
HAL Id: inria-00580599
https://inria.hal.science/inria-00580599v2

Submitted on 29 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparing archival policies for Blue Waters
Franck Cappello, Mathias Jacquelin, Loris Marchal, Yves Robert, Marc Snir

To cite this version:
Franck Cappello, Mathias Jacquelin, Loris Marchal, Yves Robert, Marc Snir. Comparing archival
policies for Blue Waters. [Research Report] RR-7583, INRIA. 2011. �inria-00580599v2�

https://inria.hal.science/inria-00580599v2
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
75

83
--

FR
+E

N
G

Distributed and High Performance Computing

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Comparing archival policies for BLUE WATERS

Franck Cappello — Mathias Jacquelin — Loris Marchal — Yves Robert — Marc Snir

N° 7583

Mars 2011

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Comparing archival policies for Blue Waters

Franck Cappello∗ , Mathias Jacquelin† , Loris Marchal‡ , Yves

Robert†§ , Marc Snir∗

Theme : Distributed and High Performance Computing
Équipe-Projet GRAAL

Rapport de recherche n° 7583 — Mars 2011 — 21 pages

Abstract: This paper introduces two new tape archival policies that can im-
prove tape archive performance in certain regimes, compared to the classical
RAIT (Redundant Array of Independent Tapes) policy. The first policy, PAR-
ALLEL, still requires as many parallel tape drives as RAIT but pre-computes
large data stripes that are written contiguously on tapes to increase write/read
performance. The second policy, VERTICAL, writes contiguous data into a
single tape, while updating error correcting information on the fly and delaying
its archival until enough data has been archived. This second approach reduces
the number of tape drives used for every user request to one. The performance
of the three RAIT, PARALLEL and VERTICAL policies is assessed through
extensive simulations, using a hardware configuration and a distribution of I/O
requests similar to these expected on the Blue Waters system. These simula-
tions show that VERTICAL is the most suitable policy for small files, whereas
PARALLEL must be used for files larger than 1 GB. We also demonstrate that
RAIT never outperforms both proposed policies, and that a heterogeneous poli-
cies mixing VERTICAL and PARALLEL performs 10 times better than any
other policy.

Key-words: tape storage, archival systems, I/O policy

∗ INRIA-UIUC joint laboratory for Petascale Computing
† École Normale Supérieure de Lyon
‡ CNRS
§ Institut Universitaire de France

Comparaison de politiques d’archivage pour
Blue Waters

Résumé : Cet article introduit deux nouvelles politiques d’archivage visant à
améliorer les performances des systèmes d’archivage sur bandes par rapport à la
politique classique RAIT (Redundant Array of Independent Tapes). La première
politique, PARALLEL, nécessite autant de lecteurs de bandes en parallèle
que RAIT mais pré-traite de grands segments de données qui sont ensuite
écrits sur bande de manière contiguë afin de bénéficier de meilleures vitesses
de lecture/écriture. La seconde politique, VERTICAL, écrit les données de
manière contiguë sur une seule bande, tout en maintenant à jour les codes
de correction d’erreur au vol et en retardant leur archivage jusqu’à ce qu’une
quantité de données assez importante ait été archivée. Cette deuxième approche
limite à un le nombre de lecteurs de bandes nécessaires par requête. Les
performances de chacune de ces politiques sont validées au travers de nombreuses
simulations, modélisant à la fois une configuration matérielle ainsi qu’une distri-
bution des requêtes d’entrée/sortie proches de ce qui est attendu sur Blue
Waters. Ces simulations montrent que VERTICAL est la politique la plus
adaptée à de petits fichiers, tandis qu’il est préférable d’utiliser PARALLEL
pour des fichiers dont la taille est supérieure à 1 Go. En outre, nous montrons
que RAIT n’offre jamais de meilleures performances que les deux politiques
proposées, et qu’une politique hétérogène mêlant VERTICAL et PARALLEL
offre des performances 10 fois supérieures aux autres politiques testées.

Mots-clés : Stockage sur bande, système d’archivage, politique d’E/S

Comparing archival policies for Blue Waters 3

1 Introduction

The new generation of petascale supercomputers will need exabyte-scale archival
storage. For example, the Blue Waters petascale system that is being installed
at the University of Illinois, Urbana-Champaign [1] will have a peak perfor-
mance of over 10 petaflop/s, over a petabyte of DRAM, and over 18 petabytes
of disk storage; yet most of the storage – up to half an exabyte – will be on
tapes. This is consistent with a recent report [4], based on eight year experience
at several major High Performance Computing (HPC) centers, that shows a
need to archive about 35 TB of new data each year for every TB of memory, not
counting archived data that are deleted (20-50%). In a such a system, there is
a crucial need for efficient archival policies for writing to and reading from the
tape system.

In addition, archive systems need to be reliable. Experience shows that a
significant fraction of jobs in HPC centers fail because of some errors in the
archive system: inability to load the tape, metadata errors on the tape, ten-
sioning errors, breaking tape, etc. It is estimated in large centers that 1 out of
100 tape handling events leads to a job failure [6]. Moreover, tapes may face
unrecoverable data errors leading to permanent data loss. The current solution
to prevent data loss and avoid the propagation of a failed tape handling event is
RAIT, which stands for Redundant Array of Independent Tapes [3] – in analogy
to RAID.

On Blue Waters, the disk space will be managed by GPFS [11], while
the archival tape system will be managed by HPSS [13, 14]. The GPFS-HPSS
Interface (GHI) integrates the tape archive into the GPFS namespace, so that
the disk storage essentially is a cache for the tape storage, and data migrates
transparently between disk and tape.

HPSS supports RAIT Level 0 (mirroring, for reliability) and RAIT Level 1
(stripping, for increased transfer speed). Mirroring doubles the amount of tape
storage needed – an expensive proposition. There is ongoing work on HPSS
support for schemes similar to RAID 6 [6]. Such a RAIT architecture requires
X+Y tape drives for archiving a single file. The file is split into blocks; for each
X consecutive blocks one computes Y Erasure Code (EC) blocks. The X + Y
blocks are written on X+Y distinct tapes, with EC blocks rotated across tapes.
Such a design can recover from the failure of any Y tapes, and speed up transfer
rate, by a factor of X. (However, start-up time increases, as X + Y tapes need
to be loaded.) Values being considered include X + Y = 4 + 1, 4 + 2 or 8 + 2.

The main drawbacks of such a RAIT architecture are the following:
• Because X consecutive blocks of the (currently written) file are stored in

parallel, files are scattered across many tapes.
• Each archival request monopolizes X + Y tape drives, which considerably

reduces the number of user requests that can be simultaneously processed
by the system.

The first problem (file fragmentation) is expected to have a dramatic impact
on performance. Contiguous access is faster when reading from tapes, just as it
is for disks, but the speedup ratio is much larger. Suppose that, in order to use
a tape efficiently, one needs to access a contiguous block of size at least S; then,
with RAIT, one needs to access at least X×S contiguous data to use the tapes
efficiently. Many files might be shorter than this threshold. It is possible to
solve this issue for writes, by concatenating multiple short files into one larger

RR n° 7583

Comparing archival policies for Blue Waters 4

“container files”. However, subsequent reads will have low performance unless
all the files concatenated in one container are accessed together – something
that is not always true, and cannot be guaranteed, especially in a system such
as Blue Waters where archival is initiated by the system, not by a user.

The second problem (several tape drives per request) will drastically limit
the access concurrency of the system, by increasing the response time when
many users aim at archiving their data. If, say, 500 tape drives are available,
and if the archival policy requires 10 tape drives per request, then at most 50
requests can be served simultaneously. This may well prove a severe limitation
for some usage scenarios of the target supercomputer platform. Furthermore,
the average start-up time for file transfers can increase significantly, since the
number of robotic arms to move tapes is often lower than the number of tape
drives, and the transfer can start only after the last tape was mounted.

Note that, unlike for RAID, it is not always necessary to read the redundancy
blocks when a file is accessed: Since tape blocks are long, one can compute and
store longitudinal codes to ensure that data read is valid. Also, one can leverage
the fact that disk storage (unlike main memory) is persistent to delay the storage
of error correcting information to tape, thus enabling more asynchrony. These
differences allow for new policies, different from classical RAID.

To overcome the shortcomings of RAIT, we have designed two new archival
policies. The first of them, PARALLEL, still uses the same number X + Y
of tape drives, and hence suffers from the same problem that it reduces the
servicing capacity of the system and increases start-up time. But it does reduce
the fragmentation of files, by pre-partitioning such files into X stripes that will
be written in contiguous mode on the tapes. Subsequent reads will be able to
access larger segments from each tape.

The second policy, VERTICAL, is more drastic and solves both problems,
at the price of lower transfer rates. The idea is to write data contiguously and
sequentially on X tapes, filling up the tapes one by one, and to delay the archival
of the redundancy data on Y tapes after X tapes have been actually written.
This requires to update the contents of the Y redundancy tapes on-the-fly. This
scheme allows for serving as many requests as the number of available tape
drives. However, each request is processed without any parallelism in writing,
hence transfer rate decreases. (The problem can be avoided, for very long files,
by simultaneously writing or reading tape-sized segments; it is not an issue for
very short files, where tape load and seek time dominates access time; it affects
files in a range in between these extremes.)

The main goal of this paper is to evaluate the three RAIT, PARALLEL and
VERTICAL policies within an event-driven simulator, and to compare their
performance through extensive simulations. The simulation setting corresponds
to realistic execution scenarios (in terms of both hardware platform parameters
and I/O request rates) for the future exploitation of Blue Waters. After
studying their relative performance on different file sizes, we propose a last
strategy, which mixes the best two candidates (PARALLEL and VERTICAL)
to outperform them.

The paper is organized as follows. We first briefly review related work in
Section 2, and we outline the framework in Section 3. Then we detail the
three archival policies in Section 4. The main scheduler and load balancer are
described in Section 5. The simulation setting is provided in Section 6, as well as

RR n° 7583

Comparing archival policies for Blue Waters 5

the results of the comprehensive simulations. Finally, we state some concluding
remarks and hints for future work in Section 7.

2 Related work

We classify related work into two main categories, those dealing with resilient
storage policies, and those discussing tape request scheduling strategies.

Resilient storage policies The first fault-tolerant policy proposed for tapes
was inspired from disks. It adapts the classical disk RAID policy for tapes,
and thus was called RAIT [3]. An important difference between RAID and
RAIT is that the erasure code is computed from disk blocks on RAID 5 and
RAID 6, while RAIT compute the erasure code from file stripes. Notes that
this approach of encoding the data has also been proposed recently to overcome
the issues related to RAID 5 and RAID 6.

Jonhson and Prabhakar proposed to decouple the stripes used to write files
to the tapes from the ones used to compute parity, called regions [7]. Their
basic idea is to group a number of regions from different tapes into a parity
group and to compute and store the parity of these regions on another tape.
The proposed framework allows for a wide variety of policies, such as the ones
developed in this paper.

Scheduling tape requests Together with designing tape storage policies, we
also need to schedule I/O requests. Some specific problems to I/O on tapes have
been considered in the literature. In [5], Hillyer et al. consider the problem of
scheduling retrieval requests to data stored on tapes. Using a precise model for
the performance of the tape drives, they proved the problem of minimizing the
completion time for a set of request NP-hard, and proposed a complex heuristic
to solve it.

In [9], Prabhakar et al. consider the problem of scheduling a set of storage
requests using a simple model of tape storage, with the objective of minimizing
the average waiting time. An optimal scheduling policy is provided for the one
tape drive case, and the problem is proven NP-complete for multiple drives.

To the best of our knowledge, this work is the first aimed at designing in-
novative tape archival policies for petascale computers like Blue Waters, and
assessing their performance.

3 Framework

In this section, we first describe the platform model, and then we state the
optimization problem under consideration.

3.1 Platform model

We derive a model that is representative of a system such as Blue Waters, but
does not match exactly its (currently confidential) configuration. Our goal is
to simulate the maximum capacity of the Blue Waters archival storage (0.5

RR n° 7583

Comparing archival policies for Blue Waters 6

Exabytes), that is much higher than its initial capacity. Here is a list of key
parameters describing the platform:
Tapes The archival system counts 5000,000 serpentine tapes. Each tape stores

up to 1 TB of uncompressed data.
Tape Drives There are 500 tapes drives to perform read/write operations on

these tapes.
Tape Libraries Tapes are gathered into 3 tape libraries, with passthrough to

transfer tapes between different libraries
Mover Nodes 50 mover nodes are dedicated to process I/O requests and com-

pute redundancy blocks. Each mover node has 24 cores and 96 GB of
RAM; a mover mode is connected to 10 tape drives. We assume that a
mover node has access to 10 TB of local disk storage.

Additional computing resources are used by HPSS, e.g., to schedule transfers,
and by GPFS to run file system code.

3.2 Problem statement

The focus of this study is to handle I/O requests in an efficient way. An I/O
request can be sent in the system in response to an explicit user command (to
archive or delete data, or move it to disk or off-site); by the automatic disk
management system (to migrate from disk data not touched recently); or by the
job scheduler (to load to disk files needed by scheduled batch jobs).

An I/O request is characterized by the file that it is accessing, and therefore
by the size of this file. The request is also associated with a resiliency scheme
X+Y , where X denotes the number of data blocks corresponding to Y Erasure
Code (EC) blocks. The Y EC blocks are computed by using any EC algorithm
over X blocks of data. Finally, an I/O request is defined by the I/O policy
which it is using, i.e., the way data and EC blocks are organized onto tapes.
As already stated, three I/O policies will be considered in this study: RAIT,
VERTICAL and PARALLEL.

The most natural objective function is the average response time for a re-
quest, which measures the time between the arrival of a request in the system
and the completion of its processing. However, this objective is known to unduly
favor large request over smaller ones, and the objective of choice is rather the
average weighted response time, where the response time for a request is divided
by its size. The weighted response time is close to the stretch, which is a widely
used fairness objective [10]. The stretch is the slow-down experienced by the
request, i.e., its response time in the actual system divided by its response time
if were alone in the system (this later quantity being roughly proportional to the
file size if we neglect all latencies). Another important, platform-oriented objec-
tive, is the aggregate throughput, or aggregated bandwidth of I/O operations,
achieved by the system.

4 Tape archival policies

Writing data to tapes is a challenging task, and particular care is required
to design and implement efficient archival policies. In this section, we first
review the well-known RAIT policy. Then we introduce two novel I/O policies,
VERTICAL and PARALLEL.

RR n° 7583

Comparing archival policies for Blue Waters 7

4.1 RAIT

The first policy is called RAIT, for “Redundant Array of Independent Tapes”,
and is the counterpart of RAID for tapes [3]. In order to overcome the perfor-
mance and reliability limitations of each individual tape drives, RAIT writes
data in parallel while keeping the usage of all tapes balanced. In addition to
the resiliency scheme X + Y , which requires X + Y tape drives, RAIT is char-
acterized by a block size B which defines the transfer unit. In order to ensure
resiliency, RAIT computes Y EC blocks from X data blocks. These EC blocks
are computed in memory before data blocks are actually written to tapes. This
implies a memory footprint of (X + Y) × B for each RAIT request running
concurrently.

T
a
p
e
S
iz
e

TD5TD4TD3TD2TD1

Main Memory

D3

P1

D1 D2 D4

D8

P2

D5 D6 D7

D12

D10P3

D9

D11

D15

D16
P4

D14D13
D18

D20

P5

D19

D17

P6

D24
D23

D22
D21

∅
D27

P8

D25

D26

P8 D25 D26 D27 ∅

Figure 1: Writing data with RAIT policy for X = 4 and Y = 1.

The behavior of RAIT is depicted on Figure 1: if all tapes are empty, the
first X blocks are written on tape drives TD1 to TDX , while the Y EC blocks
are written on TDX+1 to TDX+Y . The following sets of X data and Y EC
blocks are then periodically shifted (see Figure 1). Note that when several
consecutive requests of the same policy and resiliency scheme are served using
the same tapes, they are processed with consecutive unit shifts as if we had a
single large request.

Note that tape drives generally offer a hardware compression mechanism.
Hence, although every block has a size of B, the space occupied on tape may
differ from block to block. In particular, EC blocks are expected to be much
less compressible than data blocks. RAIT balances tape occupation through
its periodical shifting mechanism.

The use of X+Y tapes for each file transfer reduces the number of concurrent
transfers possible, and increases start-up time. Moreover, as data and EC blocks

RR n° 7583

Comparing archival policies for Blue Waters 8

are periodically shifted across all tape drives, it is not possible to bypass EC
blocks on reads.

4.2 PARALLEL

P1

P2

P3

P4

P5

TD3TD2TD1

Main Memory

TD5

T
a
p
e
S
iz
e

TD4

D19D1

D7 D13

D14

D2

D8 D20

D3
D15 D21

D9

D22

D16
D10D4

D11D5 D17
D23

P5D5 D11 D17 D23

(a) Data is written until EC tape gets
filled.

Main Memory

TD1 TD2

T
a
p
e
S
iz
e

TD3 TD4 TD5

D19D1

D7 D13

D8
D2

D14
D20

D9D3 D21
D15

D16D4
D10

D22

D23

D11D5 D17

P5

D18D12

P6

D6 D24

D6 D12 D18 D24 P6

P5

P3

P2

P1

P4

EJECT

(b) Filled EC tape has been ejected, and replaced
by a new one.

Figure 2: Writing data with PARALLEL policy with X = 4 and Y = 1.

One of the main drawbacks of RAIT is that data on tapes is fragmented. In
order to solve this issue, we introduce a novel policy called PARALLEL. This
policy keeps the parallel I/O operations offered by RAIT but rather writes data
as much contiguously as possible.

Just like RAIT, PARALLEL is characterized by a block size B. For a given
resiliency scheme X + Y , it also requires X + Y tape drives for writing data
along with Y tape drives for writing EC blocks. These EC blocks are computed
in memory from X data blocks before being actually written to tapes. The
memory footprint is therefore (X+Y)×B for each PARALLEL request running
concurrently. However, unlike RAIT, (i) all EC blocks are written on Y separate
tapes; and (ii) the system writes on each of the X data tapes the longest possible
sequence of consecutive data blocks. Thus, if the file has S blocks, then each of
the X data tapes will store either dS/Xe or bS/Xc consecutive data blocks. In
the simpler case where S = W ×X then, at step i, the system transfers to X
data tapes the X file blocks Di, Di+W , . . . , Di+(X−1)W , and transfers to the Y
EC tapes the Y EC blocks computed from the X data blocks. The scheme is
depicted on Figure 2: first, blocks D1, D7, D13 and D19 are held in memory and
EC block P1 is computed. Everything is then written on distinct tape drives.
Then, next sets of blocks are processed the same way until a tape dedicated
to data gets filled. Whenever this happens, every tapes are replaced by new
empty tapes. However, it may happen that some (or all) of the tapes dedicated
to store EC blocks get filled before data tapes (as depicted on Figure 2(a)), EC
blocks being generally less compressible. In such a case, these tapes are ejected
and replaced by new ones. Overflowing EC blocks are then written onto those
new tapes. This is what happens on Figure 2(b).

Altogether, PARALLEL maintains the same level of concurrency in the
transfer of files to/from tape, but stores contiguously as much data as possible.

RR n° 7583

Comparing archival policies for Blue Waters 9

Because of the hardware compression mechanism embedded in tape drives, and
given that EC blocks are generally less compressible than data blocs, tape oc-
cupation is slightly unbalanced. This can lead in some cases to the use of extra
tapes to hold the Y EC blocks, which could have an effect on performance. Like
RAIT, PARALLEL also has a significant impact on the level of parallelism of
the system, although lower than RAIT, since X + Y tape drives are required
for write operations, but only X tape drives are needed for read operations.

4.3 VERTICAL

HDDD HDDP TD1

D1 D1

D1

(a) 1st data tape

HDDD HDDP TD1

D2 D2

D1

D2

⊗

(b) 2nd data tape

HDDD HDDP TD1

D3 D3

D1

D2

⊗
⊗
D3

(c) 3rd data tape

HDDD HDDP TD1

D4

D4

D1

D2

⊗
⊗
D3⊗
D4

(d) 4th data tape

∅

HDDD HDDP TD1

P1 P1

(e) EC tape

∅

HDDD HDDP TD1

P1

P1

(f) Remaining EC

Figure 3: Writing data with VERTICAL policy with X = 4 and Y = 1.

With both previous policies, parallelism and resiliency are tightly coupled,
which tends to decrease the overall level of service provided by the system. In
order to break this coupling, we propose the VERTICAL policy, which also
keeps data entirely contiguous on tapes.

For a given X+Y resiliency scheme, VERTICAL writes X data tapes before
writing Y EC tapes (or more, according to the compression rate). All writes are
performed serially, on one tape drive. In order to do so, VERTICAL requires
enough local storage space to store Y uncompressed tapes. Each time a data
block is written, the corresponding Y EC blocks are updated; the computation
of these EC blocks is completed after X data blocks have been written. The
scheme is depicted on Figure 3. Several areas are allocated on disk dedicated to
hold the Y ECs. As data is received, ECs areas are updated and data is written
onto tape. When the tape (holding data) is filled, it is replaced (as shown on
Figures ??, ?? and ??).

RR n° 7583

Comparing archival policies for Blue Waters 10

When the Xth data tape has been filled or there is no more data to be written
(Figure ??, the tape is replaced by the first tape dedicated to ECs. EC blocks
are then written onto tape (as depicted on Figure ??). However, similarly to
the PARALLEL policy, it may happen that some EC tape gets filled before its
entire EC block has been written. Whenever this happens, the tape is ejected
and replaced by a new tape which will hold the remaining part of the EC block.
This case is depicted on Figure ??. This step is then repeated for each remaining
EC block.

It is clear that VERTICAL has a minimal impact on the level of parallelism
of the system since it requires only one tape drive, regardless of the resiliency
scheme used. Data is contiguous on tape and EC blocks need not be read when
data is read.

However, this approach has several limitations: (i) the erasure code cannot
be computed in mover memory because at least Y + 1 entire tapes should fit
in this memory, which is not possible. Therefore, these tapes must instead
be stored on disks. Like the PARALLEL policy, EC blocks are written onto
dedicated tapes, meaning that tape occupancy may be less balanced than with
RAIT. (ii) although the entire system may be able to handle more requests
concurrently, each request will take more time to complete since there is no data
parallelism with VERTICAL. (iii) the tape drive is unavailable for application
I/O when writing the EC blocks.

5 Scheduling archival requests

Scheduling I/O requests on a petascale platform is a hard task. Indeed, the
tremendous number of parameters that need to be taken into account makes it
challenging.

We introduce an online scheduler which basically maps tape I/O requests
submitted to the system onto a mover node. This scheduling process, denoted as
Main-Scheduler in the following, works hand in hand with a load balancing
process, denoted as Load-Balancer, responsible for handling requests which
were impossible to schedule by Main-Scheduler at the time of their arrival.

We choose a “dynamic” approach, where processes corresponding to different
I/O policies are created on-the-fly onto the mover nodes, rather than being
statically allocated. This creation process is done either by Main-Scheduler
or Load-Balancer whenever a new process is required.

The Main-Scheduler process works as follows: as soon as a request R is
submitted to the system, it is handled by Main-Scheduler. Main-Scheduler
first checks whether R can be served now, i.e., if there is no previous request(s)
regarding the same file or, if R is a read request, if the tapes containing the
concerned file are not currently in use. If R is in use, it is delayed and placed
in the waiting list.

Requests are identified by their type, which is defined as their archival policy
together with their resiliency scheme. For instance (PARALLEL, 4 + 1) or
(RAIT, 8 + 2) are possible request types. If the request R can be scheduled,
Main-Scheduler tries the following actions:

• first, Main-Scheduler tries to find a currently running process which
matches the type of R. If such a process P exists, and if no more than

RR n° 7583

Comparing archival policies for Blue Waters 11

MaxLightLoad requests are already scheduled onto this process, then
R is mapped on process P ;

• otherwise, Main-Scheduler tries to find a mover node having enough
idle tape drives to host a new process for R, and it creates this process;

• then, if Main-Scheduler is unable to create a new process for handling
R, it tries to schedule it on a currently running process P matching the
type of R, but this time regardless of the number of requests already
mapped onto P .

The rationale is to allocate requests to already running processes, provided
that their load remains reasonable, otherwise it might be better to create new
processes. The role of the system parameter MaxLightLoad is to tune the
load threshold of the processes. Finally, if Main-Scheduler is still not able to
schedule R, the request is delayed and placed in the waiting list.

In order to schedule the requests in the waiting list, as well as to keep the
load balanced across the system, the Load-Balancer is periodically executed
every MinLBInterval units of time. However, in order to keep the number
of interventions of Load-Balancer within a reasonable amount, one of the
following conditions must be met:

• the oldest request has been delayed for more than MaxWaitingTime,
and its file is not currently in use;

• the number of non-scheduled pending requests in the waiting list exceeds
MaxReqCount;

• the maximum imbalance of the system exceeds MaxImbalance. Here,
the imbalance is defined as the difference between the most and the least
loaded types, were the load of a given type is the ratio between the number
of requests and the number of processes of that type.

Whenever Load-Balancer is triggered, it resets all pending requests and
marks them as unscheduled. Only those requests that are currently executed are
not modified (and continue their execution), but their processes are terminated,
while all other existing processes are canceled. Then Load-Balancer analyzes
which process types are required by the set of unscheduled requests. For each
required type, a new process is created on a mover node. Then, if idle tape
drives able to host a process still remain, a new process is created, matching the
type of the most loaded type. This action is then repeated until no new process
can be created.

Once Load-Balancer has created new processes, it tries to map each un-
scheduled request R. If the file concerned by R is not currently used, or, if R
is a read request, if the tapes containing the concerned file are not currently in
use, R is mapped on the least loaded process matching its type. Otherwise, R
is delayed and placed in the new waiting list.

6 Performance evaluation

In order to assess the performance of each I/O policy, and the behavior of
our I/O request scheduling algorithm, we have simulated an entire platform

RR n° 7583

Comparing archival policies for Blue Waters 12

resembling that of a current petascale supercomputer. We first describe the
environmental framework. We then conduct experiments where all requests
obey the same archival policy (RAIT, PARALLEL or VERTICAL), and we
discuss the influence of file sizes on the performance. Based upon the results of
these experiments, we evaluate a scenario mixing policies, which associates the
best-suited policy to each file size category.

6.1 Experimental framework

We have developed our own simulator using SimGrid [12, 8], a discrete event
simulator framework, in its 3.5 version. The platform is simulated using dis-
tributed processes running in parallel on multiple virtual hosts. Each component
of the model is represented by such processes. For instance, I/O policies running
concurrently on a single mover are simulated by parallel processes on a single
host, whereas each tape drive is represented by a host and a dedicated process.
The same holds for the main scheduling and the load balancing processes, which
are running concurrently on a single host.

The simulated platform is depicted on Figure 4. The user process simulates
the arrival of the requests in the system. Those requests are handled by the
Main-Scheduler process, which may create new I/O processes on the mover
nodes and assign tape drives to them. Unscheduled requests are handled by the
Load-Balancer process. Finally, the tape library controls multiple robotic
arms dedicated to move the tapes back and forth from the library to the tape
drives.

T T
D

Load
Balancer

Main
Scheduler

User

Tape library

T
D D

T
D

T
D

T
D

T
D

T
D

T
D

Mover Mo

RAIT VERTICAL

Rob. arm

Rob. arm

Rob. arm

Rob. arm

Figure 4: Model of the simulated platform

RR n° 7583

Comparing archival policies for Blue Waters 13

In the experiments, the platform is instantiated using one tape library man-
aging 20 robotic arms and 500 tape drives. These tape drives are connected
10-by-10 to 50 mover nodes, responsible for handling I/O operations. These
parameters match the size of today’s petascale supercomputers.

X + Y 1 + 0 2 + 1 3 + 1 3 + 2
pX+Y 0.025 0.025 0.05 0.1

X + Y 4 + 1 4 + 2 6 + 2 8 + 2
pX+Y 0.1 0.3 0.2 0.2

Table 1: Resiliency schemes used in the experiments.

Moreover, in order to simulate a typical workload running on such a super-
computer, we generated random workloads following a Poisson process with an
arrival rate λ. File sizes are chosen according to a random log uniform distribu-
tion, which is a simple approximation of the lognormal distribution of file sizes
observed in file systems [2] for large file sizes (files smaller than a few KB do not
participate to the archival process). The type of the I/O operation is chosen
uniformly between read and write. A new file is created in 90% of the cases if
the request is a write operation, and an existing file is written again otherwise.
Each request is provided with a resiliency scheme X + Y , which is randomly
chosen among a set of representative schemes. These schemes and their respec-
tive probability are given in Table 1. Finally, for each file, the compression rate
of data blocks CD is chosen within [1, 3] while the EC blocks compression rate
CP belongs to [1, CD].

6.2 Results with a single policy

In a first step, only homogeneous scenarios are considered: requests may have
different resiliency schemes but use only one I/O policy, either RAIT, PAR-
ALLEL or VERTICAL.

The first experiment aims at analyzing the impact of the block size B for
the RAIT policy (contrarily to PARALLEL and VERTICAL, RAIT requires
a block size to be tuned, since it impacts how data is written onto tape). The
performance of RAIT is computed in terms of the average weighted response
time. Request arrival rate is set to 180 requests per hour, and file sizes range
from 1 GB to 1 TB, while B varies between 1 MB and 8 GB.

Results presented on Figure 5 show that B has a significant impact on the
average weighted response time of RAIT. For the smallest values, RAIT per-
forms worse than VERTICAL whereas it almost ties PARALLEL for larger
values. With B = 1 MB, RAIT is about 80 times slower than with B = 192 MB,
while the performance is constant between 192 MB and 8 GB. Altogether, this
experiment outlines the importance of B value for RAIT policy, which clearly
benefits from large enough blocks in order to offer competitive performance. In
all the following experiments, B will be chosen according to these results.

The next experiment intends to compare the performance of all I/O policies
for various arrival rates. The objective is twofold : assessing the average per-
formance of each policy, and in particular, determining the maximum arrival

RR n° 7583

Comparing archival policies for Blue Waters 14

0 1000 2000 3000 4000 5000 6000 7000 8000

0.4

1

RAIT block size (MB)

A
v
g.

w
ei
gh

te
d
re
sp
on

se
ti
m
e

VERTICAL
RAIT
PARALLEL

Figure 5: Impact of RAIT block size B on average weighted response time.

rate which can be handled by each policy. File sizes are chosen among three
subsets: small file sizes range from 10 MB to 1 GB, medium file sizes from 1 GB
to 100 GB, and large file sizes from 1 TB to 100 TB. Arrival rates are chosen
with respect of these files sizes between a few requests per hour to hundreds of
requests per hour.

0

5000

10000

15000

20000

9008007006005004003002001000

A
v
g.

w
ei
gh

te
d
re
sp
on

se
ti
m
e

λ (Req / hour)

VERTICAL
RAIT
PARALLEL

Figure 6: Impact of arrival rates on the average weighted response time for small
files (B = 16 MB for RAIT).

RR n° 7583

Comparing archival policies for Blue Waters 15

For small files, as depicted in Figure 6, the best average weighted response
time is offered by VERTICAL, which can sustain higher arrival rates than the
other policies. RAIT is able to serve requests with reasonable response time
for rates lower than 420 requests per hour. PARALLEL performs better than
RAIT since it can keep up with rates lower than 600 requests per hour. The best
policy in that case is VERTICAL, which can tolerate rates up to 800 requests
per hour. This is due to the fact that with small files, extra latencies paid by
data parallel policies (RAIT and PARALLEL) are not negligible. Also, recall
that more files can be written concurrently throughout the entire system with
VERTICAL. Contrarily to its contenders, VERTICAL can pipeline a large
number of files before having to write EC tapes, thereby increasing average
performance.

4

2

0

14

12

10

8

6

18016014012010080604020

λ (Req / hour)

A
v
g.

w
ei
gh

te
d
re
sp
on

se
ti
m
e VERTICAL

RAIT
PARALLEL

Figure 7: Impact of arrival rates on the average weighted response time for
medium-size files (B = 256 MB for RAIT).

For medium sizes, results presented on Figure 7 show that, as expected,
the system benefits more from data parallelism, latencies being now negligible.
PARALLEL dominates other policies in this case, being able to handle up
to 150 requests per hour while RAIT gets overloaded with arrival rates higher
than 95 requests per hour. The extra tape drives used by RAIT as well as extra
latencies when reading data have a significant impact on the average weighted
response time. In that case, VERTICAL is the worst policy since it can only
sustain up to 80 requests per hour.

Finally for large files, results presented on Figure 8 outline a behavior similar
to that observed for medium sized files. PARALLEL represents the best policy
in terms of average weighted response time. Using this policy, the system is
able to cope with 1.3 requests per hour while the second competitor, RAIT, can
only serve up to 1 request per hour without being overloaded. Unsurprisingly,

RR n° 7583

Comparing archival policies for Blue Waters 16

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
v
g.

w
ei
gh

te
d
re
sp
on

se
ti
m
e

λ (Req / hour)

VERTICAL
RAIT
PARALLEL

Figure 8: Impact of arrival rates on the average weighted response time for large
files (B = 8 GB for RAIT).

VERTICAL suffers from the lack of parallelism with these huge files, and can
only bear 0.1 request per hour.

As a conclusion, these experiments show that PARALLEL offers the best re-
sults overall. RAIT outperforms VERTICAL whenever files are large enough.
The fact that PARALLEL dominates the other solutions means not only that
data parallelism is crucial, but also (and less expectedly) that balancing parity
across tapes (as in RAIT) has a negligible impact compared to that of enforcing
data sequentiality.

The next experiment aims at measuring how the difference of compressibility
between data and EC blocks affects the overall performance of each I/O policy.
Indeed, neither PARALLEL nor VERTICAL can balance the EC blocks across
tapes, possibly leading to more tape loads/unloads for tapes dedicated to EC
blocks. The underlying objective of this experiment is therefore to assess the
impact of this pitfall on the average weighted response time. In order to do so,
the arrival rate is set to 65 requests per hour, RAIT block size is B = 192 MB,
and file sizes range between 1 GB and 1 TB. The compression rate of data is
set to be 3x. The EC compression rate varies between 1x (no compression) and
3x (same compression rate as data).

As shown on Figure 9, I/O policies do not display the same sensitivity to
EC compression rate. Both PARALLEL and RAIT are more affected by com-
pression than VERTICAL. As a matter of a fact, while the later maintains its
performance regardless of EC compression rate, the average weighted response
time displayed by RAIT and PARALLEL increases when EC blocks are less
compressed. The lower sensitivity of VERTICAL to EC compression comes
from the fact that several requests are served before writing EC blocks, because
these are aggregated. This is not the case for PARALLEL and RAIT.

RR n° 7583

Comparing archival policies for Blue Waters 17

4

3

3

2.521.51

8

7

6

5

A
v
g.

w
ei
gh

te
d
re
sp
on

se
ti
m
e

EC compression rate

VERTICAL
RAIT
PARALLEL

Figure 9: Impact of EC blocks compression rates on performance.

Moreover, with both PARALLEL and VERTICAL, data tapes are always
entirely filled, and EC blocks are written onto dedicated tapes. When EC blocks
are far less compressed than data, tapes dedicated to EC are filled faster and
require more frequent EJECT/LOAD operations. This also explain the higher
sensitivity of PARALLEL to EC compression. On the contrary, with RAIT,
the difference of compression between data and EC blocks degrades the balance
of tape occupancy, leading to extra EJECT/LOAD operations on every tape
drive (with RAIT, when a tape is filled, all loaded tapes are ejected).

Altogether, this experiment shows that both RAIT and PARALLEL dis-
play higher sensitivity to compression than VERTICAL. Whenever data is
highly compressible, VERTICAL ties PARALLEL.

The following experiment focuses on the evaluation of the impact of the
load balancing period MinLBInterval on the average weighted response time.
Indeed, this setting might significantly influence the behavior of the system
under intensive workloads. Therefore, MinLBInterval needs to be precisely
tuned in order to fully exploit the archival architecture. In this experiment, file
sizes are chosen between 1 GB and 1 TB, RAIT block size is B = 192 MB, while
the mean arrival rate is set to λ = 65 requests per hour. Results depicted on
Figure 10 show that the load balancing period indeed has a significant impact
on performance: all three policies reach a minimum average weighted response
time for a particular value of MinLBInterval. Interestingly, the best value of
MinLBInterval is not the same for every policy: although both RAIT and
PARALLEL perform better when Load-Balancer is called at most every 6
days, VERTICAL benefit from a significantly higher value: 24 days. This is
due to the fact that VERTICAL often has more pending requests than the
other policies, and requires more time to serve each request. Remember that
whenever an I/O process is destroyed by Load-Balancer, loaded tapes are

RR n° 7583

Comparing archival policies for Blue Waters 18

50000

40000

30000

20000

10000

3530252015105

A
v
g(
R
es
p
on

se
ti
m
e
/
si
ze
)

Load balancing period (days)

VERTICAL
RAIT
PARALLEL

Figure 10: Impact of Load-Balancer period on performance.

ejected. Therefore, calling the load balancing process too frequently may cause
(in the worst case) tapes to be unloaded after each request has been served,
leading to higher response times. All in all, this experiment shows that the load
balancing period MinLBInterval need to be precisely tuned in order to fully
benefit from the parallel storage system.

6.3 Results with multiple policies

Based on the previous results, a novel strategy using multiple policies is in-
troduced: HETERO. As seen above, VERTICAL represents the best solution
when writing small files, while PARALLEL is the best choice for larger files. In
the following experiment, the I/O policy used to write a file is now dynamically
chosen by the system, based on its size.

The purpose here is to fully benefit from both policies in order to enhance the
overall performance of the storage system. In order to assess the corresponding
improvement, the impact of the arrival rate on the average weighted response
time is again evaluated. File sizes are now chosen among a broader range: from
10 MB to 10 TB. A file smaller than 1 GB will be processed using VERTICAL,
while larger files will use PARALLEL.

Results depicted on Figure 11 shows that the HETERO strategy clearly
outperforms all single policy strategies. HETERO can handle up to 7 requests
of any size per hour while the best single policy strategy, PARALLEL, is limited
to 0.6 request per hour. The single strategy using VERTICAL does not perform
well, since it is able to maintain a reasonable average weighted response time
until arrival rate reaches 0.003 request per hour. RAIT does better with a
maximum of 0.3 request per hour.

Altogether, this experiment shows that a strategy using multiple policies,
carefully choosing the I/O policy that will be used to handle a file based on its

RR n° 7583

Comparing archival policies for Blue Waters 19

800

700

600

500

400

300

200

100

0

1010.10.010.001

A
v
g.

w
ei
gh

te
d
re
sp
on

se
ti
m
e

λ (Req / hour)

VERTICAL
RAIT
PARALLEL
HETERO

Figure 11: Impact of arrival rates on the average weighted response time (with
small, medium-size and large file together, and B = 512 MB for RAIT).

size, brings a dramatic performance increase. The performance is sustained at
significantly higher rates than with any singly policy strategy.

7 Conclusion

In this paper, we have first discussed the well-known RAIT policy for tape
archival on a petascale supercomputer, and we have identified its shortcomings.
We have introduced two new I/O policies, PARALLEL and VERTICAL, that
either reduce file fragmentation, or increase the number of requests that can be
served simultaneously, or both. Contrarily to RAIT which requires to carefully
choose a blocksize, the new policies do not require any tuning.

We have conducted a comprehensive set of experiments to asses the perfor-
mance of the three RAIT, PARALLEL and VERTICAL policies. We ob-
served that for small files, VERTICAL provides the best weighted response
time, while for medium-size and large files, PARALLEL is the clear win-
ner. This has led us to propose an heterogeneous solution mixing policies
(VERTICAL for small files, PARALLEL otherwise). Altogether, this lat-
ter approach provides a dramatic ten-fold improvement over each policy taken
separately.

We hope that the lessons learnt in this study will help guide the final design
decisions of the Blue Waters supercomputer, and more generally, of future
large-scale platforms that will require even larger storage capacities, and always
more efficient archival scheduling policies.

RR n° 7583

Comparing archival policies for Blue Waters 20

References

[1] Blue Waters. http://www.ncsa.illinois.edu/BlueWaters.

[2] Allen B. Downey. The structural cause of file size distributions. In 9th In-
ternational Workshop on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS 2001), pages 361–370, 2001.

[3] A.L. Drapeau and R.H. Katz. Striped tape arrays. In Mass Storage Sys-
tems, 1993. Putting all that Data to Work. Proceedings., Twelfth IEEE
Symposium on, pages 257 –265, April 1993.

[4] Jason Hick. HPSS in the Extreme Scale. In Report to DOE Of-
fice of Science on HPSS in 2018-2022, LBNL Paper LBNL-3877E,
http://www.escholarship.org/uc/item/4wn1s2d3. Lawrence Berkeley Na-
tional Laboratory, 2009.

[5] B.K. Hillyer, R. Rastogi, and A. Silberschatz. Scheduling and data replica-
tion to improve tape jukebox performance. In Data Engineering, 1999. Pro-
ceedings., 15th International Conference on, pages 532 –541, March 1999.

[6] James Hughes, Dave Fisher, Kent Dehart, Benny Wilbanks, and Jason
Alt. HPSS RAIT Architecture. In White paper of the HPSS collaboration,
www.hpss-collaboration.org/documents/HPSS RAIT Architecture.pdf,
2009.

[7] T. Johnson and S. Prabhakar. Tape group parity protection. In Mass
Storage Systems, 1999. 16th IEEE Symposium on, pages 72 –79, 1999.

[8] A. Legrand, L.Marchal, and H. Casanova. Scheduling Distributed Appli-
cations: The SimGrid Simulation Framework. In Proceedings of the Third
IEEE International Symposium on Cluster Computing and the Grid (CC-
Grid’03), pages 138–145, May 2003.

[9] S. Prabhakar, D. Agrawal, A. El Abbadi, and A. Singh. Scheduling ter-
tiary i/o in database applications. In Database and Expert Systems Appli-
cations, 1997. Proceedings., Eighth International Workshop on, pages 722
–727, September 1997.

[10] Irk Pruhs, Jiri Sgall, and Eric Torng. On-line scheduling. In J. Leung, ed-
itor, Handbook of Scheduling: Algorithms, Models, and Performance Anal-
ysis, pages 15.1–15.43. CRC Press, 2004.

[11] F. Schmuck and R. Haskin. GPFS: A shared-disk file system for large
computing clusters. In Proceedings of the First USENIX Conference on
File and Storage Technologies, pages 231–244, 2002.

[12] SimGrid. URL: http://simgrid.gforge.inria.fr.

[13] Danny Teaff, Dick Watson, and Bob Coyne. The architecture of the high
performance storage system (hpss). In Proceedings of the Goddard Conf.
on Mass Storage and Technologies, pages 28–30, 1995.

RR n° 7583

http://www.ncsa.illinois.edu/BlueWaters
http://simgrid.gforge.inria.fr

Comparing archival policies for Blue Waters 21

[14] Richard W. Watson. High Performance Storage System Scalability: Ar-
chitecture, Implementation and Experience. In Proceedings of the 22nd
IEEE/13th NASA Goddard Conference on Mass Storage Systems and Tech-
nologies (MSST 2005). IEEE press, 2005.

RR n° 7583

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	1 Introduction
	2 Related work
	3 Framework
	3.1 Platform model
	3.2 Problem statement

	4 Tape archival policies
	4.1 RAIT
	4.2 PARALLEL
	4.3 VERTICAL

	5 Scheduling archival requests
	6 Performance evaluation
	6.1 Experimental framework
	6.2 Results with a single policy
	6.3 Results with multiple policies

	7 Conclusion

