
An Event-B Plug-in for Creating Deadlock-Freeness
Theorems

Faqing Yang and Jean-Pierre Jacquot

LORIA – DEDALE Team – Nancy Université
Vandoeuvre-Lès-Nancy, France

{firstname.lastname}@loria.fr

Abstract. This paper presents DFT-generator, a small tool to generate Deadlock-
Freeness Theorems (DFT) in Event-B specifications. Event-B, a companion to the
B-method, allows specifiers to model systems and environments with the help
states, invariants, and events. Events are guarded generalized substitutions which
are fired non-deterministically. Assessing temporal properties such as termina-
tion or as non-blocking cycle is then a necessity. To overcome the lack of dead-
lock checking in the core of Event-B and of its supporting environment, Rodin,
we have developed a practical little tool which generates the necessary theorems
to prove that a model is free of deadlocks. We explain what are the deadlock
theorems, why we need a tool to help generating the theorems, what problems
were encountered during development. We conclude on a quick comparison with
model-checking.

1 Introduction

Event-B [8,2] is an evolution of the classic B method [1]. It has been designed for mod-
eling complex systems such as concurrent, reactive systems, or complex algorithms.
Event-B is based on three principles:

– the model’s base is a state: a mapping from name to values constrained by an in-
variant. Values are any set-theoretic construct based on integers, symbols, sets (in-
cluding powersets and cartesian products) or relations (including functions), the
invariant is a first-order logic formula on the values.

– events describe atomic evolution of the state. An event is a guarded substitution on
the state; it can be triggered any time its guard is true; the choice of the event to
trigger when several are enabled is non-deterministic.

– the development of the model is made through formal refinements. A refinement
can either reify an element of the state, introduce new events, or both.

Event-B, like B, has been designed with a strong notion of “correctness” in mind. A
model is correct if three conditions are met: (1) an actual initial state can be set-up,
(2) each event maintains the invariant, and (3) each refinement maintains the abstract
invariant as well as the concrete invariant. These conditions can be expressed in terms
of proof obligations that can be generated by the support tools [9] and can be discharged
by theorem-provers.



2 Faqing Yang and Jean-Pierre Jacquot

Using B or Event-B, it is then possible to develop a system which can be proved
“correct,” i.e, a system whose implementation is guaranteed to maintain the invariant
stated at the most abstract level of its specification.

From an operational point of view, a computation modeled in Event-B is started by
firing the INITIALISATION event; it halts when no event has its guard true. There are
two opposing situations related to the halting problem. In the first, we want the system
to reach a terminal state. Then, we must prove that the computation will halt. Event-B
provides a notion of variant which is associated to proof obligations and can be used
to prove the termination. In the second, we expect the system to cycle endlessly. We
must then prove that the computation will not halt. Event-B does not provide us with
constructs or proof obligations for this property.

Deadlock-freeness is not well integrated into the Event-B framework. As many
other temporal properties, we can use “tricks.” For deadlock-freeness, we build the dis-
junction of the guards of all events other than INITIALISATION and we prove it is a
theorem. So, we can be sure that one event at least can always been fired.

There exists other techniques which do the same work, like:

– Animation with an interactive tool such as Brama1 allows one to observe the oc-
currence of deadlocks.

– Modeling checking with a tool like ProB [6] allows one to check for (absence of)
deadlocks in a finite space and partial transitions.

These techniques can help us to find a deadlock, but can’t prove that the system
is free of deadlocks. On the other hand, using theorem proving techniques on some
theorems which express deadlock-freeness, we can formally assess that the system is
actually free of deadlocks. In this paper, we present a little plug-in DFT-generator to
create the deadlock-freeness theorems for Rodin platform2. It is useful:

– for helping to specify systems that must be free of deadlocks,
– for helping to get large scale Event-B specifications correct, in particular by replac-

ing the error-prone manual writing of ad-hoc formulae,
– for identifying missing properties or invariants in the specification.

2 Deadlock-Freeness in Event-B Language

2.1 Deadlock-Freeness of Systems

Given a model [2] with carrier sets s, constants c, axioms A(s,c), variables v, and invari-
ants I(s,c,v), the deadlock-freeness theorem states that one of the guards G1(s,c,v), ...
, Gm(s,c,v) of the events, exception INITIALISATION, is always true. The expression
is the following:

A(s, c) ∧ I(s, c, v) ) ⇒ G1(s, c, v) ∨ ... ∨ Gm(s, c, v)

1 http://www.brama.fr
2 http://sourceforge.net/projects/rodin-b-sharp/



An Event-B Plug-in for Creating Deadlock-Freeness Theorems 3

In the Rodin platform, the provers can automatically reference the axioms A(s,c)
and invariants I(s,c,v), so the form of deadlock-freeness theorem can be simplify to

G1(s, c, v) ∨ ... ∨ Gm(s, c, v)

Note that there is only one general deadlock-freeness theorem for a given model.

2.2 Deadlock-Freeness of Subset of Events

Some systems may be structured in such a way that some events are always enabled. For
instance, an automated vehicle may allow its users to issue commands at any time, this
would be modeled as an event with a guard which is always enabled. So, the general
deadlock-freeness theorem stated above is vacuously true. But, for the model to be
admissible, the part which specify the control of the vehicle must free from deadlocks.
So it is important to provide specifiers a way to express the deadlock-freeness theorem
of the subset of events. This can be easily done with a small user-interface. The theorem
itself has the same form as the DFT for the system.

It can be noted that several partial deadlock-freeness theorems can be generated for
the same model.

3 Rationale for a Plug-in

The deadlock-freeness theorems presented in Sect. 2 can be written manually for a
small Event-B specification, however, this becomes soon unpractical as the size of the
specification grows. Let us consider the specification which prompted this work.

The specification in [5] proposes an Event-B model of a control algorithm for au-
tomated vehicles moving in a platoon. The aim of the work was to prove that a known
algorithm based on multi-agent system modeling [3,4] was safe, i.e., vehicles never col-
lide. The safety property was modeled as an invariant and all proof-obligations where
discharged. So the specification was though to be “correct,” yet, some simulations lead
to collisions. Deadlocks between events were discovered to be the cause of the problem.
So, we needed to find the source of the deadlocks, and failures in the proofs of deadlock-
freeness theorems are a good way to approach it, and then, to modify the model so that
it could be proven free from deadlocks.

The specification is a simplified model in 1-Dimension (vehicles moving on a “rail”).
It consists in four refinements; the last one contains 15 events, excluding INITIALISA-
TION. Table 1 gives some figures showing the evolution of the sizes:

A correction at the level of platoon_2 allowed us to discharge the DFT and to pro-
duce a safe model.

Two points should be noted. The size of the theorem is roughly twice the sum of the
guards of the events. So, it grows as fast as the specification does and it counts quickly
several tens of lines. Deadlock-freeness is not a monotonous property with respect to
refinement: it should be established for each refinement.

Automating the generation of the theorems is needed for several reasons:



4 Faqing Yang and Jean-Pierre Jacquot

Table 1. 1D initial platooning model

Machine Events Guards DFT lines Proofs of DFT Animation Behavior

platoon 1 2 6 discharged normal
platoon_1 3 8 16 discharged normal
platoon_2 7 34 54 No deadlock
platoon_3_0 9 42 68 No deadlock
platoon_4_0 15 79 121 No deadlock

– using “copy and paste” procedures is highly non trustable. The probability to intro-
duce an error is high and the length of the formula makes spotting errors hard,

– any modification of the model requires a modification of the theorems. In particular,
it should be easy to re-generate the formulae while correcting the model.

– manually generating the theorems is not intellectually challenging (it is boring in
fact) and takes a lot of useful time.

The core of the generation is a syntactic manipulation of the model: extracting the
guards, gluing them together in a single formula, and inserting it in the specification.
Programming tools and techniques to cover such tasks are well known.

A small user-interface should be build for selecting subset of events in the case of
partial deadlock-freeness generation. This relies also on standard technologies.

4 Development

Event-B is supported by Rodin, an open-source platform implemented in the Eclipse
framework. Rodin supports the development of extension plug-ins and we have chosen
to implement our tool, DFT-generator, as such.

DFT-generator is implemented in Java within the Eclipse Plug-in Development En-
vironment. It uses the version of the programming interface provided by Rodin version
2. It is installed as a single component without dependencies from other external com-
ponents.

The deadlock-freeness theorems are implemented as part of the machine invariant
and flagged as “theorem.” A label is generated for each theorem. It is used later to
reference the formulae in the re-generation process.

While the sub-formulae of DFT are a simple conjugation of event guards, the con-
struction of the formula requires a careful treatment of names. Existential quantifiers
must be introduced for each parameters of events. Since Rodin version 2.0, it begins
to support the use of the same identifier for quantified variables in different part of
formulae, the development is simplified.

The development of the plug-in raised three issues. The first is the user-interface.
We have kept it to a minimum: a pane on which users select first the type of generation
(system DFT, partial DFT, re-generation) and, for partial DFT, the list of events to be
selected. The second issue dealt with keeping memory of which events are used in a
partial DFT. The initial idea to let the user erase old partial DFT and generate them



An Event-B Plug-in for Creating Deadlock-Freeness Theorems 5

again does not work well. Actually, it defeats the goal of the plug-in to make proving
deadlock-freeness as easy as possible. Events used for the re-generation are stored in
the form of a comment on the theorem. Although this implementation requires a little
extra-programming to extract the list of events, it has the advantage to work without
any extension to Rodin database.

The last issue concerns the choice of using Event-B machine file to generate the
theorems: unchecked machine file or statically checked machine file. When a machine
is edited and saved, three tools (the Static Checker, the Proof Obligation Generator and
the Auto-Prover) are called automatically for this edited machine and the following
refinements. It can take a certain time. Modifying a early refinement becomes more
time-consuming for the whole project building as the specification’s length increases,
many user’s time would be wasted waiting. To overcome this, a “fast generation” ver-
sion of the plug-in using unchecked machine file is provided for users. The limitations
of the fast version is that no “extended” event is present in the specification because
it becomes very difficult to access to the guards of the events which are declared “ex-
tended.” A small advantage of the fast version is that the typesetting of the formula is
exactly kept as users entered it . Since the guards of events become easily accessible
after the full static check, a normal version of the plug-in using statically checked ma-
chine file is provided for users without the limitations of specification. We suggest to
apply the normal version of the plug-in beginning the most abstract Event-B machine
in the early development stage.

5 Applications of DFT-generator

A more realistic model of the platooning algorithm in 2-Dimension served as a test-bed
for the DFT-generator. The specification has the same basic structure (four refinements)
but contains much more events. Table 2 gives some figures about the generation:

Table 2. 2D platooning model

Machine Events Guards DFT lines

platoon 1 5 19
platoon_1 3 10 28
platoon_2 19 184 249
platoon_3_0 21 177 264
platoon_4_0 39 354 637

Thanks to Rodin, which is able to manage large formulae and specification, the
generation goes without any difficulty. Discharging the proof obligations of DFT is of
course the biggest time-consuming activity.



6 Faqing Yang and Jean-Pierre Jacquot

6 Conclusion and Future Works

The lack of means to express temporal properties in Event-B is a well-recognized limita-
tion in the general use the method in software development. DFT-generator is a practical
attempt to provide specifiers with a way to express “simply” a very important property.

A very positive aspect of our experience is the assessment of the maturity of Rodin.
The development effort we had to put into the project was reasonable. As is always the
case with large API, the first use requires an important learning effort. This investment
pays back afterwards since the API is easy to use and quite powerful. It is then rea-
sonable the try to overcome limitations of Event-B by developing small assisting tools
rather than waiting major evolution of the formal framework.

The size of the generated formulae, while not a surprise, still raises the issue of
their manageability. The problem is actually not specific to our tool but comes from
the formal core of Event-B. Assessing formal properties of large B models is a very
active research domain. One way to avoid proving huge formulae is to use dynamic
techniques such as model-checking; ProB [7] allows this. ProB has been used on our
specifications. The model-checker did identify the deadlocks in the 1D specification of
platooning. However, it failed on the 2D model due to the complexity of the geometric
space (a plane). So, at present, we do not have any other mean than to discharge the 637
line-long DFT formula to assess the safety of our model.

An experimental version of DFT-generator is accessible at the website
http://dedale.loria.fr/?q=en/plug-in-dft-generator.

References

1. Abrial, J.R.: The B Book. Cambridge University Press (1996)
2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University

Press (2010)
3. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence.

Addison-Wesley Professional (1999)
4. Ferber, J., Muller, J.P.: Influences and Reaction : a Model of Situated Multiagent Systems. In:

2nd Int. Conf. on Multi-agent Systems. pp. 72–79 (1996)
5. Lanoix, A.: Event-B Specification of a Situated Multi-Agent System: Study of a Platoon of

Vehicles. In: 2nd International Symposium on Theoretical Aspects of Software Engineering
(TASE’08). Nanjing, China (2008)

6. Leuschel, M., Butler, M.: ProB: An Automated Analysis Toolset for the B Method. Journal
Software Tools for Technology Transfer 10(2), 185–203 (2008)

7. Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated property verification for
large scale b models with prob. Formal Aspects of Computing pp. 1–27 (2011),
http://dx.doi.org/10.1007/s00165-010-0172-1, 10.1007/s00165-010-0172-1

8. Metayer, C., Voisin, L.: The Event-B Mathematical Language (Oct 2007)
9. RODIN: Rigorous Open Development Environment for Complex Systems. website (Aug

2007), http://rodin-b-sharp.sourceforge.net


