Spinal Muscular Atrophy in Drosophila, PLoS ONE, vol.49, issue.9, pp.3209-3245, 2008.
DOI : 10.1371/journal.pone.0003209.s006

A. Arnold, M. Gueye, S. Guettier?sigrist, I. Courdier?fruh, G. Coupin et al., Reduced expression of nicotinic AChRs in myotubes from spinal muscular atrophy I patients, Laboratory Investigation, vol.24, issue.10, pp.1271-1278, 2004.
DOI : 10.1038/labinvest.3700163

R. Martinez?hernandez, C. Soler?botija, E. Also, L. Alias, L. Caselles et al., The Developmental Pattern of Myotubes in Spinal Muscular Atrophy Indicates Prenatal Delay of Muscle Maturation, Journal of Neuropathology & Experimental Neurology, vol.68, issue.5, pp.474-481, 2009.
DOI : 10.1097/NEN.0b013e3181a10ea1

M. Muqit, J. Moss, C. Sewry, and R. Lane, Phenotypic variability in siblings with type III spinal muscular atrophy, Journal of Neurology, Neurosurgery & Psychiatry, vol.75, issue.12, pp.1762-1764, 2004.
DOI : 10.1136/jnnp.2003.018614

T. Rajendra, G. Gonsalvez, M. Walker, K. Shpargel, H. Salz et al., model of spinal muscular atrophy reveals a function for SMN in striated muscle, The Journal of Cell Biology, vol.53, issue.6, pp.831-841, 2007.
DOI : 10.1101/gad.342005

M. Walker, T. Rajendra, L. Saieva, J. Fuentes, L. Pellizzoni et al., SMN complex localizes to the sarcomeric Z-disc and is a proteolytic target of calpain, Human Molecular Genetics, vol.17, issue.21, pp.3399-3410, 2008.
DOI : 10.1093/hmg/ddn234

W. Rossoll, S. Jablonka, C. Andreassi, A. Kroning, K. Karle et al., Smn, the spinal muscular atrophy???determining gene product, modulates axon growth and localization of ??-actin mRNA in growth cones of motoneurons, The Journal of Cell Biology, vol.23, issue.4, pp.801-812, 2003.
DOI : 10.1016/S0896-6273(01)00357-9

S. Kariya, G. Park, Y. Maeno?hikichi, O. Leykekhman, C. Lutz et al., Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy, Human Molecular Genetics, vol.17, issue.16, pp.2552-2569, 2008.
DOI : 10.1093/hmg/ddn156

L. Kong, X. Wang, D. Choe, M. Polley, B. Burnett et al., Impaired Synaptic Vesicle Release and Immaturity of Neuromuscular Junctions in Spinal Muscular Atrophy Mice, Journal of Neuroscience, vol.29, issue.3, pp.842-851, 2009.
DOI : 10.1523/JNEUROSCI.4434-08.2009

L. Murray, L. Comley, D. Thomson, N. Parkinson, K. Talbot et al., Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy, Human Molecular Genetics, vol.17, issue.7, pp.949-962, 2008.
DOI : 10.1093/hmg/ddm367

M. Briese, B. Esmaeili, S. Fraboulet, E. Burt, S. Christodoulou et al., Deletion of smn-1, the Caenorhabditis elegans ortholog of the spinal muscular atrophy gene, results in locomotor dysfunction and reduced lifespan, 46 Gavrilina TO, 2009.
DOI : 10.1093/hmg/ddn320

URL : https://hal.archives-ouvertes.fr/inserm-00405389

U. Monani, G. Morris, and A. Burghes, Neuronal smn expression corrects spinal muscular atrophy in severe sma mice while muscle?specific smn expression has no phenotypic effect, Hum Mol Genet, vol.17, pp.1063-1075, 2008.

L. Spada, A. Wilson, E. Lubahn, D. Harding, A. Fischbeck et al., Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy, Nature, vol.352, issue.6330, pp.77-79, 1991.
DOI : 10.1038/352077a0

K. Suzuki, M. Katsuno, H. Banno, Y. Takeuchi, N. Atsuta et al., CAG repeat size correlates to electrophysiological motor and sensory phenotypes in SBMA, Brain, vol.131, issue.1, pp.229-239, 2008.
DOI : 10.1093/brain/awm289

L. Rhodes, B. Freeman, S. Auh, A. Kokkinis, L. Pean et al., Clinical features of spinal and bulbar muscular atrophy, Brain, vol.132, issue.12, 2009.
DOI : 10.1093/brain/awp258

B. Schmidt, C. Greenberg, D. Allingham?hawkins, and E. Spriggs, Expression of X-linked bulbospinal muscular atrophy (Kennedy disease) in two homozygous women, Neurology, vol.59, issue.5, pp.770-772, 2002.
DOI : 10.1212/WNL.59.5.770

G. Sobue, M. Doyu, T. Kachi, T. Yasuda, E. Mukai et al., Subclinical phenotypic expressions in heterozygous females of X-linked recessive bulbospinal neuronopathy, Journal of the Neurological Sciences, vol.117, issue.1-2, pp.74-78, 1993.
DOI : 10.1016/0022-510X(93)90157-T

N. Atsuta, H. Watanabe, M. Ito, H. Banno, K. Suzuki et al., Natural history of spinal and bulbar muscular atrophy (SBMA): a study of 223 Japanese patients, Brain, vol.129, issue.6, pp.1446-1455, 2006.
DOI : 10.1093/brain/awl096

T. Arbizu, J. Santamaria, J. Gomez, A. Quilez, and J. Serra, A family with adult spinal and bulbar muscular atrophy, X-linked inheritance and associated testicular failure, Journal of the Neurological Sciences, vol.59, issue.3, pp.371-382, 1983.
DOI : 10.1016/0022-510X(83)90022-9

R. Casella, M. Maduro, L. Lipshultz, and D. Lamb, Significance of the polyglutamine tract polymorphism in the androgen receptor, Urology, vol.58, issue.5, pp.651-656, 2001.
DOI : 10.1016/S0090-4295(01)01401-7

Z. Yu, N. Dadgar, M. Albertelli, K. Gruis, C. Jordan et al., Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model, Journal of Clinical Investigation, vol.116, issue.10, pp.2663-2672, 2006.
DOI : 10.1172/JCI28773.

Z. Yu, N. Dadgar, M. Albertelli, A. Scheller, R. Albin et al., Abnormalities of Germ Cell Maturation and Sertoli Cell Cytoskeleton in Androgen Receptor 113 CAG Knock-In Mice Reveal Toxic Effects of the Mutant Protein, The American Journal of Pathology, vol.168, issue.1, pp.195-204, 2006.
DOI : 10.2353/ajpath.2006.050619

M. Albertelli, A. Scheller, M. Brogley, D. Robins, O. Brien et al., Replacing the mouse androgen receptor with human alleles demonstrates glutamine tract length?dependent effects on physiology and tumorigenesis in mice Castration restores function and neurofilament alterations of aged symptomatic males in a transgenic mouse model of spinal and bulbar muscular atrophy, Mol Endocrinol J Neurosci, vol.2024, pp.4778-4786, 2004.

M. Katsuno, H. Adachi, A. Kume, M. Li, Y. Nakagomi et al., Testosterone Reduction Prevents Phenotypic Expression in a Transgenic Mouse Model of Spinal and Bulbar Muscular Atrophy, Neuron, vol.35, issue.5, pp.843-854, 2002.
DOI : 10.1016/S0896-6273(02)00834-6

M. Katsuno, H. Adachi, A. Inukai, and G. Sobue, Transgenic mouse models of spinal and bulbar muscular atrophy (SBMA), Cytogenetic and Genome Research, vol.100, issue.1-4, pp.243-251, 2003.
DOI : 10.1159/000072860

M. Katsuno, H. Adachi, M. Doyu, M. Minamiyama, C. Sang et al., Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy, Nature Medicine, vol.9, issue.6, pp.768-773, 2003.
DOI : 10.1038/nm878

H. Lee and C. Chang, Recent advances in androgen receptor action, Cellular and Molecular Life Sciences (CMLS), vol.60, issue.8, pp.1613-1622, 2003.
DOI : 10.1007/s00018-003-2309-3

A. Mooradian, J. Morley, and S. Korenman, Biological Actions of Androgens, Endocrine Reviews, vol.8, issue.1, pp.1-28, 1987.
DOI : 10.1210/edrv-8-1-1

M. Mcphaul, Androgen receptor mutations and androgen insensitivity, Molecular and Cellular Endocrinology, vol.198, issue.1-2, pp.61-67, 2002.
DOI : 10.1016/S0303-7207(02)00369-6

M. Mcphaul, Molecular Defects of the Androgen Receptor, Recent Progress in Hormone Research, vol.57, issue.1, pp.181-194, 2002.
DOI : 10.1210/rp.57.1.181

J. Ophoff, K. Van-proeyen, F. Callewaert, D. Gendt, K. et al., Androgen Signaling in Myocytes Contributes to the Maintenance of Muscle Mass and Fiber Type Regulation But Not to Muscle Strength or Fatigue, Endocrinology, vol.150, issue.8, pp.3558-3566, 2009.
DOI : 10.1210/en.2008-1509

H. Maclean, W. Chiu, A. Notini, A. Axell, R. Davey et al., Impaired skeletal muscle development and function in male, but not female, genomic androgen receptor knockout mice, The FASEB Journal, vol.22, issue.8, pp.2676-2689, 2008.
DOI : 10.1096/fj.08-105726

H. Banno, M. Katsuno, K. Suzuki, Y. Takeuchi, M. Kawashima et al., Phase 2 trial of leuprorelin in patients with spinal and bulbar muscular atrophy, Annals of Neurology, vol.87, issue.pt 1, pp.140-150, 2009.
DOI : 10.1002/ana.21540

G. Soraru, D. Ascenzo, C. Polo, A. Palmieri, A. Baggio et al., Spinal and bulbar muscular atrophy: Skeletal muscle pathology in male patients and heterozygous females A family with early?onset and rapidly progressive x?linked spinal and bulbar muscular atrophy, J Neurol Sci Neurology, vol.26464, pp.1458-1460, 2005.

D. Monks, O. Bryant, E. Jordan, and C. , Androgen receptor immunoreactivity in skeletal muscle: Enrichment at the neuromuscular junction, The Journal of Comparative Neurology, vol.21, issue.1, pp.59-72, 2004.
DOI : 10.1002/cne.20088

D. Monks, J. Johansen, K. Mo, P. Rao, B. Eagleson et al., Overexpression of wild-type androgen receptor in muscle recapitulates polyglutamine disease, Proceedings of the National Academy of Sciences, vol.104, issue.46, pp.18259-18264, 2007.
DOI : 10.1073/pnas.0705501104

J. Johansen, Z. Yu, K. Mo, D. Monks, A. Lieberman et al., Recovery of function in a myogenic mouse model of spinal bulbar muscular atrophy, Neurobiology of Disease, vol.34, issue.1, pp.113-120, 2009.
DOI : 10.1016/j.nbd.2008.12.009

C. Jordan and A. Lieberman, Spinal and bulbar muscular atrophy: a motoneuron or muscle disease?, Current Opinion in Pharmacology, vol.8, issue.6, pp.752-758, 2008.
DOI : 10.1016/j.coph.2008.08.006

S. Boillee, V. Velde, C. Cleveland, and D. , ALS: A Disease of Motor Neurons and Their Nonneuronal Neighbors, Neuron, vol.52, issue.1, pp.39-59, 2006.
DOI : 10.1016/j.neuron.2006.09.018

J. Gonzalez-de-aguilar, A. Echaniz?laguna, A. Fergani, R. F. Meininger, V. Loeffler et al., Amyotrophic lateral sclerosis: All roads lead to rome, J Neurochem, 2007.

L. Dupuis and J. Loeffler, Neuromuscular junction destruction during amyotrophic lateral sclerosis: insights from transgenic models, Current Opinion in Pharmacology, vol.9, issue.3, pp.341-346, 2009.
DOI : 10.1016/j.coph.2009.03.007

M. Greenway, P. Andersen, C. Russ, S. Ennis, S. Cashman et al., ANG mutations segregate with familial and 'sporadic' amyotrophic lateral sclerosis, Nature Genetics, vol.34, issue.4, pp.411-413, 2006.
DOI : 10.1038/ng1742

A. Nishimura, M. Mitne?neto, H. Silva, A. Richieri?costa, S. Middleton et al., A Mutation in the Vesicle-Trafficking Protein VAPB Causes Late-Onset Spinal Muscular Atrophy and Amyotrophic Lateral Sclerosis, The American Journal of Human Genetics, vol.75, issue.5, pp.822-831, 2004.
DOI : 10.1086/425287

I. Puls, C. Jonnakuty, B. Lamonte, E. Holzbaur, M. Tokito et al., Mutant dynactin in motor neuron disease, Nature Genetics, vol.33, issue.4, pp.455-456, 2003.
DOI : 10.1038/ng1123

C. Munch, R. Sedlmeier, T. Meyer, V. Homberg, A. Sperfeld et al., Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS, Neurology, vol.63, issue.4, pp.724-726, 2004.
DOI : 10.1212/01.WNL.0000134608.83927.B1

E. Kabashi, P. Valdmanis, P. Dion, D. Spiegelman, B. Mcconkey et al., TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis, Nature Genetics, vol.69, issue.5, pp.572-574, 2008.
DOI : 10.1083/jcb.200702115

P. Kuhnlein, A. Sperfeld, B. Vanmassenhove, V. Van-deerlin, V. Lee et al., Two German Kindreds With Familial Amyotrophic Lateral Sclerosis Due to TARDBP Mutations, Archives of Neurology, vol.65, issue.9, pp.1185-1189, 2008.
DOI : 10.1001/archneur.65.9.1185

N. Rutherford, Y. Zhang, M. Baker, J. Gass, N. Finch et al., Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis, PLoS Genetics, vol.20, issue.9, pp.1000193-85, 2008.
DOI : 10.1371/journal.pgen.1000193.s006

J. Sreedharan, I. Blair, V. Tripathi, X. Hu, C. Vance et al., TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis, Science, vol.319, issue.5870, pp.1668-1672, 2008.
DOI : 10.1126/science.1154584

T. Ikeuchi, A. Kakita, K. Okamoto, M. Nishizawa, H. Takahashi et al., Tdp?43 mutation in familial amyotrophic lateral sclerosis, Ann Neurol, vol.63, pp.538-542, 2008.

T. Kwiatkowski, J. Bosco, D. Leclerc, A. Tamrazian, E. Vanderburg et al., Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis, Science, vol.323, issue.5918, pp.1205-1208, 2009.
DOI : 10.1126/science.1166066

N. Ticozzi, V. Silani, A. Leclerc, P. Keagle, C. Gellera et al., Analysis of FUS gene mutation in familial amyotrophic lateral sclerosis within an Italian cohort, Neurology, vol.73, issue.15, p.89, 2009.
DOI : 10.1212/WNL.0b013e3181bbff05

C. Chow, J. Landers, S. Bergren, P. Sapp, A. Grant et al., Deleterious Variants of FIG4, a Phosphoinositide Phosphatase, in Patients with ALS, The American Journal of Human Genetics, vol.84, issue.1, pp.85-88, 2009.
DOI : 10.1016/j.ajhg.2008.12.010

C. Lagier?tourenne and D. Cleveland, Rethinking ALS: The FUS about TDP-43, Cell, vol.136, issue.6, p.91, 2009.
DOI : 10.1016/j.cell.2009.03.006

I. Wegorzewska, S. Bell, N. Cairns, T. Miller, and R. Baloh, TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration, Proceedings of the National Academy of Sciences, vol.106, issue.44, pp.18809-18814, 2009.
DOI : 10.1073/pnas.0908767106

P. Corcia, W. Camu, J. Praline, P. Gordon, P. Vourch et al., The importance of the SMN genes in the genetics of sporadic ALS, Amyotrophic Lateral Sclerosis, vol.10, pp.436-440, 2009.
DOI : 10.1080/17482960902759162

P. Corcia, W. Camu, J. Halimi, P. Vourc-'h, C. Antar et al., SMN1 gene, but not SMN2, is a risk factor for sporadic ALS, Neurology, vol.67, issue.7, pp.1147-1150, 2006.
DOI : 10.1212/01.wnl.0000233830.85206.1e

C. Andres, Abnormal smn1 gene copy number is a susceptibility factor for amyotrophic lateral sclerosis, Ann Neurol, vol.51, pp.243-246, 2002.

J. Veldink, S. Kalmijn, A. Van-der-hout, H. Lemmink, G. Groeneveld et al., SMN genotypes producing less SMN protein increase susceptibility to and severity of sporadic ALS, Neurology, vol.65, issue.6, pp.820-825, 2005.
DOI : 10.1212/01.wnl.0000174472.03292.dd

J. Wokke, H. Scheffer, C. Guiraud?chaumeil, C. Tranchant, A. Reeber et al., Homozygous deletion of the survival motor neuron 2 gene is a prognostic factor in sporadic als Homozygous exon 7 deletion of the smn centromeric gene (smn2): A potential susceptibility factor for adult?onset lower motor neuron disease, Neurology J Neurol, vol.56249, pp.290-293, 2001.

Y. Iwasaki, H. Sugimoto, K. Ikeda, K. Takamiya, T. Shiojima et al., Muscle morphometry in amyotrophic lateral sclerosis, International Journal of Neuroscience, vol.18, issue.3-4, pp.165-170, 1991.
DOI : 10.3109/00207459108985432

A. Achari and M. Anderson, Myopathic changes in amyotrophic lateral sclerosis

I. Mackenzie, A. Eisen, T. Brannstrom, S. Marklund, and P. Andersen, 477?481. 100 Amrit AN, Anderson MS: Serum creatine phosphokinase in amyotrophic lateral sclerosis. Correlation with sex, duration, and skeletal muscle biopsy Clinicopathological phenotype of als with a novel g72c sod1 gene mutation mimicking a myopathy, Pathologic analysis of muscle biopsy changes in 111 cases834?837. 101 Stewart HG, pp.701-706, 1974.

M. Hirano, C. Angelini, P. Montagna, A. Hays, K. Tanji et al., Amyotrophic Lateral Sclerosis With Ragged-Red Fibers, Archives of Neurology, vol.65, issue.3, pp.403-406, 2008.
DOI : 10.1001/archneurol.2007.65

L. Dupuis, J. Gonzalez-de-aguilar, H. Oudart, M. De-tapia, L. Barbeito et al., Mitochondria in Amyotrophic Lateral Sclerosis: A Trigger and a Target, Neurodegenerative Diseases, vol.1, issue.6, pp.245-254, 2004.
DOI : 10.1159/000085063

A. Echaniz?laguna, J. Zoll, E. Ponsot, N. Guessan, B. Tranchant et al., Muscular mitochondrial function in amyotrophic lateral sclerosis is progressively altered as the disease develops: A temporal study in man Mitochondrial respiratory chain function in skeletal muscle of als patients, Exp Neurol Ann Neurol, vol.19852, pp.623-627, 2002.

L. Fischer, D. Culver, P. Tennant, A. Davis, M. Wang et al., Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man, Experimental Neurology, vol.185, issue.2, pp.232-240, 2004.
DOI : 10.1016/j.expneurol.2003.10.004

S. 107-pun, A. Santos, S. Saxena, L. Xu, and P. Caroni, Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF, Nature Neuroscience, vol.11, issue.3, pp.408-419, 2006.
DOI : 10.1038/nn1653

C. Guegan and S. Przedborski, Programmed cell death in amyotrophic lateral sclerosis, Journal of Clinical Investigation, vol.111, issue.2, pp.153-161, 2003.
DOI : 10.1172/JCI200317610

P. Gordon, D. Moore, R. Miller, J. Florence, J. Verheijde et al., Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial, The Lancet Neurology, vol.6, issue.12, pp.1045-1053, 2007.
DOI : 10.1016/S1474-4422(07)70270-3

T. Gould, R. Buss, S. Vinsant, D. Prevette, W. Sun et al., Complete Dissociation of Motor Neuron Death from Motor Dysfunction by Bax Deletion in a Mouse Model of ALS, Journal of Neuroscience, vol.26, issue.34, pp.8774-8786, 2006.
DOI : 10.1523/JNEUROSCI.2315-06.2006

C. Rouaux, I. Panteleeva, R. F. Gonzalez-de-aguilar, J. Echaniz?laguna, A. Dupuis et al., Sodium Valproate Exerts Neuroprotective Effects In Vivo through CREB-Binding Protein-Dependent Mechanisms But Does Not Improve Survival in an Amyotrophic Lateral Sclerosis Mouse Model, Journal of Neuroscience, vol.27, issue.21, pp.5535-5545, 2007.
DOI : 10.1523/JNEUROSCI.1139-07.2007

M. Dewil, V. Cruz, . Van-den, L. Bosch, and W. Robberecht, Inhibition of p38 mitogen activated protein kinase activation and mutant SOD1G93A-induced motor neuron death, Neurobiology of Disease, vol.26, issue.2, pp.332-341, 2007.
DOI : 10.1016/j.nbd.2006.12.023

S. Boillee, K. Yamanaka, C. Lobsiger, N. Copeland, N. Jenkins et al., Onset and Progression in Inherited ALS Determined by Motor Neurons and Microglia, Science, vol.312, issue.5778, pp.425-436, 2006.
DOI : 10.1126/science.1123511

M. Wong, L. Martin, T. Miller, S. Kim, K. Yamanaka et al., Skeletal muscle?restricted expression of human sod1 causes motor neuron degeneration in transgenic mice Gene transfer demonstrates that muscle is not a primary target for non?cell?autonomous toxicity in familial amyotrophic lateral sclerosis, Hum Mol Genet Proc Natl Acad Sci U S A, vol.116103, 2006.

C. Towne, C. Raoul, B. Schneider, P. Aebischer, J. Gonzalez-de-aguilar et al., Systemic aav6 delivery mediating rna interference against sod1: Neuromuscular transduction does not alter disease progression in fals mice Nogo provides a molecular marker for diagnosis of amyotrophic lateral sclerosis, Mol Ther Neurobiol Dis, vol.1610, pp.358-365, 2002.

N. Jokic, J. Gonzalez-de-aguilar, L. Dimou, S. Lin, A. Fergani et al., The neurite outgrowth inhibitor Nogo-A promotes denervation in an amyotrophic lateral sclerosis model, EMBO reports, vol.23, issue.11, pp.1162-1167, 2006.
DOI : 10.1016/j.nbd.2005.06.005

N. Jokic, J. Gonzalez-de-aguilar, P. Pradat, L. Dupuis, A. Echaniz?laguna et al., Nogo expression in muscle correlates with amyotrophic lateral sclerosis severity, Annals of Neurology, vol.23, issue.4, pp.553-556, 2005.
DOI : 10.1002/ana.20420

W. Derave, . Van-den, L. Bosch, G. Lemmens, B. Eijnde et al., Skeletal muscle properties in a transgenic mouse model for amyotrophic lateral sclerosis: Effects of creatine treatment Up?regulation of mitochondrial uncoupling protein 3 reveals an early muscular metabolic defect in amyotrophic lateral sclerosis Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: Benefit of a high?energy diet in a transgenic mouse model, 264?272. 122 Dupuis L, pp.11159-1116436, 2003.

J. Gonzalez-de-aguilar, C. Niederhauser?wiederkehr, B. Halter, D. Tapia, M. et al., Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model, Physiological Genomics, vol.32, issue.2, pp.207-218, 2008.
DOI : 10.1152/physiolgenomics.00017.2007

URL : https://hal.archives-ouvertes.fr/inserm-00518523

L. Dupuis, J. Gonzalez-de-aguilar, A. Echaniz?laguna, J. Eschbach, R. F. Oudart et al., Muscle Mitochondrial Uncoupling Dismantles Neuromuscular Junction and Triggers Distal Degeneration of Motor Neurons, PLoS ONE, vol.10, issue.4, p.5390, 2009.
DOI : 10.1371/journal.pone.0005390.g009

URL : https://hal.archives-ouvertes.fr/hal-00403134

A. Fergani, H. Oudart, J. Gonzalez-de-aguilar, B. Fricker, R. F. Hocquette et al., Increased peripheral lipid clearance in an animal model of amyotrophic lateral sclerosis, The Journal of Lipid Research, vol.48, issue.7, pp.17-20, 2007.
DOI : 10.1194/jlr.M700017-JLR200

URL : https://hal.archives-ouvertes.fr/hal-00160852

J. Desport, P. Preux, T. Truong, J. Vallat, D. Sautereau et al., Nutritional status is a prognostic factor for survival in als patients Nutritional assessment and survival in als patients, Neurology Amyotroph Lateral Scler Other Motor Neuron Disord, vol.531, pp.91-96, 1999.

J. Desport, P. Preux, L. Magy, Y. Boirie, J. Vallat et al., Factors correlated with hypermetabolism in patients with amyotrophic lateral sclerosis

J. Desport, F. Torny, M. Lacoste, P. Preux, and P. Couratier, Hypermetabolism in ALS: Correlations with Clinical and Paraclinical Parameters, Neurodegenerative Diseases, vol.2, issue.3-4, pp.202-207, 2005.
DOI : 10.1159/000089626

B. Funalot, J. Desport, F. Sturtz, W. Camu, P. Couratier et al., High metabolic level in patients with familial amyotrophic lateral sclerosis Dyslipidemia is a protective factor in amyotrophic lateral sclerosis Impaired glucose tolerance in patients with amyotrophic lateral sclerosis, 1?6. 135 Tsuchida K, Nakatani M, 2008.

F. Rose, J. Mattis, V. Rindt, H. Lorson, and C. , Delivery of recombinant follistatin lessens disease severity in a mouse model of spinal muscular atrophy, Human Molecular Genetics, vol.18, issue.6, pp.997-1005, 2009.
DOI : 10.1093/hmg/ddn426

A. Musaro, K. Mccullagh, A. Paul, L. Houghton, G. Dobrowolny et al., Localized igf?1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle, Nat Genet, vol.27, 2001.

G. Dobrowolny, C. Giacinti, L. Pelosi, C. Nicoletti, N. Winn et al., Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model, The Journal of Cell Biology, vol.105, issue.2, pp.193-199, 2005.
DOI : 10.1016/S0896-6273(00)80086-0

S. Deforges, J. Branchu, O. Biondi, G. Clement, C. Pariset et al., Motor neuron survival is promoted by specific exercise in a mouse model of amyotrophic?lateral?sclerosis, J Physiol, 2009.

C. Grondard, O. Biondi, A. Armand, S. Lecolle, D. Gaspera et al., Regular exercise prolongs survival in a type 2 spinal muscular atrophy model mouse Regular exercise is beneficial to a mouse model of amyotrophic lateral sclerosis, J Neurosci Ann Neurol, vol.2553, pp.804-807, 2003.

P. Klivenyi, R. Ferrante, R. Matthews, M. Bogdanov, A. Klein et al., Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis, Nature Medicine, vol.71, issue.3, pp.347-350, 1999.
DOI : 10.1016/0169-328X(94)90029-9

Y. Kira, M. Nishikawa, A. Ochi, E. Sato, M. Inoue et al., L?carnitine suppresses the onset of neuromuscular degeneration and increases the life span of mice with familial amyotrophic lateral sclerosis Transcriptional response of the neuromuscular system to exercise training and potential implications for als, Brain Res J Neurochem, vol.1070109, pp.1714-1724, 2006.

W. Li, D. Brakefield, Y. Pan, D. Hunter, T. Myckatyn et al., Muscle-derived but not centrally derived transgene GDNF is neuroprotective in G93A-SOD1 mouse model of ALS, Experimental Neurology, vol.203, issue.2, pp.457-471, 2007.
DOI : 10.1016/j.expneurol.2006.08.028

M. Azzouz, G. Ralph, E. Storkebaum, L. Walmsley, K. Mitrophanous et al., VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model, Nature, vol.62, issue.6990, pp.413-417, 2004.
DOI : 10.1006/mthe.2002.0576

M. Azzouz, T. Le, G. Ralph, L. Walmsley, U. Monani et al., Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy, Journal of Clinical Investigation, vol.114, issue.12, pp.1726-1731, 2004.
DOI : 10.1172/JCI22922

G. Ralph, P. Radcliffe, D. Day, J. Carthy, M. Leroux et al., Silencing mutant sod1 using rnai protects against neurodegeneration and extends survival in an als model A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis, Nat Med Brain Res Brain Res Rev, vol.1147, pp.263-274, 2004.

M. Pehar, P. Cassina, M. Vargas, R. Castellanos, L. Viera et al., Astrocytic production of nerve growth factor in motor neuron apoptosis: Implications for amyotrophic lateral sclerosis Increased glutathione biosynthesis by nrf2 activation in astrocytes prevents p75ntr?dependent motor neuron apoptosis, 464?473. 152 Vargas MR, pp.687-696, 2004.

P. Cassina, A. Cassina, M. Pehar, R. Castellanos, M. Gandelman et al., Mitochondrial Dysfunction in SOD1G93A-Bearing Astrocytes Promotes Motor Neuron Degeneration: Prevention by Mitochondrial-Targeted Antioxidants, Journal of Neuroscience, vol.28, issue.16, pp.4115-4122, 2008.
DOI : 10.1523/JNEUROSCI.5308-07.2008

S. Olivera, A. Fernandez, A. Latini, J. Rosillo, G. Casanova et al., Astrocytic proliferation and mitochondrial dysfunction, p.38

M. Vargas, M. Pehar, P. Diaz?amarilla, J. Beckman, and L. Barbeito, Transcriptional profile of primary astrocytes expressing ALS-linked mutant SOD1, Journal of Neuroscience Research, vol.80, issue.16, pp.3515-3525, 2008.
DOI : 10.1002/jnr.21797

K. Yamanaka, S. Chun, S. Boillee, N. Fujimori?tonou, H. Yamashita et al., Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis Schwann cells expressing dismutase active mutant sod1 unexpectedly slow disease progression in als mice, Nat Neurosci Proc Natl Acad Sci U S A, vol.11106, pp.4465-4470, 2008.