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When Fish Moonwalk

Thomas Chambrion Alexandre Munnier

Abstract— In this paper we study some issues relating to the
general problem of locomotion by shape-changes in a perfect
fluid. Our results are two fold. First we introduce a rigorous
model for a weighted self-propelled swimming body - one
specificity of this model being that the number of the body’s
deformations degrees of freedom is infinite. The dynamic of
the coupled system fluid-body is driven by the so-called Euler-
Lagrange equations: a system of ODEs allowing us to compute
the rigid motion of the body with respect to its prescribed
shape-changes. Second, we prove controllability results for this
model using powerful tools of geometric control theory. For
instance, we show that the body can follow (approximately)
any prescribed trajectory while undergoing (approximately)
any prescribed shape-changes (this surprising phenomenon will
be called Moonwalking). Most of our theoretical results are
illustrated by numerical simulations.

I. INTRODUCTION

A. State of the art in biomechanics-swimming

In the last decade, serious efforts have been done by

mathematicians to better understand the dynamics of swim-

ming in a fluid ([22], [12], [6], [24], [21], [19], [4]). Some

models ([23], [25], [14]) incorporate artificial vortices. If

we do not neglect the viscosity effects, the relevant model

consists of the non stationary Navier-Stokes equations for the

fluid coupled with Newton’s laws for the fish-like swimming

object ([2], [13], [7], [18]). However, contrary to some

commonly-held beliefs, the forces and momenta applied to

the fish body by shed vortices are not solely responsible for

the net locomotion and most of the numerous articles by

mathematicians studying fish locomotion address the case

of a potential flow which is, by definition, vortex-free ([9],

[10], [8], [15], [16], [17]). It is also the point of view we

have chosen in this paper.

Although crucial for the design of autonomous underwater

vehicles, results on control or motion planning for this kind

of problems are very few; most of them deal specifically

with articulated bodies, as in [1] (in a viscous fluid) or in

[14] and [15] (in a potential flow).

B. Main results

The shape-changing body (sometimes called amoeba for

its similarity with this single-celled animal) we consider in

this paper is inspired by that of Shapere and Wilczek [20]

and further discussed in [5]. However, in our model the

mass and the changing inertia momentum are both taken into
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account. The shape-changes are prescribed as functions of

time and used as controls to propel and steer the swimming

animal. The Euler-Lagrange equations are obtained following

the method described in [8], [16], [17], adapted here to the

infinite dimensional case.

The contribution of this paper is two fold:

First, we provide a physically-coherent mathematically

well-posed model for a shape-changing swimming organism

in a 2D perfect fluid with potential flow.

Second, we prove advanced approximate controllability

properties for this model (namely, any displacement can

approximately be achieved with approximately any shape-

change).

Owning to the lack of place, the proofs of some tech-

nical results will be omitted. They can be found in [3]

available at http://hal.archives-ouvertes.fr/

hal-00422429/fr/

II. MODELING

The modeling requires consideration of a physical space

and a computational space. Both are identified either with

R2 or with the complex field C.

The computational space is endowed with a frame

(E1,E2), D stands for the open unitary disk and Ω := C\D̄.

We introduce two frames in the physical space (identified

with R2): a Galilean fixed one (e1, e2) and a moving one

(e∗1, e
∗
2), whose origin coincides at any time with the center-

of-mass of the swimming body. Therefore, the center-of-

mass of the body has coordinates r := (r1, r2)
T in (e1, e2)

and (0, 0)T in (e∗1, e
∗
2). More generally, the amounts are

denoted with asterisks when expressed in the moving frame:

the domain occupied by the amoeba is A in (e1, e2) and A∗

in (e1, e2) while F := R2 \ Ā and F∗ := R2 \ Ā∗ stand

for the domain of the fluid.

A. Shape-changes

Let S be the Banach space consisting of the complex

sequences c := (ck)k≥1, ck = ak + ibk, ak, bk ∈ R such

that ‖c‖S :=
∑

k≥1 k(|ak| + |bk|) < +∞. The unitary

open ball of S is denoted by B and for any N ∈ N

(N ≥ 1), SN is the N -dimensional subspace of S for which

ck = 0 if k > N . We can easily verify that S ⊂ T ,

where T is the set of the complex sequences such that

‖c‖T :=
( ∑

k≥1 k(|ak|2 + |bk|2)
)1/2

< +∞.

The shape-changes of the body are described by means

of a set of diffeomorphisms χ(c) depending on c ∈ B (c

will be called in the sequel the shape or control variable).

For any c ∈ B, χ(c) maps D̄ (the closed unitary disk of



the computational space) onto Ā∗. It is defined in complex

notation by:

χ(c)(z) := z +
∑

k≥1

ckz̄k, (z ∈ D̄), (1)

where z̄ = z1−iz2 is the complex conjugate of z = z1+iz2.

Hence, we have Ā∗ := χ(c)(D̄) and A∗ does depend on the

shape variable. We introduce likewise the function φ(c) that

maps Ω̄ onto F̄∗. It is defined for all c ∈ B by:

φ(c)(z) := z +
∑

k≥1

ckz−k, (z ∈ Ω̄). (2)

Proposition 1: For all c ∈ B, χ(c) : D̄ → Ā∗ and

φ(c) : Ω̄ → F̄∗ are both well-defined (the series in (1)

and (2) converge for all z) and invertible. Further, φ(c)|D is

continuously differentiable, χ(c)|Ω is a conformal mapping

and χ(c)|∂D = φ(c)|∂Ω.

Within this model, the given of the shape-changes is nothing

but the given of a function of time t ∈ [0, T ] 7→ c(t) ∈ B
(T > 0). We assume that this function is continuous and

piecewise C1. We denote ċ = (ċk)k≥1 its time derivative,

ċk := ȧk + iḃk (k ≥ 1) and for all z ∈ D, χ̇(c)(z) :=∑
k≥1 ċkz̄k.

B. Rigid motion, rigid velocity

The rigid motion of the amoeba is described by elements

q := (r, θ) of Q := R2 × R/2π where r ∈ R2 is a vector

giving the position of the center-of-mass of the body and θ
and angle giving its orientation with respect to (e1, e2). If

we denote by R(θ) ∈SO(2) the rotation matrix of angle θ,

then R(θ)ej = e∗j (j = 1, 2).

Consider a smooth function t ∈ R 7→ q(t) := (r(t), θ(t)) ∈
Q and denote by q̇ := (ṙ, ω) ∈ R3 the time derivative of q.

The Eulerian velocity of a point undergoing a rigid motion is

vr = ω(x− r)⊥ + ṙ. It can also be expressed in the moving

frame (e∗1, e
∗
2): v∗

r = ω(x∗)⊥ + ṙ∗ where ṙ∗ := RT ṙ. This

leads us to introduce the additional notation q̇∗ := (ṙ∗, ω)T .

C. Physical quantities

Let ρ0 > 0 be a given constant seen as a density in D̄.

The conservation-of-density principle leads to the following

expression for the densities ρ∗ in A∗ and ρ in A:

ρ∗(x∗) = ρ0|Dχ(c)(z)|−1, (x∗ = χ(c)(z), z ∈ D̄), (3a)

ρ(x) = ρ∗(x∗), (x = R(θ)x∗ + r, x∗ ∈ A∗), (3b)

where Dχ(c)(z) is the Jacobian matrix of χ(c) seen as a

mapping from R2 into R2. We define next the mass elements

in D, A∗ and A respectively by dm0 := ρ0dz, dm∗ :=
ρ∗(x∗)dx∗ and dm := ρ(x)dx.

From identities (3) we deduce, after some algebra, that for

all c ∈ B the volume Vol(A) and the mass m of the amoeba

are given respectively by:

Vol(A) = π
(
1 − ‖c‖2

T

)
and m = πρ0. (4)

Since the fluid is assumed to be incompressible and we are

dealing with a 2D model, its volume is always preserved

(this is not true with a 3D model as explained in [17]) and

we draw the same conclusion for the volume of the amoeba.

We deduce that, for a shape function t ∈ [0, T ] 7→ c(t) ∈ B
to be physically allowable, the quantity ‖c(t)‖T has to be

independent of time. We denote it µ := ‖c(0)‖T . If the

swimming body is assumed to be neutrally buoyant then

ρf (1 − µ2) = ρ0 where ρf > 0 stands for the given

constant density of the fluid. We can also compute the inertia

momentum in terms of the control variable:

I(c) :=

∫

A∗

|x∗|2 dm∗ = πρ0


1

2
+

∑

k≥1

1

k + 1
|ck|2


 . (5)

D. Self-propelled motion, allowable control

The motion is said to be self-propelled when the shape-

changes result from the work of internal forces and torques

only. Such deformations are characterized by the fact that,

in the absence of fluid, the linear and angular momenta of

the amoeba are preserved:

d

dt

∫

A∗

x∗dm∗ =

∫

D

χ̇(c)(z)dm0

=
∑

k≥1

k(ȧkak + ḃkbk) = 0, (6)

∫

D

χ̇(c) · χ(c)⊥dm0 =
∑

k≥1

1

k + 1
(ḃkak − ȧkbk) = 0, (7)

where we have used formula (3). According to the definition

(1) of χ(c), the condition (6) is actually satisfied for any

c ∈ B. We are now in a position to define precisely what is

a physically allowable control function:

Definition 1 (Physically allowable control): Any contin-

uous, piecewise C1 function t ∈ [0, T ] 7→ c(t) ∈ B for

which (i) there exists µ ∈]0, 1[ such that ‖c(t)‖T = µ for

all t ∈]0, T [ and (ii) identity (7) holds for all t where ċ exists,

is said to be physically allowable.

E. Eulerian and convective velocities

According to the relation x = r + R(θ)χ(c)(z) (z ∈ D)

and the results of Section II-B, the Eulerian and convective

velocities of a material point of the body (whith coordinates

x in (e1, e2) and x∗ in (e∗1, e
∗
2)) are:

v = (ω (x − r)⊥ + ṙ) + R(θ)χ̇(c)(χ(c)−1(g−1x)), (8a)

v∗ = (ω x∗⊥ + ṙ∗) + χ̇(c)(χ(c)−1(x∗)). (8b)

Notice that v is given in the fixed basis (e1, e2) whereas v∗

is given in the body-attached basis (e∗1, e
∗
2).

F. Potential flow

The fluid is assumed to be incompressible and inviscid

with constant density ρf > 0. Its element of mass is

dm∗
f := ρfdx∗ in F∗ and dm0

f := ρfdz in Ω. The Eulerian

velocity of the fluid in (e∗1, e
∗
2), denoted by u∗ is equal to

the gradient of a potential function ϕ i.e. u∗ = ∇ϕ in F∗.

The incompressibility of the fluid entails that ∇ ·u = 0 and

hence that

∆ϕ = 0 in F∗. (9a)



The classical non-penetrating or slip boundary condition for

inviscid fluids leads to u∗ · n = v∗ · n on ∂F∗ where n
stands here (and subsequently) for the unitary normal to

∂A∗ = ∂F∗ directed toward the interior of A∗. These con-

ditions yield Neumann boundary conditions for the potential

function:

∂nϕ = v∗ · n on ∂F∗. (9b)

The boundary value problem (9) admits a weak (or varia-

tional) solution in the weighted Sobolev space H1
N (F∗) :=

{u ∈ D′(F∗) : u/[
√
|x|2 + 1 log(2 + |x|2)] ∈

L2(F∗), ∂xj
u ∈ L2(F∗), j = 1, 2} where D′(F∗) is the

space of the distributions in F∗. This solution is unique up

to an additive constant.

Note that the potential function does depend on both ċ

(linearly through its boundary data) and c (through the

domain F∗).

G. Lagrangian function of the system fluid-body

We disregard the effects of gravity so the Lagrangian

function L of our system reduces to: L = Kb + Kf where

Kb is the kinetic energy of the body of Kf the kinetic energy

of the fluid. They read respectively:

Kb :=
1

2

∫

A∗

|v∗|2dm and Kf :=
1

2

∫

F∗

|u∗|2dmf . (10)

Replacing v∗ and u∗ by their expressions and taking into

account constraints (6) and (7), it turns out that the La-

grangian is a function of ċ, c and q̇∗. More precisely, for

any fixed c ∈ B, L(c) is a quadratic form in (q̇∗, ċ). It is

worth remarking that it does not depend on r and θ due to

the isotropy of our model with respect to the position and

orientation of the body in the fluid.

H. Potential decomposition

Kirchhoff’s law states that the potential function can be

decomposed into a linear combination of elementary poten-

tials, each one being assocated with a degree of freedom

of the system (which are here: the translations of the body

along ej (j = 1, 2), the rotation and all of the elementary

shape-changes relating to the variables ck (k ≥ 1)). This law

is classical when the number of degrees of freedom is finite

but requires some adjustment to be applied to our infinite

dimensional model.

Proposition 2: For any allowable control in the sense of

Definition 1, we have the decompositions in H1
N (F∗):

ϕ = ϕr + ϕd,

ϕr = ṙ∗1ϕr
1 + ṙ∗2ϕr

2 + ωϕr
3,

ϕd =
∑

k≥1

ȧkϕa
k + ḃkϕb

k,

where the elementary potentials ϕr
j (j = 1, 2) are associated

with translations, ϕr
3 with the rotation and ϕa

k and ϕb
k with

the elementary shape-changes.

Notice once again that all of the potentials depend on c since

the domain F∗ does. Composing them with the conformal

mapping φ(c), we obtain functions defined as solutions of

Laplace’s equations in the fixed domain Ω and for which the

dependence in c is easier to analyse. This dependence has

the same regularity as the dependence of the boundary data

in L2(∂Ω) with respect to c ∈ B, that is, polynomial. Let

us make clear this term: a mapping f : E → F between

two Banach spaces is polynomial if there exist an integer p
(the degree of the polynomial), a vector a0 ∈ F and p − 1
mappings γk : E → F (k = 1, ..., p) such that γk is k-linear

and continuous and f(e) = γ0 +
∑

k≥1〈γk, e, . . . , e〉 for all

e ∈ E.

I. Mass matrices

By analogy with the classical definition (see [11]), we

define for all c ∈ B the mass matrix M(c) of our infinite di-

mensional system as being the polarization of the Lagrangian

function L(c) seen as a quadratic form in (q̇∗, ċ). We use the

following notation, to emphasize the linearity with respect to

some variables: L(c, ċ, q̇∗) = (1/2)〈M(c), (ċ, q̇∗), (ċ, q̇∗)〉.
We can expand this formula and define the sub-mass matrices

M
r(c), N(c) and M

d(c) by

〈M(c), (ċ, q̇∗), (ċ, q̇∗)〉 = 〈Mr(c), q̇∗, q̇∗〉
+ 〈Md(c), ċ, ċ〉 + 2〈N(c), q̇∗, ċ〉.

If E is a Banach space, we denote L2(E×E) the Banach

space of the bilinear forms on E × E. Technical estimates

together with the regularity results of Section II-H allow us

to prove:

Proposition 3: The mappings c ∈ B 7→ M
r(c) ∈

L2(R
3 × R3), c ∈ B 7→ N(c) ∈ L2(R

3 × S) and c ∈
B 7→ M

d(c) ∈ L2(S × S) are polynomial. We deduce that

the mapping c ∈ B 7→ M(c) ∈ L2((R
3 × S) × (R3 × S))

has the same regularity.

The elementary potentials and next the entries of the mass

matrices can be explicitly computed. It is worth observing

that once all of these computations have been done:

Proposition 4: When the shape variable c belongs to SN

for some integer N ≥ 1, then all of the entries Md
lj of M

d(c)
are null for l > N and j > N and likewise, all of the entries

Nj,l of N(c) are null for j > N . Further, the remaining non-

zero elements as well as the entries of M
r(c) make sense

even if c /∈ B and are polynomial functions in c.

It should be noted that when c /∈ B, the mapping φ(c)
is certainly not a conformal mapping any longer (it is

not injective) and the domain F∗ is ill-defined (actually

it overlaps itself). Obviously in this case, the elementary

potentials do not make sense. However, when c has only

a finite number of non-zero elements, the expressions of the

entries of M
d(c) and N(c) explicitly computed in term of

ak and bk (1 ≤ k ≤ N ) keep making sense. This leads us

to define:

Definition 2 (Mathematically allowable control): Any

continuous, piecewise C1 function t ∈ [0, T ] 7→ c(t) ∈ SN

(N ∈ N, N ≥ 1) for which (i) there exists µ ∈]0, 1[ such

that ‖c(t)‖T = µ for all t ∈]0, T [ and (ii) identity (7)

holds for all t where ċ exists, is said to be mathematically

allowable.



J. Equations of motion

We introduce the so-called impulses (they both can be

identified with vectors of R3):
[
P

Π

]
:= M

r(c)

[
ṙ∗

ω

]
and

[
L

Λ

]
:= 〈N(c), ċ〉.

We compute that for all ṗ := (ṡ, ω̃)T ∈ R3:

d

dt

∂

∂q̇

[
ṙ∗

ω

]
· ṗ − ∂

∂q

[
ṙ∗

ω

]
· ṗ =

[
ω̃(ṙ∗)⊥ − ω(ṡ∗)⊥

0

]
.

We next easily obtain that:

d

dt

∂L

∂q̇
· ṗ − ∂L

∂q
· ṗ =

d

dt

[
P + L

Π + Λ

]
·
[
ṡ∗

ω̃

]
+

[
P + L

Π + Λ

]
·
[
ω̃(ṙ∗)⊥ − ω(ṡ∗)⊥

0

]
.

According to Prop. 3, the Lagrangian function is smooth with

respect to all its variables, allowing all of the derivatives to

be computed. Invoking the least action principle, the Euler-

Lagrange equations of motion are:

d

dt

∂L

∂q̇
· ṗ − ∂L

∂q
· ṗ = 0, ∀ ṗ ∈ R3.

We obtain here the equation:

q̇∗ = −(Mr(c))−1〈N(c), ċ〉. (11)

We can also easily set out directly the equation of motion

in terms of r and θ. To this purpose, we introduce the 3× 3
block matrix:

R(θ) :=

[
R(θ) 0

0 1

]
,

and since ṙ∗ = R(θ)T r, we can rewrite (11) in the form:

q̇ = −R(θ)(Mr(c))−1〈N(c), ċ〉. (12)

We can verify that det M
r(c) ≥ π3ρ3

0/2 for all c mathe-

matically of physically allowable. According to Prop. 3 and

Prop. 4, we can then state:

Proposition 5: For any function t ∈ [0, T ] 7→ c(t) mathe-

matically or physically allowable and any initial condition

q0 ∈ Q, the ODE(12) is well-posed and the solution is

defined on the whole interval [0, T ].

III. CONTROLLABILITY RESULTS

Our main result states that:

Theorem 1: For every µ̄ in (0, 1), for every ε > 0, for

every reference continuous rigid motion q̄ : [0, T ] → Q and

for any reference continuous shape-changes c̄ : [0, T ] →
E(µ̄), there exists a real number µ ∈ (0, 1) and an analytic

allowable control function c : [0, T ] → E(µ) such that

1) ‖c(t) − c̄(t)‖S ≤ ε for all t ∈ [0, T ];
2) The solution q : [0, T ] → Q of EDO (12) with initial

data q(0) = q̄(0) and control function c satisfies

‖q(t) − q̄(t)‖Q < ε, for all t ∈ [0, T ] and q(T ) =
q̄(T ).

A. Finite dimensional control problem

The proof of Theorem 1 rests on the use of tools of geo-

metric control theory which apply only to finite dimensional

systems. So, let be N ∈ N, N ≥ 1 and consider a finite

set J := {1, 2, . . . , n} and a family XN := (Xj)j∈J of

Lipschitz continuous vector fields on S where for any c ∈ S,

Xj(c) := (Xj
k(c))k≥1, Xj

k(c) = xj
k(c) + iyj

k(c), xj
k(c),

yj
k(c) ∈ R (j ∈ J , k ≥ 1) such that Xj

k = 0 if k > N and

for all c ∈ S:

N∑

k=1

k(xk(c)ak + yk(c)bk) = 0, (13a)

N∑

k=1

(xk(c)bk − yk(c)ak)/(k + 1) = 0. (13b)

Let c0 ∈ SN be such that ‖c0‖T < 1 and consider a set

of piecewise constant functions αj : [0, T ] → R. Then any

solution of the Cauchy problem ċ =
∑

j∈J αjXj (t ∈]0, T [)
and c(0) = c0 is mathematically allowable. Of course SN

turns out to be identified with CN and we are dealing with

a finite dimensional problem that can be rewritten:

[
q̇

ċ

]
=

4∑

j=1

αj(t)Y
j(q, c), (14)

where we have set:

Yj(q, c) :=

[
−R(θ)(Mr(c))−1〈N(c),Xj(c)〉

Xj(c)

]
.

We denote YN := (Yj)j∈J and for all µ ∈ (0, 1) and all

N ∈ N, N ≥ 1, we define EN (µ) = {c ∈ SN : ‖c‖T =
µ}. If we identify SN now with R2N then EN (µ) can be

identified with the surface of an ellipsoid which is an analytic

manifold of dimension 2N − 1 in R2N and XN can be seen

as a family of vector fields on EN (µ). Likewise, YN is a

family of vector fields on the analytic manifold Q×EN (µ).
Let us state a finite dimensional version of Theorem 1:

Theorem 2: For all but maybe a finite number of values of

ρ0/ρf , every N ∈ N (N ≥ 2), every µ in (0, 1), every ε > 0,

every reference continuous rigid motion q̄ : [0, T ] → Q
and every reference continuous shape-changes c̄ : [0, T ] →
EN (µ), there exists an allowable analytic control function

c : [0, T ] → EN (µ) such that

1) ‖c(t) − c̄(t)‖SN
≤ ε for all t ∈ [0, T ];

2) c(0) = c̄(0) and c(T ) = c̄(T );
3) The solution q : [0, T ] → Q of EDO (12) with initial

data q(0) = q̄(0) and control function c satisfies

‖q(t) − q̄(t)‖Q < ε, for all t ∈ [0, T ] and q(T ) =
q̄(T ).

Observe that the reference curve c̄ : [0, T ] → EN (µ) is not

required to be allowable.

B. Proof of Theorem 2

Recall that, as a classical consequence of the Orbit The-

orem, it is enough to find a family (Xj)j∈J of vector

fields whose integral curves are admissible and for which

Lie(q,c)(Y
j , j ∈ J) = T(q,c)(Q × EN (µ)) for every (q, c)

to prove Theorem 2.



We specify J = {1, 2, 3, 4} and N = 2 and we claim:

Proposition 6: There exists a family of analytic vector

fields X2 on S such that, for all µ ∈ (0, 1), X2, seen as

a vector field on E2(µ), be completely nonholonomic , i.e.,

for any c in E2(µ), Liec(X2) = TcE2(µ).

Proof: The vector fields can be produced explicitly, the

entries xj
k and yj

k being polynomial functions in ak and bk

and next the computations of the Lie brackets can also be

done explicitly.

Proposition 7: For all but maybe a finite number of ρ0/ρf

and for any µ ∈ (0, 1), Y2 seen as a vector field on Q×E2(µ)
is completely nonholonomic.

Proof: Since we are able to produce the expressions

of the vector fields of X2 as well as the entries of the

matrices M
r(c) and N(c), we can also compute explicitly

the expressions of the vector fields of Y2. They depend only

on θ, c and the ratio ρ0/ρf . However, these expressions are

far to complicated to allow general computations. We use the

particular form of ODE (14). We denote Π3 the projection

over the third component in Q, we define the set of vector

fields X̂2 := (X̂j)j∈J where

X̂j(c) :=

[
−Π3(M

r(c)−1〈N(c),Xj(c)〉)
Xj(c)

]
,

and we observe that:

[
θ̇
ċ

]
=

N∑

j=1

αj(t)X̂
j(c). (15)

Although not depending on θ, the vector fields X̂j are

defined on the analytic manifold Ê2(µ) := R/2π × E2(µ).
The expressions of the vector fields are still too complicated

to allow explicit computations of the Lie brackets in general,

however, these computations can be done for a specific value

c := c†. We obtain that for any θ (since the quantities do not

depend on θ) Lie(θ,c†)(X̂2) = T(θ,c†)Ê2(µ). But, according

to Prop. 6, any point (θ, c) ∈ Ê2(µ) is on the orbit of a point

(θ̃, c†) for some θ̃ ∈ R/2π which entails:

Lemma 1: The family of analytic vector fields X̂2 on

Ê2(µ) is completely nonholonomic.

For a specific couple (θ†, c†) and a specific value of ρ0/ρf

for which we are able to compute explicitly Lie(r,θ†,c†)(Y2)
(remember that the vector fields in Y2 do not depend on

r), we obtain that Lie(r,θ†,c†)(Y2) = T(r,θ†,c†)(Q × E2(µ))
for any µ ∈ (0, 1) (the expression of Yj does not involve

µ). We deduce that the conclusion still holds true for all but

a finite number of ratios ρ0/ρf by invoking an argument of

analyticity and we next conclude as in the proof of Lemma 1

above.

We can generalize these results to any N ≥ 2. The funda-

mental point is that for any N > 2 (and any µ ∈ (0, 1)),
E2(µ) can be seen as an immersed submanifold of EN (µ)
and likewise, X2 can be seen as a complete distribution

on EN (µ). We construct (explicitly) a sequence of analytic

distributions Xk on Ek(µ) (k = 3, . . . , N ) such that Xk−1 ⊂
Xk and Liec(Xk) = TcEk(µ) for all c ∈ Ek(µ). We next

consider the associated distributions X̂k and Yk and we

check that

Lie(θ,c†)(X̂2) ⊕ span(X̂N ) = T(θ,c†)ÊN (µ),

where c† matches that which we have chosen for the case

N = 2 (so we can reuse the already done computations for

this case). Likewise, choosing the same values for (θ†, c†)
and ρ0/ρf as for the proof of Theorem 2, we show that:

Lie(r,θ†,c†)(Y2) ⊕ span(YN ) = T(r,θ†,c†)(Q× EN (µ)),

and once more, we have no additional intricate Lie brackets

to compute! We have just proved the existence of a set of

piecewise constant functions (αj)j∈J such that the solution

of System (14) tracks our reference data c̄ and q̄. Finally,

the proof of Theorem 2 is completed after adding that the

analytic real functions are dense for the L1 norm in the set of

measurable bounded functions and hence that the piecewise

constant control functions (αj)j∈J we have obtained can be

approximated by a suitable familly of analytic functions.

C. Proof of Theorem 1

Let ε, µ̄ and c̄ : [0, T ] → E(µ̄) be given as in the

statement of Theorem 1 and for any N in N, define ΘN =
{t ∈ [0, T ] : ‖c̄(t) − ΠN c̄(t)‖S < ε/4}. Because c̄ is

continuous, the set ΘN is open in [0, T ] for all N and

since for any t ∈ [0, T ], ΠN c̄(t) → c̄(t) as N → ∞, we

deduce that [0, T ] ⊂ ∪N≥1ΘN . The interval [0, T ] being

compact and the sequence (ΘN )N non-decreasing, [0, T ] ⊂
ΘN for some N . We can not yet choose ΠN c̄ as a good

finite dimensional approximation of c̄ since ‖ΠN c̄(t)‖T is

certainly not constant (note that this quantity is continuous

in t since ‖c‖T ≤ ‖c‖S for all c ∈ S). We only have

to renormalize it. Indeed, we can find a good µ such that

‖µΠN c̄(t)/‖ΠN c̄(t)‖T −c̄(t)‖T < ε/4 and it remains to set

c̃(t) := µΠN c̄(t)/‖ΠN c̄(t)‖T to get a continuous function

valued in EN (µ) and such that ‖c̄(t) − c̃(t)‖S < ε/2.

Apply now Theorem 2 with c̃ as reference curve and ε/2
instead of ε to conclude the proof.

IV. NUMERICAL RESULTS

This Section is to be read with a web page

containing further explanations, all of the animations

and many other numerical experiments. It is located

at: http://www.iecn.u-nancy.fr/˜munnier/

page_amoeba/control_index.html.

We first choose N = 2 (i.e. the shape variable t 7→
c(t) has only its two first components ck(t) = ak(t) +
ibk(t), k = 1, 2 as non-zero elements). To manage the

constraint that the shape variable has to be allowable, we

define it by: ak(t) := Rk(t) cos(βk(t)) and bk(t) :=
Rk(t) sin(βk(t)), where R1(t) := µ cos(α(t)), R2(t) :=
µ sin(α(t))/

√
2 and β1(t) := −(1/3)

∫ t

0
h(s)R2

2(s)ds,

β2(t) := (1/2)
∫ t

0
h(s)R2

1(s)ds. Our new control variables

are now the couple t ∈ R+ 7→ (α(t), h(t)) ∈ R2 and for any

couple of such functions, the relating control variable c is

allowable. We observe that the function t ∈ R+ 7→ α(t) ∈ R

governs the frequencies of the strokes while t ∈ R+ 7→



h(t) ∈ R allows the swimming body to steer left and right.

We specialize ρf = 1, ρ0 = (1 − µ2)ρf (neutrally buoyant

case) with µ = 1/2.

In Fig. 1, we display some screenshots of a motion

obtained with α(t) = t and h(t) = 0. By specifying next

(a) t = 0 (b) t = π/4 (c) t = π/2

(d) t = 3π/2 (e) t = π (f) t = 5π/4

(g) t = 3π/2 (h) t = 7π/4 (i) t = 2π

Fig. 1. Screenshots of the amoeba during the course of a stroke. The colors
give the value of the internal density. The animal is neutrally buoyant, so
at rest its density is 1 (the density of the fluid).

α(t) = t and h(t) = 1, we obtain a circular motion as shown

in Fig. 2. Suitable choices for α and h allows the amoeba to

−3 −2 −1 0 1 2 3 4
−6

−5

−4

−3

−2

−1

0

1

Fig. 2. Successive positions and shapes of the amoeba in its course when
h = 1. The animal follows a circular trajectory completed over a time
interval of length approximately 24π.

follow any smooth trajectory. Such examples as well as a real

time interactive game (in Matlab) and Moonwalk animations

are given on the web page referenced at the beginning of

this Section.

V. CONCLUSION

Through our model of swimming amoeba, we have proved

that locomotion in a prefect fluid by shape-changes is theo-

retically possible. More general 2D swimming strategies as

well as 3D models remain to be investigated.
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