Inactivation of CUG-BP1/CELF1 causes growth, viability, and spermatogenesis defects in mice. - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Molecular and Cellular Biology Année : 2007

Inactivation of CUG-BP1/CELF1 causes growth, viability, and spermatogenesis defects in mice.

Résumé

CUG-BP1/CELF1 is a multifunctional RNA-binding protein involved in the regulation of alternative splicing and translation. To elucidate its role in mammalian development, we produced mice in which the Cugbp1 gene was inactivated by homologous recombination. These Cugbp1(-/-) mice were viable, although a significant portion of them did not survive after the first few days of life. They displayed growth retardation, and most Cugbp1(-/-) males and females exhibited impaired fertility. Male infertility was more thoroughly investigated. Histological examination of testes from Cugbp1(-/-) males showed an arrest of spermatogenesis that occurred at step 7 of spermiogenesis, before spermatid elongation begins, and an increased apoptosis. A quantitative reverse transcriptase PCR analysis showed a decrease of all the germ cell markers tested but not of Sertoli and Leydig markers, suggesting a general decrease in germ cell number. In wild-type testes, CUG-BP1 is expressed in germ cells from spermatogonia to round spermatids and also in Sertoli and Leydig cells. These findings demonstrate that CUG-BP1 is required for completion of spermatogenesis.
Fichier sous embargo
Fichier sous embargo
Date de visibilité indéterminée
Loading...

Dates et versions

inserm-00292920 , version 1 (03-07-2008)

Identifiants

Citer

Chantal Kress, Carole Gautier-Courteille, Howard Beverley Osborne, Charles Babinet, Luc Paillard. Inactivation of CUG-BP1/CELF1 causes growth, viability, and spermatogenesis defects in mice.. Molecular and Cellular Biology, 2007, 27 (3), pp.1146-57. ⟨10.1128/MCB.01009-06⟩. ⟨inserm-00292920⟩
219 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More