O. Reilly, M. Chadderton, N. Millington-ward, S. Ader, M. Farrar et al., RNA interferencemediated suppression and replacement of human rhodopsin in vivo, Am J Hum Genet, vol.81, pp.127-135, 2007.

A. Cideciyan, T. Aleman, S. Boye, and S. Schwartz, Hauswirth WW et al Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics

A. Maguire, F. Simonelli, E. Pierce, E. Pugh, . Jr et al., Safety and Efficacy of Gene Transfer for Leber's Congenital Amaurosis, New England Journal of Medicine, vol.358, issue.21, pp.2282-2284, 2008.
DOI : 10.1056/NEJMoa0802315

J. Bainbridge, A. Smith, S. Barker, R. S. Ali, and R. , Effect of Gene Therapy on Visual Function in Leber's Congenital Amaurosis, New England Journal of Medicine, vol.358, issue.21, pp.2231-2239, 2008.
DOI : 10.1056/NEJMoa0802268

J. Phelan and D. Bok, A brief review of retinitis pigmentosa and the identified retinitis pigmentosa genes, Mol Vis, vol.6, pp.116-124, 2006.

M. Naash, J. Holyfield, M. Ubaidi, and W. Baehr, Simulation of human autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene., Proceedings of the National Academy of Sciences, vol.90, issue.12, pp.5499-5503, 1993.
DOI : 10.1073/pnas.90.12.5499

Y. Goto, N. Peachey, H. Ripps, and M. Naash, Functional abnormalities in transgenic mice expressing a mutant rhodopsin gene, Invest Ophthalmol Vis Sci, vol.36, pp.62-71, 1995.

T. Léveillard, S. Mohand-saïd, O. Lorentz, D. Hicks, and A. Fintz, Identification and characterization of rod-derived cone viability factor, Nature Genetics, vol.124, issue.7, pp.755-759, 2004.
DOI : 10.1093/nar/25.17.3389

Y. Yang, S. Mohand-said, A. Danan, M. Simonutti, and V. Fontaine, Functional Cone Rescue by RdCVF Protein in a Dominant Model of Retinitis Pigmentosa, Molecular Therapy, vol.17, issue.5, pp.787-795, 2009.
DOI : 10.1038/mt.2009.28

URL : https://hal.archives-ouvertes.fr/inserm-00464512

X. Wang, B. Tan, M. Sun, B. Ho, and J. Ding, Thioredoxin-like 6 protects retinal cell line from photooxidative damage by upregulating NF-??B activity, Free Radical Biology and Medicine, vol.45, issue.3, pp.336-344, 2008.
DOI : 10.1016/j.freeradbiomed.2008.04.028

F. Chalmel, T. Léveillard, C. Jaillard, A. Lardenois, and N. Berdugo, Rod-derived Cone Viability Factor-2 is a novel bifunctional-thioredoxin-like protein with therapeutic potential, BMC Molecular Biology, vol.8, issue.1, p.74, 2007.
DOI : 10.1186/1471-2199-8-74

URL : https://hal.archives-ouvertes.fr/hal-00188911

C. Lillig and A. Holmgren, Thioredoxin and Related Molecules???From Biology to Health and Disease, Antioxidants & Redox Signaling, vol.9, issue.1, pp.25-47, 2007.
DOI : 10.1089/ars.2007.9.25

X. Wang, Y. Liou, B. Ho, and J. Ding, An evolutionarily conserved 16-kDa thioredoxin-related protein is an antioxidant which regulates the NF-??B signaling pathway, Free Radical Biology and Medicine, vol.42, issue.2, pp.247-259, 2007.
DOI : 10.1016/j.freeradbiomed.2006.10.040

R. Fridlich, F. Delalande, C. Jaillard, J. Lu, L. Poidevin et al., The Thioredoxin-like Protein Rod-derived Cone Viability Factor (RdCVFL) Interacts with TAU and Inhibits Its Phosphorylation in the Retina, Molecular & Cellular Proteomics, vol.8, issue.6, pp.1206-1218, 2009.
DOI : 10.1074/mcp.M800406-MCP200

URL : https://hal.archives-ouvertes.fr/inserm-00420386

A. Rattner and J. Nathans, The Genomic Response to Retinal Disease and Injury: Evidence for Endothelin Signaling from Photoreceptors to Glia, Journal of Neuroscience, vol.25, issue.18, pp.4540-4549, 2005.
DOI : 10.1523/JNEUROSCI.0492-05.2005

S. Zhang, C. Barclay, L. Alexander, L. Geldenhuys, G. Porter et al., Alternative splicing of the FGF antisense gene: differential subcellular localization in human tissues and esophageal adenocarcinoma, Journal of Molecular Medicine, vol.267, issue.11, pp.1215-1228, 2007.
DOI : 10.1007/s00109-007-0219-9

T. Harada, C. Harada, S. Kohsaka, E. Wada, K. Yoshida et al., Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration, J Neurosci, vol.22, pp.9228-9236, 2002.

C. Combadière, C. Feumi, R. W. Keller, N. Rodéro, and M. , Pézard A et al CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration, J Clin Invest, vol.117, pp.2758-2762, 2007.

C. Punzo and C. Cepko, Mouse Model of Retinal Degeneration, Investigative Opthalmology & Visual Science, vol.48, issue.2, pp.849-857, 2007.
DOI : 10.1167/iovs.05-1555

N. Zarkovic, 4-Hydroxynonenal as a bioactive marker of pathophysiological processes, Molecular Aspects of Medicine, vol.24, issue.4-5
DOI : 10.1016/S0098-2997(03)00023-2

C. Ethen, C. Reilly, X. Feng, T. Olsen, and D. Ferrington, Age-Related Macular Degeneration and Retinal Protein Modification by 4-Hydroxy-2-nonenal, Investigative Opthalmology & Visual Science, vol.48, issue.8, pp.3469-3479, 2007.
DOI : 10.1167/iovs.06-1058

H. Yamada, E. Yamada, S. Hackett, H. Ozaki, N. Okamoto et al., Hyperoxia causes decreased expression of vascular endothelial growth factor and endothelial cell apoptosis in adult retina, Journal of Cellular Physiology, vol.12, issue.2, pp.149-156, 1999.
DOI : 10.1002/(SICI)1097-4652(199905)179:2<149::AID-JCP5>3.0.CO;2-2

N. Walsh, A. Bravo-neuvo, S. Geller, and J. Stone, , C57BL/6J, and BALB/cJ mouse strains to oxygen stress: Evidence of an oxygen phenotype, Current Eye Research, vol.40, issue.6
DOI : 10.1139/o98-056

K. Iqbal, F. Liu, C. Gong, A. Adel, and C. , Mechanisms of tau-induced neurodegeneration, Acta Neuropathologica, vol.580, issue.Pt 6, pp.53-69, 2009.
DOI : 10.1007/s00401-009-0486-3

C. Punzo, K. Kornacker, and C. Cepko, Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa, Nature Neuroscience, vol.22, issue.1, pp.44-52, 2009.
DOI : 10.1038/nn.2234

J. Lahdenranta, R. Pasqualini, R. Schlingemann, M. Hagedorn, and W. Stallcup, An anti-angiogenic state in mice and humans with retinal photoreceptor cell degeneration, Proceedings of the National Academy of Sciences, vol.98, issue.18, pp.10368-10373, 2001.
DOI : 10.1073/pnas.181329198

M. Mellén, E. De-la-rosa, and P. Boya, The autophagic machinery is necessary for removal of cell corpses from the developing retinal neuroepithelium, Cell Death and Differentiation, vol.20, issue.8, pp.1279-1290, 2008.
DOI : 10.1002/jmor.1050880104

H. Lohr, K. Kuntchithapautham, A. Sharma, and B. Rohrer, Multiple, parallel cellular suicide mechanisms participate in photoreceptor cell death, Experimental Eye Research, vol.83, issue.2, pp.380-389, 2006.
DOI : 10.1016/j.exer.2006.01.014

Y. Funato, T. Michiue, M. Asashima, and H. Miki, The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt?????-catenin signalling through Dishevelled, Nature Cell Biology, vol.61, issue.5, pp.501-850, 2006.
DOI : 10.1038/ncb1405

F. Schwenk, U. Baron, and K. Rajewsky, -flanked gene segments including deletion in germ cells, Nucleic Acids Research, vol.23, issue.24, pp.5080-5081, 1995.
DOI : 10.1093/nar/23.24.5080

URL : https://hal.archives-ouvertes.fr/hal-01157949

J. Blanks and L. Johnson, Selective lectin binding of the developing mouse retina, The Journal of Comparative Neurology, vol.6, issue.1, pp.31-41, 1983.
DOI : 10.1002/cne.902210103

D. Hicks and C. Barnstable, Different rhodopsin monoclonal antibodies reveal different binding patterns on developing and adult rat retina., Journal of Histochemistry & Cytochemistry, vol.35, issue.11, pp.1317-1328, 1987.
DOI : 10.1177/35.11.3655327

A. Dong, J. Shen, M. Krause, S. Hackett, and P. Campochiaro, Increased expression of glial cell line-derived neurotrophic factor protects against oxidative damage-induced retinal degeneration, Journal of Neurochemistry, vol.41, issue.3
DOI : 10.1167/iovs.03-0845

E. Chang and J. Kuret, Detection and quantification of tau aggregation using a membrane filter assay, Analytical Biochemistry, vol.373, issue.2, pp.330-336, 2008.
DOI : 10.1016/j.ab.2007.09.015

E. Faktorovich, R. Steinberg, D. Yasumura, M. Matthes, and M. Lavail, Basic Fibroblast Growth Factor and local injury protects photoreceptors from light damage in the rat, J Neurosci, vol.12, pp.3554-3567, 1992.

N. Andrews and D. Faller, A rapid micrqpreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells, Nucleic Acids Research, vol.19, issue.9, p.2499, 1991.
DOI : 10.1093/nar/19.9.2499

V. Glisin, R. Crkvenjakov, and C. Byus, Ribonucleic acid isolated by cesium chloride centrifugation, Biochemistry, vol.13, issue.12, pp.2633-2637, 1974.
DOI : 10.1021/bi00709a025

A. Ploner, S. Calza, and A. Gusnanto, Multidimensional local false discovery rate for microarray studies, Bioinformatics, vol.22, issue.5, pp.556-565, 2006.
DOI : 10.1093/bioinformatics/btk013

N. Wicker, D. Dembele, W. Raffelsberger, and O. Poch, Density of points clustering, application to transcriptomic data analysis, Nucleic Acids Research, vol.30, issue.18, pp.3992-4000, 2002.
DOI : 10.1093/nar/gkf511

M. Frasson, J. Sahel, M. Fabre, M. Simonutti, H. Dreyfus et al., Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse, Nat Med, vol.5, pp.1183-1187, 1999.

N. Peachey, Y. Goto, and M. Ubaidi, Properties of the mouse cone-mediated electroretinogram during light adaptation, Neuroscience Letters, vol.162, issue.1-2, pp.9-11, 1993.
DOI : 10.1016/0304-3940(93)90547-X

B. Ekesten and P. Gouras, Moschos M Cone properties of the light-adapted murine ERG, Documenta Ophthalmologica, vol.97, issue.1, pp.23-31, 1998.
DOI : 10.1023/A:1001869212639

S. Table and S. , The level of differential expression between genotypes is shown in descending order. The gene names and gene ontology are shown as well as the corresponding fdr's and FC's. The raw data and CV values are also listed. The tables present a summary of the data

S. Table, S. Quantitative, and R. Data, on cone opsin gene expression levels in retinas of Nxnl1+/+ and Nxnl1-/-mice following two-weeks of caging in hyperoxic chamber. The value of the crossing thresholds (2 -CT ) normalized to ?-actin is shown for each gene and genotype. The fold-change (2 -CT ) for which the SEM is incorporated into the normalized crossing threshold value is also presented