M. Tovi, Mr imaging in cerebral gliomas analysis of tumour tissue components, Acta Radiol, 1993.

S. Price, N. Burnet, T. Donovan, H. Green, A. P. Na et al., Diffusion Tensor Imaging of Brain Tumours at 3T: A Potential Tool for Assessing White Matter Tract Invasion?, Clinical Radiology, vol.58, issue.6, pp.455-462, 2003.
DOI : 10.1016/S0009-9260(03)00115-6

K. Swanson, E. Alvord, and J. Murray, Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy, British Journal of Cancer, vol.29, issue.1, 2002.
DOI : 10.1046/j.1365-2184.2000.00177.x

R. Araujo and D. Mcelwain, A history of the study of solid tumour growth: the contribution of mathematical modelling, Bulleting of Mathematical Biology, vol.66, 2004.

V. Cristini, J. Lowengrub, and Q. Nie, Nonlinear simulation of tumor growth, Journal of Mathematical Biology, vol.46, issue.3, p.46, 2003.
DOI : 10.1007/s00285-002-0174-6

H. Frieboes, J. Lowengrub, S. Wise, X. Zheng, P. Macklin et al., Computer simulation of glioma growth and morphology, NeuroImage, vol.37, pp.59-70, 2007.
DOI : 10.1016/j.neuroimage.2007.03.008

A. Patel, E. Gawlinski, S. Lemieux, and R. Gatenby, A cellular automaton model of early tumor growth and invasion, Journal of Theo. Biol, vol.213, 2001.

D. Drasdo and S. Höhme, : monolayers and spheroids, Physical Biology, vol.2, issue.3, pp.133-147, 2005.
DOI : 10.1088/1478-3975/2/3/001

A. Kansal, S. Torquato, G. H. Iv, E. Chiocca, and T. Deisboeck, Simulated Brain Tumor Growth Dynamics Using a Three-Dimensional Cellular Automaton, Journal of Theoretical Biology, vol.203, issue.4, pp.367-382, 2000.
DOI : 10.1006/jtbi.2000.2000

S. Sanga, H. Frieboes, X. Zheng, R. Gatenby, E. Bearer et al., Predictive oncology: A review of multidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth, NeuroImage, vol.37, pp.120-134, 2007.
DOI : 10.1016/j.neuroimage.2007.05.043

G. Stamatakos, V. Antipas, and N. Uzunoglu, A spatiotemporal, patient individualized simulation model of solid tumor response to chemotherapy in vivo: the paradigm of glioblastoma multiforme treated by temozolomide, IEEE Transactions on Biomedical Engineering, vol.53, issue.8, pp.53-1467, 2006.
DOI : 10.1109/TBME.2006.873761

O. Clatz, M. Sermesant, P. Bondiau, H. Delingette, S. Warfield et al., Realistic simulation of the 3d growth of brain tumors in mr images coupling diffusion with biomechanical deformation, p.24, 2005.

S. Jbabdi, E. Mandonnet, H. Duffau, L. Capelle, K. Swanson et al., Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magnetic Reson, 2005.

C. Hogea, B. Murray, and J. Sethian, Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method, Journal of Mathematical Biology, vol.67, issue.1, pp.86-134, 2006.
DOI : 10.1007/s00285-006-0378-2

P. Tracqui, G. Cruywagen, D. Woodward, G. Bartoo, J. Murray et al., A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth, Cell Proliferation, vol.32, issue.1, 1995.
DOI : 10.1016/S0022-5193(87)80171-6

G. Cruywagen, D. Woodward, P. Tracqui, G. Bartoo, J. Murray et al., THE MODELLING OF DIFFUSIVE TUMOURS, Journal of Biological Systems, vol.03, issue.04, 1995.
DOI : 10.1142/S0218339095000836

A. Mohamed and C. Davatzikos, Finite Element Modeling of Brain Tumor Mass-Effect from 3D Medical Images, In: Lec. Notes Comp. Sci MICCAI, vol.3749, 2005.
DOI : 10.1007/11566465_50

K. Swanson, E. Alvord, and J. Murray, A quantitative model for differential motility of gliomas in grey and white matter, Cell Proliferation, vol.29, issue.5, pp.317-329, 2000.
DOI : 10.1046/j.1365-2184.2000.00177.x

K. Swanson, R. Rostomily, and E. Alvord, A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle, British Journal of Cancer, vol.170, issue.1, pp.113-119, 2008.
DOI : 10.1002/(SICI)1096-9098(199912)72:4<199::AID-JSO4>3.0.CO;2-O

E. Mandonnet, J. Pallud, O. Clatz, L. Taillandier, E. Konukoglu et al., Computational modeling of the WHO grade II glioma dynamics: principles and applications to management paradigm, Neurosurgical Review, vol.20, issue.6, pp.31-263, 2008.
DOI : 10.1007/s10143-008-0128-6

J. Murray, Mathematical Biology, 2002.

A. Giese, L. Kluwe, B. Laube, H. Meissner, M. Berens et al., Migration of human glioma cells on myelin, Neurosurgery, vol.38, issue.4, 1996.

C. Hogea, C. Davatzikos, and G. Biros, Modeling Glioma Growth and Mass Effect in 3D MR Images of the Brain, Lec. Notes Comp. Sci. 4791, Medical Image Computing and Computer-Assisted Intervention ? MICCAI 2007, pp.642-650, 2007.
DOI : 10.1007/978-3-540-75757-3_78

M. Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J. G. Villemure et al., Atlas-based segmentation of pathological mr brain images using a model of lesion growth, IEEE Tran. Med. Imag, vol.23, 2004.

A. Mohamed, E. Zacharaki, D. Shen, and C. Davatzikos, Deformable registration of brain tumor images via a statistical model of tumor-induced deformation, Med. Im. Anal, vol.10, 2006.

M. Prastawa, E. Bullitt, and G. Gerig, Synthetic Ground Truth for Validation of Brain Tumor MRI Segmentation, In: Lec. Notes Comp. Sci, vol.3749, p.MICCAI, 2005.
DOI : 10.1007/11566465_4

J. Rexilius, H. Hahn, M. Schlüter, S. Kohle, H. Bourquain et al., A Framework for the Generation of Realistic Brain Tumor Phantoms and Applications, In: Lec. Notes Comp. Sci, vol.3217, 2004.
DOI : 10.1007/978-3-540-30136-3_31

C. Hogea, C. Davatzikos, and G. Biros, An image-driven parameter estimation problem for a reaction???diffusion glioma growth model with mass effects, Journal of Mathematical Biology, vol.10, issue.3, pp.56-793, 2008.
DOI : 10.1007/s00285-007-0139-x

K. Swanson, Quantifying glioma cell growth and invasion in vitro, Mathematical and Computer Modelling, vol.47, issue.5-6, pp.638-648, 2008.
DOI : 10.1016/j.mcm.2007.02.024

E. Konukoglu, O. Clatz, P. Bondiau, M. Sermesant, H. Delingette et al., Towards an Identification of Tumor Growth Parameters from Time Series of Images, Medical Image Computing and Computer-Assisted Intervention ? MICCAI 2007, pp.549-556, 2007.
DOI : 10.1007/978-3-540-75757-3_67

URL : https://hal.archives-ouvertes.fr/inria-00616046

E. Konukoglu, M. Sermesant, O. Clatz, J. M. Peyrat, H. Delingette et al., A Recursive Anisotropic Fast Marching Approach to Reaction Diffusion Equation: Application to Tumor Growth Modeling, LNCS Proceedings of the 20th IPMI, 2007.
DOI : 10.1007/978-3-540-73273-0_57

URL : https://hal.archives-ouvertes.fr/inria-00616056

D. Aronson and H. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Advances in Mathematics, vol.30, issue.1, 1978.
DOI : 10.1016/0001-8708(78)90130-5

U. Ebert and W. S. , Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts, Physica D: Nonlinear Phenomena, vol.146, issue.1-4, 2000.
DOI : 10.1016/S0167-2789(00)00068-3

P. Maini, D. Mcelwain, and D. Leavesley, Traveling Wave Model to Interpret a Wound-Healing Cell Migration Assay for Human Peritoneal Mesothelial Cells, Tissue Engineering, vol.10, issue.3-4, 2004.
DOI : 10.1089/107632704323061834

J. Keener and J. Sneyd, Mathematical physiology, 1998.
DOI : 10.1007/978-0-387-75847-3

M. Sermesant, E. Konukoglu, H. Delingette, Y. Coudiere, P. Chinchaptanam et al., An Anisotropic Multi-front Fast Marching Method for Real-Time Simulation of Cardiac Electrophysiology, Proceedings of Functional Imaging and Modeling of the Heart, pp.160-169, 2007.
DOI : 10.1007/978-3-540-72907-5_17

URL : https://hal.archives-ouvertes.fr/inria-00616051

E. Konukoglu, Modeling Glioma Growth and Personalizing Growth Models in Medical Images, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00633697

S. Osher, A Level Set Formulation for the Solution of the Dirichlet Problem for Hamilton???Jacobi Equations, SIAM Journal on Mathematical Analysis, vol.24, issue.5, 1993.
DOI : 10.1137/0524066

S. Bryson and D. Levy, Central Schemes for Multidimensional Hamilton--Jacobi Equations, SIAM Journal on Scientific Computing, vol.25, issue.3, p.25, 2003.
DOI : 10.1137/S1064827501394969

J. Qian, Y. Zhang, and H. Zhao, A Fast Sweeping Method for Static Convex Hamilton???Jacobi Equations, UCLA Comp. and App. Math, pp.6-37, 2006.
DOI : 10.1007/s10915-006-9124-6

J. Sethian and A. Vladimirsky, Ordered Upwind Methods for Static Hamilton--Jacobi Equations: Theory and Algorithms, SIAM Journal on Numerical Analysis, vol.41, issue.1, p.41, 2003.
DOI : 10.1137/S0036142901392742

C. Kao, S. Osher, and Y. Tsai, Fast Sweeping Methods for Static Hamilton--Jacobi Equations, SIAM Journal on Numerical Analysis, vol.42, issue.6, p.42, 2005.
DOI : 10.1137/S0036142902419600

J. J. Corso, E. Sharon, S. Dube, S. El-saden, U. Sinha et al., Efficient Multilevel Brain Tumor Segmentation With Integrated Bayesian Model Classification, IEEE Transactions on Medical Imaging, vol.27, issue.5, pp.629-640, 2008.
DOI : 10.1109/TMI.2007.912817

M. Powell, UOBYQA: unconstrained optimization by quadratic approximation, Mathematical Programming, vol.92, issue.3, 2002.
DOI : 10.1007/s101070100290

R. Schröder, K. Bien, R. Kott, I. Meyers, and R. Vössing, The relationship between Ki-67 labeling and mitotic index in gliomas and meningiomas: demonstration of the variability of the intermitotic cycle time, Acta Neuropathologica, vol.22, issue.5, pp.389-394, 1991.
DOI : 10.1007/BF00296550

A. L. Johannessen and S. H. Torp, The clinical value of Ki-67/MIB-1 labeling index in human astrocytomas, Pathology & Oncology Research, vol.77, issue.3, pp.12-143, 2006.
DOI : 10.1007/BF02893360

P. Mccorquodale, P. Colella, and H. Johansen, A Cartesian Grid Embedded Boundary Method for the Heat Equation on Irregular Domains, Journal of Computational Physics, vol.173, issue.2, 2001.
DOI : 10.1006/jcph.2001.6900

M. R. Kaus, S. K. Warfield, A. Nabavi, P. M. Black, F. A. Jolesz et al., Automated Segmentation of MR Images of Brain Tumors, Radiology, vol.218, issue.2, pp.586-591, 2001.
DOI : 10.1148/radiology.218.2.r01fe44586

E. Mandonnet, J. Delattre, M. Tanguy, K. Swanson, A. Carpentier et al., Continuous growth of mean tumor diameter in a subset of grade II gliomas, Annals of Neurology, vol.54, issue.4, pp.53-524, 2003.
DOI : 10.1002/ana.10528

K. Swanson, E. Alvord, and J. Murray, Dynamics of a model for brain tumors reveals a small window for therapeutic intervention, Discrete and Continous Dynamical Systems-Series B, vol.4, issue.1, pp.289-295, 2004.

E. Konukoglu, O. Clatz, P. Bondiau, H. Delingette, and N. Ayache, Extrapolating Tumor Invasion Margins for Physiologically Determined Radiotherapy Regions, Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv, vol.9, pp.338-346, 2006.
DOI : 10.1007/11866565_42

URL : https://hal.archives-ouvertes.fr/inria-00615595

J. Sethian, Level set methods and fast marching methods: Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 1999.

J. Kevorkian, Partial differential equations: Analytical solution techniques, 2000.