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Summary

In this paper, we propose a model of cortical self-organization based on the dynamic field theory. Learning
is made through the modification of feed-forward connections using a time invariant learning rule that
allows for dynamic (or life-long) learning. This preliminary model suggests that cortical plasticity may
be conveyed through feed-forward connections only while cortico-cortical connections role would be to
ensure dynamic competition among cortical columns.

Introduction

We introduced in [1] the dynamic self-organized
map architecture that is a variation of the self-
organizing map algorithm [2] where the original
time-dependent (learning rate and neighborhood)
learning function has been replaced by a time-
invariant learning rule. This modification allows
the network to support life-long learning and may
explain to some extent cortical plasticity. However,
current implementation is not biologically plausi-
ble since it requires a central supervisor (to desig-
nate the winning unit) and the neighborhood in-
fluence is computed using a function.

This article introduces preliminary results con-
cerning a biologically plausible implementation us-
ing numerical, distributed and local computations,
based on the original dynamic neural field defini-
tion [3].

The concept of self-organization using lateral
connections is well-known and well-investigated,
especially by [4, 5]. In those works authors pro-
vide an algorithm for self-organization learning lat-
eral weights using a Hebbian-like learning rule. On
the other hand, we put forward a new approach of
self-organization using a combination of a dynamic
neural field and a Hebbian-like learning rule. Thus,
self-organization can be achieved, learning only the
feed-forward weights. Because of that property our
model is quite simple, straightforward to imple-
mentation and it does not require any outlandish
handling.

Model

The neural field theory has been introduced by
[6, 7] and latter formalized by [3, 8]. This theory
introduces a model at the level of a population
of neurons in the form of an integro-differential
equation describing the spatio-temporal evolution
of coarse-grained variables such as synaptic or
firing rate value [9]. We will use notations in-
troduced by Amari and consider the membrane
potential to be governed by the following equation:

τ
∂V (x, t)

∂t
=− V (x, t) + h+ I(x, t)

+

∫
M

W (|x− y|)f(V (y, t))dy (1)

where V (x, t) designates the membrane potential
at position x and time t, W (|x− y|) is the lateral
connection weight function between position x and
y (we assume here that the system is spatially ho-
mogeneous and isotropic), f is the mean firing rate
function, I(x, t) is the input at position x and h is
the resting potential.

Fitting input

Depending on the firing rate function f , the lat-
eral connectivity function W and the input I, such
fields are known to exhibit a range of dynamic be-
haviors going from spatially and/or temporally pe-
riodic patterns to localized regions of activity. This
latter case has been extensively used in a number of
work to model visual attention [10], motor control
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[11], working memory [12], etc. In the following,
we will consider the lateral connectivity function
to be a Difference of Gaussians (DoG) of the form:

W (x) = Ae−x
2/2σA

2

−Be−x
2/2σB

2

and the firing rate function to be a simple positive
linear function:

f(x) =

{
x if x > 0
0 if x ≤ 0

The numerical simulation of such fields requires the
spatial discretization of the domain M into n spa-
tial elements while the temporal integration can be
made using classical integration schemes. Consid-
ering M = [0..1] and h = 0, we can thus rewrite
equation 1 as:

τ
∆V (xi, t)

∆t
=− V (xi, t) + I(xi, t)

+

n∑
j=0

W (|xi − xj|)f(V (xj, t))

with xi = i/(n − 1). In the following, we will use
the forward Euler integration scheme. Under these
assumptions, we have been studying a set of pa-
rameters for the lateral weight connection that ex-
hibit the following property: for any uniform and
positive input I, the neural field converges towards
a single localized packet of activity whose maximum
is approximately equal to I. We do not have yet
the formal proof of such behavior but we found
the property to be very consistent over a wide set
of numerical simulations using different parameters
(n, I, ∆t). We report on figure (1) such a simula-
tion where the field is able to fit a constant input
of level 0.45 after convergence. Instead of a stereo-
typed packet of activity with a constant maximum,
the field activation represents a measure of the in-
put. We will now explain how to use such property
to ensure self-organization.

Self-Organization

Let us now consider the slightly modified equation:

τ
∂V (x, t)

∂t
=− V (x, t) + 1−

∫
M

|I(t)−WF (x)|dx

+

∫
M

WL(|x− y|)f(V (y, t))dy (2)
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Figure 1: One dimensional neural field using n =
100, τ = 10, A = 1.5, σA = 0.1, B = 0.75, σB =
1.0. For any uniform and positive input level I,
the neural field maximum activity is approximately
equal to I after convergence.

where I is now considered to be uniform over M
while a set of feed-forward weights WF has been
added such that the actual input for any position
x is 1− |I(t)−WF (x)|.

Considering the set of parameters given in the
previous subsection and considering a given input
I, if we have WF (x) = I, the actual input of the
field would be 1. In such a case, we explained
that the field maximum activity would match this
value (1). However, it is not possible to have
such equality for any value of I because it would
means to change all feed-forward weights at once.
Nonetheless, we can restrict this equality to the
support of the localized packet of activity at the
equilibrium point. Said differently, it is sufficient
to have WF (x) = I for x such that V (x, t) is not
null at the equilibrium point. The goal of the
learning rule is thus to reach such a state.

We considered the learning rule introduced in [1]
that reflect two main ideas:

• If a neuron is close enough to the data, there
is no need for others to learn anything: the
winner can represent the data.

• If there is no neuron close enough to the data,
any neuron learns the data according to its
own distance to the data.

To achieve such behavior, we propose to consider
the following learning rule:

∂WF (x, t)

∂t
= ηLe(x, t)

(
I(t)−WF (x, t)

)
(3)
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where Le(x, t) =
∫
M
WLe

(|x− y|)f(V (y, t))dy de-
notes the excitatory part of the lateral interac-
tion such that WL = WLe

−WLi
and η is a con-

stant learning rate. The modification of any feed-
forward weights is thus directly correlated with the
closeness of weights to the input and this is mod-
ulated by the amount of lateral excitation. Since
we know the final state of the model is a localized
Gaussian-shaped packet of activity, learning occurs
maximally in this vicinity.

Results

Experimental Setup

A set Sk of samples is generated by drawing k
evenly spaced values in the interval [0..1] with spe-
cial case S∞ whose values are drawn uniformly
from the interval [0..1]. A sample is randomly cho-
sen from Sk and presented to the network which
has been previously reset. The network is then sim-
ulated and learning occurs until ε-convergence has
been reached, i.e. ∀x, |V (x, t + dt) − V (x, t)| ≤ ε.
Another sample is then drawn and the procedure
is repeated for a given number of epochs.

Learning discrete values

We trained a network of 100 neurons for 2500
epochs and using as parameters, τ = 10, A = 1.5,
σA = 0.1, B = 0.75, σB = 1.0, self-organization
was obtained. In figure (2), is illustrated the re-
sults of the simulation. The feed-forward weights
were randomly initialized (the red line) and after
2500 epochs the feed-forward weights were orga-
nized (the blue line), as the network learned the
three input values (0,1/2,1). Hence, that step-like
shape of feed-forward weights were caused because
the first 20 neurons learned the value 0, the 20 mid-
dle neurons learned the value 1/2, and the last 20
neurons learned the value 1. Moreover, the rest of
the neurons learned different values from the input
and may be that provide a smooth drift from one
batch of neurons to another one.

Learning continuous values

We used the same network architecture as in in-
troduced in previous paragraph but it has been
trained on the S∞ set. After 2500 epochs the net-
work has learned the feed-forward weights. In ad-
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Figure 2: A neural field has been trained for 2500
epochs on S3 (0, 1/2 and 1). Blue and red curves
respectively show initial and final set of weights.

dition, the so-called step-like shape of feed-forward
weights was substituted by an almost linear shape.
That’s because of the continuous nature of the in-
put. It is to be noted that almost all values are rep-
resented but the bounds due to the non-toric na-
ture of the network. This side effect is well-known
in the case of Kohonen’s map. Results are depicted
in figure 3 while figure 4 shows the evolution of the
receptive fields of unit #50 that slowly drifts from
a weak and random response to a sharp localized
one.
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Figure 3: A neural field has been trained for 2500
epochs on S∞. Blue and red curves respectively
show initial and final set of weights.

Discussion

We introduced a one dimensional dynamic neu-
ral field that can continuously and dynamically
self-organize itself around a set of one-dimensional
discrete or uniform values by modifying its feed-
forward connections and using the lateral weighted
sum of excitation as a modulation signal for learn-



Self-Organizing Dynamic Neural Fields 4

0.0 0.2 0.4 0.6 0.8 1.0

I

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

U
n
it

 a
ct

iv
it

y

t = 25
t = 50
t = 100
t = 250
t = 500
t = 1000

Figure 4: Evolution through time (t) of the recep-
tive field of unit #50 from a network learning S∞.
At each record time, learning is frozen and the net-
work is presented successively with values ranging
from 0 to 1 with step of 0.01. Activity level of
unit #50 is recorded (after convergence) for each
of these input values and is plotted for each record
time.

ing. We are currently investigating the two-
dimensional case, due to obtain a more biological
plausible model since the cortex can be modeled
as a two-dimensional sheet of neurons. In this con-
text, we would like to investigate meta-plasticity
and/or homeostatic plasticity as it has been re-
ported in [13].

Finally, we would like to examine the proper-
ties of cortical reorganization under the presence
of a lesion. Such lesions have been extensively in-
vestigated by [14] and others from a neurophysi-
ological point of view and there is consequently a
strong and detailed experimental background pro-
viding significant data which could feed our com-
putational model.
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