Detecting Long Distance Conditional Correlations Between Anatomical Regions Using Gaussian Graphical Models

Abstract : The conditional correlation patterns of an anatomical shape may provide some important information on the structure of this shape. We propose to investigate these patterns by Gaussian Graphical Modelling. We design a model which takes into account both local and long-distance dependencies. We provide an algorithm which estimates sparse long-distance conditional correlations, highlighting the most significant ones. The selection procedure is based on a criterion which quantifies the quality of the conditional correlation graph in terms of prediction. The preliminary results on AD versus control population show noticeable differences.
Type de document :
Communication dans un congrès
Pennec, Xavier and Joshi, Sarang and Nielsen, Mads. Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Modelling Biological Shape Variability, Sep 2011, Toronto, Canada. pp.111-122, 2011
Liste complète des métadonnées


https://hal.inria.fr/inria-00623930
Contributeur : Xavier Pennec <>
Soumis le : jeudi 15 septembre 2011 - 14:05:31
Dernière modification le : jeudi 9 février 2017 - 15:16:45
Document(s) archivé(s) le : vendredi 16 décembre 2011 - 02:25:06

Fichier

MFCA11_4_2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00623930, version 1

Collections

Citation

Stéphanie Allassonnière, Pierre Jolivet, Christophe Giraud. Detecting Long Distance Conditional Correlations Between Anatomical Regions Using Gaussian Graphical Models. Pennec, Xavier and Joshi, Sarang and Nielsen, Mads. Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Modelling Biological Shape Variability, Sep 2011, Toronto, Canada. pp.111-122, 2011. <inria-00623930>

Partager

Métriques

Consultations de
la notice

288

Téléchargements du document

90