G. J. Randolph, S. Beaulieu, S. Lebecque, R. M. Steinman, and W. A. Muller, Differentiation of Monocytes into Dendritic Cells in a Model of Transendothelial Trafficking, Science, vol.282, issue.5388, p.480, 1998.
DOI : 10.1126/science.282.5388.480

G. J. Randolph, K. Inaba, D. F. Robbiani, R. M. Steinman, and W. A. Muller, Differentiation of Phagocytic Monocytes into Lymph Node Dendritic Cells In Vivo, Immunity, vol.11, issue.6, p.753, 1999.
DOI : 10.1016/S1074-7613(00)80149-1

P. Chomarat, J. Banchereau, J. Davoust, and A. K. Palucka, IL-6 switches the differentiation of monocytes from dendritic cells to macrophages, Nature Immunology, vol.1, issue.6, p.510, 2000.
DOI : 10.1038/82763

H. S. Kruth, Subendothelial accumulation of unesterified cholesterol An early event in atherosclerotic lesion development, Atherosclerosis, vol.57, issue.2-3, p.337, 1985.
DOI : 10.1016/0021-9150(85)90045-0

N. Simionescu, E. Vasile, F. Lupu, G. Popescu, and M. Simionescu, Prelesional events in atherogenesis. Accumulation of extracellular cholesterol-rich liposomes in the arterial intima and cardiac valves of the hyperlipidemic rabbit, Am J Pathol, vol.123, p.109, 1986.

J. S. Frank and A. M. Fogelman, Ultrastructure of the intima in WHHL and cholesterol-fed rabbit aortas prepared by ultra-rapid freezing and freeze-etching, J Lipid Res, vol.30, p.967, 1989.

A. J. Fogelman and . Lusis, Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins, Nature, vol.344, p.254, 1990.

J. A. Valente, D. C. Berliner, H. Drinkwater, and . Laks, Monocyte transmigration induced by modification of low density lipoprotein in cocultures of 21, 1991.

J. L. Witztum and D. Steinberg, Role of oxidized low density lipoprotein in atherogenesis., Journal of Clinical Investigation, vol.88, issue.6, p.1785, 1991.
DOI : 10.1172/JCI115499

D. Steinberg, Metabolism of lipoproteins and their role in the pathogenesis of atherosclerosis, Atherosclerosis reviews, p.1, 1988.

J. W. Heinecke, H. Rosen, and A. Chait, Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture., Journal of Clinical Investigation, vol.74, issue.5, p.1890, 1984.
DOI : 10.1172/JCI111609

U. P. Steinbrecher, S. Parthasarathy, D. S. Leake, J. L. Witztum, and D. Steinberg, Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids., Proceedings of the National Academy of Sciences, vol.81, issue.12, p.3883, 1984.
DOI : 10.1073/pnas.81.12.3883

A. J. Dabbagh and B. Frei, Human suction blister interstitial fluid prevents metal ion-dependent oxidation of low density lipoprotein by macrophages and in cellfree systems, J Clin Invest, vol.96, 1958.

G. M. Chisolm, S. L. Hazen, P. L. Fox, and M. K. Cathcart, The Oxidation of Lipoproteins by Monocytes-Macrophages: BIOCHEMICAL AND BIOLOGICAL MECHANISMS, Journal of Biological Chemistry, vol.274, issue.37, 1999.
DOI : 10.1074/jbc.274.37.25959

D. Steinberg, At last, direct evidence that lipoxygenases play a role in atherogenesis, Journal of Clinical Investigation, vol.103, issue.11, p.1487, 1999.
DOI : 10.1172/JCI7298

. Funk, Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice, J Clin Invest, vol.103, pp.1597-1619, 1999.

H. Esterbauer, G. Jurgens, O. Quehenberger, and E. Koller, Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes, J Lipid Res, vol.28, p.495, 1987.

S. Parthasarathy, N. Santanam, M. I. , S. Arrol, and P. N. Durrington, Mechanisms of oxidation, antioxidants, and atherosclerosis Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein, Curr Opin Lipidol FEBS Lett, vol.5, issue.286, p.152, 1991.

A. D. Watson, J. A. Berliner, S. Y. Hama, B. N. La-du, K. F. Faull et al., Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein., Journal of Clinical Investigation, vol.96, issue.6, p.2882, 1995.
DOI : 10.1172/JCI118359

A. D. Watson, M. Navab, S. Y. Hama, A. Sevanian, S. M. Prescott et al., Effect of platelet activating factor-acetylhydrolase on the formation and action of minimally oxidized low density lipoprotein., Journal of Clinical Investigation, vol.95, issue.2, p.774, 1995.
DOI : 10.1172/JCI117726

D. Palinski, R. G. Schwenke, W. Salomon, G. Sha, A. M. Subbanagounder et al., Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo, J Biol Chem, vol.272, p.13597, 1997.

A. D. Watson, G. Subbanagounder, D. S. Welsbie, K. F. Faull, M. Navab et al., Structural Identification of a Novel Pro-inflammatory Epoxyisoprostane Phospholipid in Mildly Oxidized Low Density Lipoprotein, Journal of Biological Chemistry, vol.274, issue.35, pp.24787-24810, 1999.
DOI : 10.1074/jbc.274.35.24787

N. and L. Du, Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase, J Clin Invest, vol.101, pp.1581-1606, 1998.

B. N. Prescott, A. M. Du, M. Fogelman, and . Navab, Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colonystimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha, 2758. 26. Sallusto, F., and A. Lanzavecchia, p.1109, 1994.

L. J. Zhou and T. F. Tedder, CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells., Proceedings of the National Academy of Sciences, vol.93, issue.6, p.2588, 1996.
DOI : 10.1073/pnas.93.6.2588

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC39841

M. Krieger, Molecular flypaper and atherosclerosis: structure of the macrophage scavenger receptor, Trends in Biochemical Sciences, vol.17, issue.4, p.141, 1992.
DOI : 10.1016/0968-0004(92)90322-Z

M. Krieger and J. Herz, Structures and Functions of Multiligand Lipoprotein Receptors: Macrophage Scavenger Receptors and LDL Receptor-Related Protein (LRP), Annual Review of Biochemistry, vol.63, issue.1, 1994.
DOI : 10.1146/annurev.bi.63.070194.003125

H. Y. Huh, S. F. Pearce, L. M. Yesner, J. L. Schindler, and R. L. Silverstein, Regulated expression of CD36 during monocyte-to-macrophage differentiation: potential role of CD36 in foam cell formation, Blood, vol.87, p.2020, 1996.

D. Calvo, D. Gomez-coronado, M. A. Lasuncion, and M. A. Vega, CLA-1 is an 85-kD plasma membrane glycoprotein that acts as a high-affinity receptor for both native, HDL, LDL, and VLDL) and modified (OxLDL and AcLDL) lipoproteins, 1997.

F. Sallusto, M. Cella, C. Danieli, and A. Lanzavecchia, Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products, Journal of Experimental Medicine, vol.182, issue.2, p.389, 1995.
DOI : 10.1084/jem.182.2.389

R. M. Steinman and J. Swanson, The endocytic activity of dendritic cells, Journal of Experimental Medicine, vol.182, issue.2, p.283, 1995.
DOI : 10.1084/jem.182.2.283

D. Steinberg, S. Parthasarathy, T. E. Carew, J. C. Khoo, and J. L. Witztum, Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity, N Engl J Med, vol.320, p.915, 1989.

J. A. Berliner, M. Navab, A. M. Fogelman, J. S. Frank, L. L. Demer et al., Atherosclerosis: Basic Mechanisms : Oxidation, Inflammation, and Genetics, Circulation, vol.91, issue.9, p.2488, 1995.
DOI : 10.1161/01.CIR.91.9.2488

J. L. Dennis and . Witztum, Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition, Proc Natl Acad Sci, p.6353, 1999.

D. A. Bird, K. L. Gillotte, S. Horkko, P. Friedman, E. A. Dennis et al., Receptors for oxidized low-density lipoprotein on elicited mouse peritoneal macrophages can recognize both the modified lipid moieties and the modified protein moieties: Implications with respect to macrophage recognition of apoptotic cells, Proceedings of the National Academy of Sciences, vol.433, issue.2, p.6347, 1999.
DOI : 10.1007/978-1-4899-1810-9_82

S. Gallucci, M. Lolkema, P. Matzinger-brown, M. S. , S. K. Basu et al., Natural adjuvants: endogenous activators of dendritic cells The scavenger cell pathway for lipoprotein degradation: specificity of the binding site that mediates the uptake of negatively-charged LDL by macrophages, Nat Med J Supramol Struct, vol.5, issue.13, p.67, 1980.

N. Shih, G. Mackman, M. C. Tigyi, J. A. Territo, D. K. Berliner et al., Structurally similar oxidized phospholipids differentially regulate endothelial binding of monocytes and neutrophils, Proc Natl Acad Sci, p.12010, 1999.

C. A. Janeway, U. Jr, P. Dianzani, S. Portoles, E. P. Rath et al., Cross-linking and Conformational Change in T-cell Receptors: Role in Activation and in Repertoire Selection, Cold Spring Harbor Symposia on Quantitative Biology, vol.54, issue.0, p.657, 1989.
DOI : 10.1101/SQB.1989.054.01.077

R. Medzhitov, C. A. Janeway, and J. , Innate Immunity: The Virtues of a Nonclonal System of Recognition, Cell, vol.91, issue.3, p.295, 1997.
DOI : 10.1016/S0092-8674(00)80412-2

P. Matzinger, Tolerance, Danger, and the Extended Family, Annual Review of Immunology, vol.12, issue.1, p.991, 1994.
DOI : 10.1146/annurev.iy.12.040194.005015

P. Matzinger, An Innate Sense of Danger, Annals of the New York Academy of Sciences, vol.166, issue.1, p.399, 1998.
DOI : 10.1111/j.1749-6632.2002.tb03118.x

R. J. Binder, D. K. Han, and P. K. Srivastava, CD91: a receptor for heat shock protein gp96, Nature Immunology, vol.1, issue.2, p.151, 2000.
DOI : 10.1038/77835

M. B. Pepys and M. L. Baltz, Acute Phase Proteins with Special Reference to C-Reactive Protein and Related Proteins (Pentaxins) and Serum Amyloid A Protein, Adv Immunol, vol.34, p.141, 1983.
DOI : 10.1016/S0065-2776(08)60379-X

H. Baumann, J. Gauldie-rienhoff, H. Y. Jr, J. H. Huang, X. X. Li et al., The acute phase response Molecular and cellular biology of serum amyloid A HDL content and composition in acute phase response in three species: triglyceride enrichment of HDL a factor in its decrease, Immunol Today Mol Biol Med J Lipid Res, vol.15, issue.37, pp.74-482662, 1990.

M. Zinkernagel and H. Hengartner, Linking immune-mediated arterial inflammation and cholesterol-induced atherosclerosis in a transgenic mouse model, 2000.

. Correspondence, E-mail address : lotteau@cervi-lyon.inserm.fr 3 Abbreviations used in this paper: APC, Antigen presenting cells; DC, Dendritic cells; FCS, Fetal calf serum; GM-CSF, Granulocyte macrophage-stimulating factor; HDL, High density lipoprotein; LDL, Low density lipoprotein; LPDS, Lipoprotein deficient serum