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Summary

We consider the problem of estimating the intensity functions for a continuous
time “illness-death” model with intermittently observed data. In such a case, it
may happen that a subject becomes diseased between two visits and dies without
being observed. Consequently, there is an uncertainty about the precise number
of transitions. Estimating the intensity of transition from health to illness by sur-
vival analysis (treating death as censoring) is biased downwards. Furthermore,
the dates of transitions between states are not known exactly. We propose to es-
timate the intensity functions by maximising a penalized likelihood. The method
yields smooth estimates without parametric assumptions. This is illustrated us-
ing data from a large cohort study on cerebral ageing. The age-specific incidence

of dementia is estimated using an illness-death approach and a survival approach.

Key words: Illness-death model, intensity function, interval-censoring,

penalized likelihood, splines, truncation.
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1 Introduction

The three-state “illness-death” model is useful in a variety of biomedical settings
to characterize the risk of an individual, especially when competing risks between
death and a disease are assumed (Kodell and Nelson, 1980; McKnight and Crow-
ley, 1984; Andersen, 1988; Lindsey and Ryan, 1993; Andersen et al., 1993). Data
analysis in this context is complicated by the fact that subjects are observed only
intermittently: a subject healthy at a visit and deceased before the next scheduled
visit may have transited to the “illness” state without being diagnosed. On the
one hand, the dates of transition between states may not be known exactly and
on the other, the number of transitions between states may not be known exactly.
As explained in section 2, this situation may lead to an underestimation of the in-
cidence of a disease. The non-parametric approach developed by Frydman (1995)
considers only the particular case where the status of the subject is known before
his death; in addition the non-parametric maximum likelihood approach does not
yield directly estimators of the transition intensities. In this paper, we propose a
non-parametric penalized likelihood method for estimating the intensities in an
“illness-death” model for intermittently observed data. Intensity functions yield
a very interesting description of epidemiologic processes since they may often be
interpreted as incidence or mortality rates (Keiding, 1991; Hougaard, 1999).
The epidemiological motivations for this work are described in section 2. Then
we describe how to estimate the incidence. We introduce smoothness assumptions
on the intensity functions by penalizing the log-likelihood with a term which has
large values for rough functions. The estimators are defined non-parametrically
as the functions which maximize the penalized likelihood. As the maximum
penalized likelihood estimators cannot be calculated explicitly, they are approx-
imated using splines. This approach, presented in section 3, is an extension to
an illness-death model of survival analysis approaches, proposed by O’Sullivan

(1988), Gu (1996), and Joly et al. (1998). The models proposed are a gener-
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alization of the progressive three-state model proposed by Joly and Commenges
(1999). In section 4, we present a simulation study. In section 5, the proposed
model is applied to the estimation of the age-specific incidence of dementia based

on data from a large prospective cohort study.

2 Epidemiological motivations

In a cohort study such as that presented in section 5 where subjects are only
intermittently observed, they may develop the disease and die between two visits.
The apparent transition is from “health” to “death” while two transitions have
in fact occurred: “health” to “illness” then “illness” to “death”. This leads to
an uncertainty about the precise number of diseased subjects at risk of death.
For example, in figure 1, we present the follow-up of a subject in a cohort study:
Vo, Vi, ..., V, are times of follow-up. We suppose that the subject develops the
disease after V,, and then dies before V1.

Information about the subject are the date of entry in the study (V5), the
date (V;,) of the last visit seen in the healthy state and the date of death (7).
However, whether he is ill or healthy at the time of his death is unknown. When
the incidence of a disease is studied using a two-state survival analysis, the subject
is not observed as “ill” and his survival time is considered as right-censored at
V. This leads to an underestimation of the incidence of the disease.

To understand the nature of the bias, we consider a very simple parametric
model with three constant intensity functions (exponential law): ag;, e and ;o
(we consider here a particular case of the model depicted in figure 2). We consider
that observations are taken at only two times, 0 and ¢;. When attempting to
estimate ag; using a (two-state) survival analysis, subjects who died between 0

and t; are considered as right-censored at 0. With independent censoring one



1duosnuew Joyine yH

5
%)
)
-
3
o
o
|_\
(o]
N
N
I
o0
<
()
-
0,
o
S
|_\

consistent estimator of the survival function at ¢; would be:

#healthy at ¢,
#alive at t4

This estimator tends (as the sample size n — oo) towards:

= P(healthy at t;)
S(ty) =
(1) P(alive at t;)

Any other consistent estimator in this two-state survival model would tend to

S(t1). Because in the exponential model S(t;) = e~ estimators of ag; by
this method will tend towards: &g, = —t,l0g(S(t1)). On the other hand we can
compute with the true “illness-death” model:
P(healthy at ¢;) 1
P(alive at ;) 1+ 20 (glaotaoz—an)h — 1)

ao1+0o2—a12

Hence we deduce the asymptotic bias of estimators based on the two-state survival

model:

(1)

~ B 1 l ame—(am—aoz)tl _ (a12 _ a02)e—ao1t1
Qo1 — Qo1 = log .
t Q1 — (0412 — 0402)

1

If both mortality rates ago and a;yo are null, the bias is null, which is obvious
since the illness-death model then reduces to a (two-state) survival model. In
the general case we see that a key parameter is the differential mortality A =
a9 — opg; the bias is null if this differential mortality is null. In general A is
positive (because ill people have a higher mortality rate) and it can be shown
that the bias is negative and that it increases with ¢; and A. This formula can
be used to obtain an idea of the bias for given values of the intensity functions
and the length of the intervals.

In this paper we propose a penalized likelihood approach for estimating the
intensities in an “illness-death” model for intermittently observed data in a more
general context. This approach allows us to: i) use the full likelihood of the

problem; ii) obtain smooth estimates of the intensity functions; iii) be free of

parametric assumptions.
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3 The Model

3.1 The illness-death model

The three-state model with irreversible transitions is shown in Figure 2. State 0
represents the state “Health”, state 1 “Illness” and state 2 “Death”.

We define «;; as the intensity fungtions and A;; as the corresponding cumu-
lative intensity functions, A;;(t) = / a;;(u)du.

The intensities ag; and ago may 0depend on t (the age or the calendar time)
and the intensity aj2 may depend on ¢ and on 7 (the time since the onset of the
disease). As we are mostly interested in age-specific incidence and age-specific
mortality, in this paper, we assume for simplicity that the intensities only depend
on age, so we use a non-homogeneous Markov model. The transition intensity
a1 represents the age-specific incidence of illness whilst the transition intensities
a9 and ag represent the age-specific mortality rates for ill and healthy subjects

respectively.

3.2 The observations

Vital status and time of death are known exactly. However, at 7; which is the
age of death or the end of the study, the disease status (“healthy” or “ill”) may
be unknown. Subject 7 is seen at Viz, k£ =0,...,m;;, m; > 0 and V,,, <T;; Vio
is called the age at the baseline visit. The disease status is assessed only at these
visits. Thus if a transition towards illness is observed, the age at the time of
transition is interval-censored; if a subject who dies was healthy at the last visit,
it is not known whether he has made the transition towards illness or not. Since
the subjects are not observed from birth but rather from the beginning of the
study, the time spent in state 0 is generally left-truncated, because subjects must
be in the “health” state at the begining of the study to be included in the sample.

We assume that the truncating and censoring mechanisms are independent from
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the illness-death process. This happens for instance if Vg, Vj1, ..., Vi, are fixed
or are random variables independent of the illness-death process, and if loss of

follow-up obeys an independent censoring mechanism.

3.3 The likelihood

In the application, the four possible different cases for the observation of a subject
are: i) observed healthy during the first visits of the follow-up and still alive at
the end of the study (at this date we do not know if the subject is ill or healthy);
ii) observed healthy and is then deceased (we do not know if the subject was ill
or healthy at the time of his death); iii) observed ill at one follow-up time and is
still alive at the end of the study; iv) observed ill at one follow-up time and then
is deceased.

The likelihood contributions to the four different cases of the observation are

detailed in Appendix A.

3.4 The penalized likelihood

Intensity functions are expected to be smooth. To introduce such a priori knowl-
edge, we penalize the likelihood by a term which has large values for rough
functions. The roughness penalty function chosen for the three-state model is
the sum of the square norms of the second derivatives of the intensities. The

penalized log-likelihood (pl) is thus defined as

pl(ap1, o, ag2) =1(ap1, g, alz)—fcm/ozng (u)du—mg/a'{;(u)du—/ﬁoz/ag;(u)du (2)

where [ is the full log-likelihood (which is a function of ag;(.), ai12(.) and aga(.))
and kg1, k12 and kg are three positive smoothing parameters which control the
trade-off between the data fit and the smoothness of the functions. Maximization
of (2) defines the maximum penalized likelihood estimators (MPLE) ¢ (.), d12(.)

and (3{02(.).



3.5 Approximation of the estimators

The MPLE cannot be calculated explicitly. However, it can be approximated
using splines. Splines are piecewise polynomial functions which are combined
linearly to approximate a function on an interval. We use cubic M-splines and
I-splines, which are variants of B-splines. For more details, see Joly et al. (1998).
The estimator A() for a given transition is approximated by a linear combina-
tion of m I-splines: A(.) = 0I(.), where @ = (6, ..., 6,,) and I(.) = (I1(.), ..., In())".
By differentiation we obtain: a(.) = @M (), where M(.) = (M;(.), ..., M (.))%.

1duosnuew Joyine yH

We use a distinct base of splines for each intensity function, possibly with a dif-
ferent number of splines in each basis. The monotonicity constraint for A(.) is
fulfilled by constraining the coefficients 0 to be positive. The approximation &
of & is the function belonging to the space generated by the basis of splines,
which maximizes pl(ag1, 12, ag2). The vectors of spline coefficients 501, 612 and

602 for fixed kg1, k12 and kgo are obtained simultaneously by maximizing the
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log-likelihood using Marquardt’s algorithm (1963). When the three vectors 6y,
612 and 0~02 are obtained, all the functions of interest can be computed, as in a

parametric method.

3.6 Confidence intervals

A Bayesian technique for generating confidence bands for penalized likelihood
estimators was proposed by O’Sullivan (1988) for survival analysis. Therefore,
0;;, (1,7) = (0,1),(1,2), (0, 2) is regarded as a random variable. Up to a constant,
the penalized log-likelihood pl is a posterior log-likelihood for 8;; and the penalty
term is the prior log-likelihood. After a Gaussian approximation, the covariance
of 6;; is —ﬁ(ij)_l, where H ;) is the converged Hessian %(5”) Therefore,
an approximate 95% Bayesian confidence interval for ¢&; at pzcj)int t is:

. A -1
au;(t) £ 1, 96\/M(z'j)(t)T [_H(ij) } M) (),
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For the three-state model proposed, we simply used this method for each of
the three transitions. However, this estimator does not take into account the

variability due to the choice of smoothing parameters.

3.7 Selection of smoothing parameters

O’Sullivan (1988) proposed an approximate cross-validation score for survival
models. We extend his method to our case to choose the three smoothing pa-
rameters simultaneously.

The standard cross-validation score which must be maximized to obtain K =

(Kot, K12, Koz) 1s:

V(k) = Z 1,6,

where 8 = (01, 0,5,00,) and @_; = 6_;(k) is the maximum penalized likelihood
estimator of @ for the sample in which the ** individual is removed and [; is the
log-likelihood contribution of this individual. The maximization of this score is
computationally prohibitive, however, since it requires a maximization for each
individual and for each different value of k. So we maximize the approximate

score:

V(k) = () — trace (ﬁ‘lﬁl) (3)

Pl ~

0*pl
06> ®

4 Simulation study

The aim of the simulation study was to evaluate our method and compare it to
the (two-state) survival analysis approach for the estimation of cg;. The latter
approach treats death as censoring and should lead to an underestimation of oy

(as studied in the simple example of section 2). The method was that proposed in

9



Joly et al. (1998) and Commenges et al. (1998): it also used penalized likelihood
and treated interval-censoring (but not in the framework of the illness-death
model).

The data were generated from a mixture of gamma distributions for ay;, and
simple Weibull distributions for a;;5 and ags. We generated the times of follow-up
Vo, Vi, ..., Vi, for each subject in order to simulate the interval-censoring process;
Vo =0 and Vi1 = Vi + 1 + 3u, where u was uniformly distributed on [0,1]. The
end of the study was generated for each subject as 2 + 50u.

1duosnuew Joyine yH

The density corresponding to ag; was a Gamma mixture (0.41'(¢;37,1.5) +
0.6I'(¢; 20, 2)), with the probability density functions I'(¢; «,y) = %ﬁjwt The
densities corresponding to aqs and age were Weibull (f(¢;2.5,0.08)) and (f(¢;3,0.04))
respectively, with the probability density functions f(¢;y,p) = pyPt*~ e~ (" (fig-

ure 3).

The sample consisted of 3000 subjects; 965 were classified as “ill” and 887 of
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them died. A total of 1181 subjects died without being diagnosed as “ill”.

Due to interval-censoring, 358 subjects died coming from the illness state but
without being classified as “ill” before. In the (two-state) survival analysis, they
were considered as right-censored for ag; at the time of the last visit.

Smoothing parameters for the two models were chosen using a cross-validation
method. We used 12 knots and cubic splines for the approximation of oy, with
the two models. In the “illness-death model” we used 7 knots and cubic splines
for the two other intensity functions. Figure 4 displays the estimation of «y; for
one simulated example from a Gamma mixture. The solid line represents the true
intensity function of ag;. The dashed line represents the estimate of ag, with the
“illness-death model” and the dotted line represents the estimate of ay; using a
(two-state) survival analysis. For each time, the latter is lower than the former.
This exemplifies the underestimation of ag; using a (two-state) survival analysis

approach in the case of interval-censoring and a high risk of death for ill subjects.

10
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5 Application

The application is based on the Paquid research programme (Letenneur et al.,
1999), a prospective cohort study of mental and physical aging that evaluates
social environment and health status. The target population consists of subjects
aged 65 years and older living at home in southwestern France. The baseline
variables registered included socio-demographic factors, medical history and psy-
chometric tests. Subjects were re-evaluated 1, 3, 5 and 8 years after the initial
visit. Prevalent cases were removed from the sample because of their high mor-
tality relative to non-demented people of the same age. Therefore, this produced
a left-truncation problem. The sample consisted of 3672 subjects, of whom 1882
were between 65-75 years old and 1419 between 75-85, whilst 371 were 85 and
older at the baseline visit. During the 8 years of follow-up, 281 incident cases
of dementia were observed of whom 113 died; 1077 subjects were observed in
the healthy state at the last visit before death. The basic time scale was age
so the transition intensity cg; represents the age-specific incidence of dementia.
The age of onset of dementia of the subjects was left-truncated by the age at
inclusion in the study. The information available on incident cases of dementia
was the date of the visit last seen without dementia and the date of the visit first
seen with dementia. Thus, the age of onset of dementia was interval-censored.
The dates of death were known exactly. The non-homogeneous Markov model
discussed in this paper allows the direct treatment of these data, which are both
interval-censored and left-truncated.

We compared two methods for estimating the age-specific incidence of de-
mentia: the first one, which has been previously used (Commenges et al., 1998),
was a (two-state) survival analysis dealing with interval-censored data, and the
second was the illness-death model proposed here. We used 7 knots and cubic
splines for the approximation of each intensity function. The approximate cross-

validation method leads to k = 6.5 10° (for the two-state survival model) and to

11
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ko1 = 3.5 10%, k1 = 6.5 10% and K¢y = 3.2 105. Figure 5 displays the estimated
age-specific incidence of dementia. For each age, the risk of developing dementia
estimated with the “illness-death model” is higher than the risk estimated using
a (two-state) survival model.

Commenges et al. (1998) found that the age-specific incidence of dementia
was higher in men than in women under 76 years old, and higher in women than
in men when they were older. Since the age-specific risk of death is higher in
men than in women, whatever their age, the difference between the age-specific
incidence of dementia between men and women could be due to the differential
underestimation; it might be more underestimated in men than in women, es-
pecially in old age. This hypothesis can be examined with our model. Figure 6
shows the age-specific incidence of dementia estimated separately for men and
women by the “illness-death model”. For each age, the risk of developing de-
mentia evaluated with the “illness-death model” was higher than that estimated
separately for men and for women using the (two-state) survival model of Com-
menges et al. (1998). However, the age-specific incidence of dementia in figure 6
was higher in men than in women under 80 years old, and higher in women than
in men after this age. Therefore, it is unlikely that the higher incidence observed
among older women is explained fully by the higher mortality among men.

The three intensity functions ap;, a2 and gy were estimated simultaneously
by the “illness-death model”. Figure 7 displays all the intensities estimated. For
each age, there is a higher risk of death than of developing dementia, and there

is a higher risk of death for demented people.

6 Discussion

With interval-censoring and a high risk of death for diseased subjects, there is an
underestimation of yy; using a (two-state) survival analysis approach, which must

be taken into account. We have shown that the penalized likelihood approach in

12
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an illness-death model yields a method for analyzing such data and for providing
estimators of the intensity functions, which cannot be correctly estimated using
conventional non-parametric methods. The proposed approach can be applied to
semi-Markov models as well as to non-homogeneous Markov models.

As suggested in Joly and Commenges (1999), the penalized likelihood can be
used to estimate the intensity functions in a regression model. The roughness
penalty function is the sum of the square norms of the second derivatives of the
baseline intensity functions. The regression parameters and the baseline functions
are estimated simultaneously.

Here we have used a non-homogeneous Markov model. A more satisfactory
model would be to assume that the transition intensity a;o depends on both age
and duration of the disease. A direct approach is to model non-parametrically a
function of these two different times; it is computationally difficult to estimate,
although it has been attempted in some problems (Gu, 1996; Hansen et al., 1998).
It would be interesting to develop more restrictive models for a5 (%, 7) which are
easier to estimate.

Whatever the model, the time between two observations must not be too large
if one wants reliable estimates. The main parameter to assess the length of an

interval is probably the risk of dying of deseased subjects during this interval.

13
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Appendix A

For the sake of simplicity we omit the index 7. The subject is observed at
Vo, Vi, ..., Vin. T is the age at death or at the end of the study. The likelihood

contribution of one subject for the four possible observed trajectories is:
i) subject enters the study at V; and is healthy. He is healthy at V}, and still
alive at T (no information about illness at T'):

1
L= e—A01(Vo)—Ao2(Vo)

T
{e—Am<T)—Aoz(T)+ / e—Am(u)—Aoz(u)am(u)e—mm(T)—Au(u))du} _

In the application we often have V,, = T and in this particular case:

e—A01(Vm)—A02(Vm)

L = e—A01(Vo)—Ao2(Vo)

ii) subject enters the study at V; and is healthy. He is healthy at V;,, and dies
at T (we do not know if he is ill or healthy at the time of his death):

1 —A
e—Ao1(Vo)—Ao02(V0) {6 .

T
/ eAm(u)Aoz(u)am(u)e(Au(T)Au(u))au(T)du}_

L = (T)— Aoz (T)CM()Q (T)+

iii) subject enters the study at Vj and is healthy. He is healthy at Vi, (k < m),
ill at Vi1, and still alive at 7"

; gm0 s ~(A12(T)—A12 ()
L= e—Ao01(Vo)—Ao2(Vo) € Q1 (U)e du .
k

iv) subject enters the study at Vj and is healthy. He is healthy at Vi, (k < m),
ill at Vi1, and dies at T

1 Vi1
L — e—AOI(‘/O)_AOQ(‘/O) /‘/ e—AOl(u)—A02(U)a01 (u)e—(A12(T)—A12(u))a12(T)du )
k
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Captions for Figures

Figure 1: follow-up of a subject

Figure 2: The illness-death model: g, a2 and oo are the intensity functions.

Figure 3: True and estimated intensity functions ays and age. The upper solid
line represents the true intensity function oy, the lower solid line represents the
true intensity function agy, the upper dashed line represents the estimated &9

and the lower dashed line represents the estimated d».

Figure 4: True and estimated intensity functions «g;. The solid line represents
the true intensity function ay;, the dashed line represents ¢, estimated with an
illness-death model and the dotted line represents dg; estimated using a (two-

state) survival analysis.

Figure 5: Estimated age-specific incidence of dementia. The solid line represents
the intensity function g, estimated using the “illness-death model” and the
dotted line represents the intensity function estimated using (two-state) a survival

analysis. Paquid 1999

Figure 6: Estimated age-specific incidence of dementia (women = solid line and

men = dashed line). Paquid 1999

Figure 7: Estimation of the age-specific incidence of dementia (solid line), of
the intensity function of death for demented subjects (dashed line) and of the
intensity function of death for non-demented subjects (dotted line). Paquid 1999
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