N
N

N

HAL

open science

Trust in MDE Components: the DOMINO Experiment
Benoit Baudry, Pierre Bazex, Jean-Charles Dalbin, Philippe Dhaussy, Hubert

Dubois, Christian Percebois, Erwann Poupart, Laurent Sabatier

» To cite this version:

Benoit Baudry, Pierre Bazex, Jean-Charles Dalbin, Philippe Dhaussy, Hubert Dubois, et al.. Trust in
MDE Components: the DOMINO Experiment. SD4RCES workshop in conjunction with SAFECOMP

2010, 2010, Vienna, Austria. inria-00555044

HAL 1d: inria-00555044
https://inria.hal.science/inria-00555044

Submitted on 12 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00555044
https://hal.archives-ouvertes.fr

Trust in MDE Components:

the DOMINO Experiment

Benoit Baudry®, Pierre Bazex?, Jean-Charles Dalbin®, Philippe Dhaussy*,
Hubert Dubois®, Christian Percebois?, Erwann Poupart®, Laurent Sabatier’

(1) IRISA, Campus universitaire de Beaulieu, 35042 Rsnfirance
(2) IRIT, Université de Toulouse, 118 route de Narbordi®62 Toulouse Cedex 9, France
(3) Airbus France, 316 route de Bayonne, 31060oLse Cedex 3, France
(4) ENSIETA, 2 rue Francois Verny, 29806 Brest Ge8leFrance
(5) CEA, LIST, Point Courrier 94, Gif-sur-Yvette;94191, France
(6) CNES, Toulouse, 31401 Toulouse Cedex 4, France
(7) Sodifrance, 15 chemin de la Crabe, 31300 Ta@@pErance

bbaudry@irisa.fr, bazex@irit.fr, jean-charles.dalbin@airbus.com, Philippe.Dhaussy@ensieta.fr,

hubert.dubois@cea.fr, percebois@irit.fr, erwann.poupart@cnes.fr, LSabatier@sodifrance.fr

ABSTRACT

A large number of modeling activities can be auttienar
computer assisted. This automation ensures a napiel rand
robust software development. However, engineerst raosure
that the models have the properties required feafiplication. In
order to tend towards this requirement, themMNo project
(DOMalNs and methodological prOcess) proposes &thie so-
called trustworthy Model-Drive&ngineering (MDE) components
and aims to provide a methodology for the validatiand
qualification of such components.

Categories and Subject Descriptors

D.2 SOFTWARE ENGINEERING

D.2.1 Requirements/Specifications, D.2.2 Design |Foand
Techniques, D.2.3 Coding Tools and Techniques, 4D.2.
Software/Program Verification, D.2.5 Testing andbDgging,
D.2.6 Programming Environments

General Terms
Design, Reliability, Verification, Languages, Exjpeentation.

Keywords

Model-Driven Engineering Trust, Component, Requirement,
Domain-specific languages, OCL contracts, Proofgjtaton
analysis, Transformation tests, Transformationeaadity.

1. INTRODUCTION

Software development is based on a complete setetiods and
tools for design, integration and verification.the past, the role
of models was limited to documents, but now, thesstract and

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa fhist page. To copy
otherwise, or republish, to post on servers oreoistribute to lists,
requires prior specific permission and/or a fee.

S&D4RCES 2010 September 14, 2010, Vienna, Austria.

Copyright (c) 2010 ACM 978-1-4503-0368-2 ...$10.00.

simplified representations of a system become tjraovolved in
the development.

This observation has led to the creation of a nanagigm in

software engineering, Model-Driveangineering (MDE) [6]. It
places models at the core of software developmgninbking

them explicit assets that can be manipulated bgrpros. The
resulting development processes can therefore bgidered as a
succession of models, at different levels of abtitba, from the
definition of requirements to the development sfactual code
for operation.

The DomiNo approach explicitly aims to increase the leveiro$t

[7] in software systems developed with a model-ehiapproach.
DomiNo proposes a set of concepts and techniques to domai
experts so that they can define and establish their model-
based process to leverage models and model tramstions and
build trustable systems. We present two complemgreapects:
the validation of models produced at the differstégps of the
process and the development of trustworthy compsnémat
completely or partially automate a development.step

The proposed methodology to establish trust in MiDEiponents
is mainly based on the consistency between thraeacteristics:
specification, implementation and verification. Wgropose
various solutions to increase trust in the tramefdions, such as
keeping a relationship between the models of th@icgiion and
their verification, in order to test or prove thehie process tends
to be as continuous as possible offering modelofoilip
functions throughout the different steps of an MrBcess.

Along these processes, experts use specific moelaked to their
field. In particular, for embedded systems, sofsvangineers
have defined specific modeling and programming laggs to
better integrate the critical limits of operaticafesy. Introducing
the characteristics of such languages into abstnactels enables
specialists to anticipate, in very early developmstages, the
solutions that are the most appropriate for thppliaations. As
part of the MDE approacbomiNno transfers paradigms that are
well established in the theory of programming lzaggs. Experts

in the field can then adapt their development pgses making
them more representative.

Two case studies were used to experiment with thadologies
and the techniques proposed byoMo: the specification,
development and implementation of operational ptaces in the
ATV cargo craft Jules Verne (CNES) and a synchaiios

function of two flight command units (Airbus). Iroth cases it
was possible to set up an MDE process integratiagttivities of
transformation and verification of the models. tdiion to using

these models, thedmiNo technology contributes to the definition

of a reasonable balance, for each of the activifethe process,
between human expertise and the tool that replateekpertise.

2. RELATED ISSUES

Model-Driven Engineering (MDE) improves the capiation of
design know-how, the reuse - on an abstract levebf -
development artefacts and the control of completxjtymeans of
the unifying framework that the models create. Heosvethe lack
of robust tools for model manipulation and managemef well-
defined domain specific languages and associatethdéogies,
the issues related to separation of concerns irete@ihd the lack
of validation techniques of models and model tramsftions are
critical barriers to a wide industrial adoption BDE. Thus,
current processes use conventional software emngiiggerocesses
and tools and suffer from interpretation and impatation
errors. In most cases, verification occurs after development
phase. As a consequence, verification, correctishraaintenance
require a large human effort, whereas MDE tendsutomate
critical development steps in order to increase ligueby
construction, thus decreasing the effort needeitheatend of the
development.

These activities should be reconsidered and meéeatain should
be paid to the new possibilities in modeling andawaodeling

offered by MDE. Efforts should now be focused ore th

requirements modeling and on ensuring the conginuit the
development process. In turn, the process can pkeinented by
means of model transformations and intermediatéiceions.

It is in this context that BMINO aims to increase the quality in
software development by offering rigorous methodad a
associated tools to evaluate and improve trust w@sich
components. Below, we define trustworthiness aset of
guarantees for the component. Engineers can thierefake the
component either totally or partially responsitde &n activity in
a model-based process. More specifically, our singdglves an
MDE development process. It approaches the quastbmodel
quality improvement and the trust in the transfdioms of
models that perform development stages automaticall

3. TECHNICAL APPROACH
Trust in a software system is supported both byvéiglation of
the models built along the development cycle arg tke of

down to seeking a certain form of completeness weipect to
the system being modeled and thus to link the nsoeéxpected
or perceived reality. The experiments on the twav@o case
studies (CNES and Airbus) more specifically invalvehecking
the requirements and the modeling of so-called dospecific
languages, as illustrated by Figure 1.

I
Al Validation |
g I
/
* Requirements verification
* Requirements management
= Model of alanguage
A model = Family of domain-specific

languages
Figure 1. DomINO 's techniques to validate a model

3.1.1 Verification of requirements

A well known challenge in the formal methods domé&nto
improve their integration with practical engineerimethods. In
the context of embedded systems, model checkingjresgyfirst
to model the system to be validated, then to fomeathe
properties to be satisfied, and finally to descttiebehaviour of
the environment. This last point which we name tes proof
context is often neglected. It could, however, Wfe goeat
importance in order to reduce the complexity of pineof. The
question is then how to formalize such a proof ernt

In DOMINO, we experimented a language, named CDL (Context
Description Language) [8] [9], for describing a teys
environment using actors and sequence diagramsthiexgwith
the properties to be checked. The properties ageifsgd with
textual patterns and attached to specific regionthé context.
The idea behind context is that the requirements want to
verify are often linked to specific use cases sat tit's not
necessary to explore all possible scenarios on symtem.
Contrary to classical model checking methods witleeesystem
is explored in its entirety, the CDL language aahseducing the
system behaviour before its effective verification interfacing
with an existing model checker. The context desicripthus
contributes to reduce the complexity of the sysbgmpassing the
state explosion. CDL is designed so that formafacts required
by existing model checkers could be automaticalneyated
from it. This generation is currently implemented our
prototype tool named OBP (Observer Based Provéfp[8

3.1.2 Requirements management

The models must be validated with respect to thairements. A
requirements meta-model has been proposed to defiee
requirements and manage their traceability [10f Tireta-model
takes the form of a dedicated profile called DARWBsed on
SysML and includes tooling for requirements managy@nin the

trustworthy MDE components that automate some development Papyrus environment [25]. In addition to the antiotaand the

steps. We propose modeling and verification tealesdor model
validation. We also propose a model for MDE commisdased
on the integration of three characteristics: itec#ication, its
implementation and the techniques of V&V (Verificat and
Validation).

3.1 Validation of models
This part of the study aims to ensure the relevaridhe models
produced during the development process. Validatomes

traceability links, the accent is placed on theerehce of the
requirements model, the solution model, and thaiirements
V&V. The DARWIN profile has been experimented iretMDT

Papyrus [25].

3.1.3 Modd of language

DomiNOo contributes to the integration of Domain-Specific
Languages (DSL) into MDE developments. We propogse a
intermediate modeling step to adapt design modeleré code

generation, by establishing, in terms of modelsclear and
unambiguous definition of the grammar of the
programming language [12] [13]. The integrationraidels based
on the grammar of the languages enables softwarelafement
on a precise definition of the links between thedels and the
programs. Two levels of assistance are proposed; which is
original, in the BNF concerning the grammar of aglaage and
another, which is more conventional, in the languagodel
concerning the program models. It then becomesigessat these
two levels, to add domain specific properties.

3.1.4 Family of domain-specific languages

Any given professional field usually has a family DSL.
Developers are supposed to speak the same singjedge. In
practice however, each group of specialists rewitte concept of
that sector of activities in his own domain-speciinguage. In
order to ensure the interoperability of the domspeeific
components, we consider the formal semantics oh edcthe
languages. This formal specification, that covesthlthe syntax
and the semantics of each DSL, is considered asbgeat in the
category of algebraic specifications. Using resfritsn category
theory, we obtain semi-automatically, the defimitiof a language
that can unify the family, as well as translatoos the initial
languages [1] [2] [19] [20]. The same theoretica$ults ensure
that it is possible to transpose and to automéficatove a
property from one DSL towards the unified languadis
approach was validated for the operational proeedamguages
used in the space industry.

3.2 Trustin MDE components

An important goal in BmINO is to control the development of an
MDE component that automates a step of the pracessler to
measure its level of trust. Generally speaking,rtbgon of trust
has many facets. It takes various forms dependmnthe level of
abstraction considered and is enforced either Imstcaction, or
by redundancy. For model transformation for inséartcust can
be enforced by construction through the use ofsframation
specific formalisms that can reduce the risk ofexrOn the other
hand, redundancy aims to keep track of requiremientslation
with the implementation in order to prove and tdsie
transformation.

We propose a component model represented by thegte in
Figure 2 that has three vertices: its specificatioits
implementation and its associated assets for V&\OMDNO
technologies aim to improve the specification ar@&\\protocols
for MDE components and contribute to the overatisistency of
the components’ facets.

The process for building trust in a MDE componeonsists in
three steps. The process starts with an initial pmrent that
already has its three facets ready. The goal istihémprove each
facet and to check the global consistency betwaeet$. It can be
noted that this triangular structure model can beduat each of
the stages of the engineering process.

For instance, considering a model transformationapsulated
into a MDE component, we are able to estimate timesistency
between contracts, implementation and tests usingation
analysis as the main qualification technique. Thiecess to
improve the trustability of MDE components consistgroving
the test set by analyzing their efficiency usimgaation analysis,
improving the implementation, thanks to the preslglevaluated
test set, and finally improving the contracts byameing their
accuracy as embedded oracles [17].

target

= Requirements

Proofs in B language
OCL contrats
Graph rewriting

4c

4a

= Mutation analysis

= Transformation tests

= Transformation traceability
= |ncremental refinement

Figure 2. A trustworthy MDE component

For each facet of the triangle view of the MDE cament,
techniques have been defined and proposeddmN, and were
tested on the CNES and Airbus case studies. Thely alistinct
levels of formalization — from semi-formal, such asodel
transformation testing, to the formal level wittefbroof in B of
the transformation and contracts. We then evokesmpoospective
studies concerning the rewriting of graphs andréfmement of
models more akin to development proved by constmict

3.21 ProofinB

We experimented the B language to formalize theameadels
and the transformation rules from SOLM to O2PL toe CNES
case study [11]. The formalism helps to expressnkta-models
and the source and target models by data elengetts Constants
and variables) and by the predicates defining ttepgrties of
these elements (B invariants). Each transformatiate is
modeled as an abstract B operation which defingseeondition
and a substitution. The B precondition formalizee tondition
for applying the transformation rule, while the stifution part
formalizes the target elements. The transformagjpecified in B
enables the use of the B-proof assistant to analpgeprove the
transformation formalization consistency with regpe the meta-
models and transformation invariants. This prooBiis done on
the specification of the transformation.

3.2.2 OCL contracts

These contracts are useful to test model transtiwnmas they
represent an executable version of the specificatiod enable
errors to be detected at runtime [18]. It is therefpossible to
dynamically ensure that the component accepts tbeels that
are processed and, in turproduces correct models. With
DomiNo, the contracts concern the syntax of the meta-leadel
source and target models of the transformation el as its
behavioral semantics. They can be written in OClknata by
using the aspects mechanism to dissociate thetstalidrom the
behavioral parts of the transformation, or in pO@itocedural
Object Constraint Language) [15], an extension &@LCthat
supports simultaneous manipulation by several nsoaedl allows
inter-model correspondences.

3.2.3 Mutation analysis

Originally used for the qualification of a set est models, we use
mutation analysis to measure the level of trust tok
transformation component [16]. The technique isetlasn the
creation of erroneous versions of the transformatiiocheck how
the test models behave. The erroneous versionsdcalutants,
are confronted with the contracts that implementeaacutable
form of the specification embedded in the componéfg adapt
this technique for model transformation with newalfamodels
that capture the errors specifically found in tfamaations. Such
faults are related to the navigation and the filigrof the source
and target models and on the creation of the tangelel.

3.2.4 Transformation tests

Testing a model transformation consists in runnitige
transformation with test data, and checking thatrtfodel that is
produced is acceptable with respect to the tramsftion
specifications (expressed in natural languageelims of rules or
in terms of contracts). In thedmino project, we focused on the
automatic generation of test models, taking intcoaat two
essential issues in test data generation: theserdast satisfy a
large number of constraints coming from heterogaeaesources
of knowledge — cover requirements, conform to tretanmodel,
satisfy preconditions for the transformation — dhdse data are
structurally complex-graphs of objects [23]. Thelusion
proposed in BmINO is based on the expression of all constraints
in a common formalism and on techniques for autamat
constraint solving using SAT solvers [23] [24].

3.2.5 Traceability of the transformations

The ETraceTool platform of @&uiNno captures traces of
imperative model transformations [3] [4] [5]. Oubjective is to
track transformational events (update, delete awedte) during
imperative transformations and organize them imaaet model.
The transformation events are intercepted in aintrasive way
by means of aspects-oriented techniques and repeesas a
trace model which conforms to nested and arcs ddb&laces
meta-model. Then we have a nested traces graph ishat
isomorphic to the method calls. In a MDE way, if vl all
along a refinement chain with our traceability toahd
repercussion transformation, we can obtain requergm
traceability in exhibiting design choices on prdjgar refined
during the process. A model is generated for eaelcigion of a
traced transformation. The platform has been usedthe
refinement of properties defined in Context DedaipLanguage
(CDL). A new transformation obtained by co-evolatidthus
allowed the automatic generation of the refinedpprtes from
the transformation of an abstract context and B4 @roperties
[4].

3.2.6 Graph rewriting

It is a unified approach for the category of atitédsl graphs
depending on inductive types to define the strectirgraphs and
the associated attributes. In our framework whisésuthe double
pushout approach to rewrite graphs, the arrowsttoibute parts
are reversed with respect to the arrows of thetitral parts. This
reversal permits us to have a pseudo-pullback @usm dual
category) to organize the computations with attebu[22]. In
order to tend towards a program for operational ehod
transformation, we consider two paths: proof-ogent
implementation (Coq and other proof assistants)
implementation in a functional language (Caml, Olcaand
Haskell) [26].

or

3.2.7 Incremental refinement

We are working on definition of an incremental ayguh for the
construction of complete, valid and deterministieh&vioral
specifications based on transition systems. Theeinaguld be
constructed from a succession of models obtainedigh a series

of transformations (addition or deletion of elensemeduction of
the indeterminism, etc.) with associated verifizatprocedures.
The computability of the conformance relation omnsition
systems relies on the composition of two operatires:reduction
relation ¢ed) and the merge function of acceptance graphs
(Merge) associated with transition systems under compauig/e
demonstrated by a theorem the conformance relation
computability €onf) through a reduction relation applied on the
merging of acceptance graphs [14]. This result vllastrated
through a case study whose analysis is performeda hlava
prototype we have developed. We plan to study gi@ability

of this approach to UML behavioral models, in parar to state
machines and sequence diagrams.

4. RESULTS

One of the @MmINO contributions for the industrial partners CNES
and Airbus is the improvement of an MDE processgrdting the
activities of model transformation and validation.

DomiNo provides technologies that aim at building trust i
automatic transformations. This should reduce hueféorts and
the amount of error-prone, tedious manual actwitef the
development process. Moreover, they should redbeeamount
of test and manual checks on MDE components whéitaining
the necessary level of trust.

Expected MDE benefits are twofold: MDE provides #ipdlity to
build more automated design processes and know-how
capitalization; it also provides an opportunity ¢apture well-
formed (IEEE 1220: unambiguous, testable or meageiratc.)
and formal requirements. When requirements are haddas
formal properties, the subsequent design and \aidahases are
more effective, and trust may be provided bgMNo formal
technologies. Another MDE benefit is the abilityuse, early in
the requirement engineering process, high levetepts, easier to
use for humans compared to those coming from loleeel
executable domain specific languages [20JomMo’'s DSL
technologies are elements that may help to achiéseoal.

We validated some techniques for building trust MDE
components. The process iterates on the activiéieged to the
three vertices. At each step, one can choose thadtogy that is
the best suited to manage the current activitytHerdevelopment
of the component. Improving a summit with respecthe two
others improves the overall consistency of a corepariThus, for
instance, in the context of V&V by testing, fixiram error in the
implementation leads to the creation of a new Betugants. This
forces to iterate on the generation of test modetsthe definition
of contracts. Likewise, the improvement of the cacis involves
testing the implementation again, since the cotdrean be used
as the oracle of any test case.

The case study proposed by Airbus suggested the BfipiFoach
to develop control functions implemented in tooked for the
development of the fly-by-wire software. The spieaifion of
these controls was described in UML / OCL. OCL niasats, pre-
and post-conditions were applied to UML objectsoasged to
ICD files describing the input-output signals ofetembedded
software. This experimentation allowed to defineambiguous

requirements and to implement them directly on tHhSE
framework. On top of these results which give tristthe

Table 1. DomiNo 's achievements for the validation of models

capabilities of this technology to save costs ardays in

industrial context, we found that UML / OCL could tvery

interesting for define users' needs, as a commugukge between
embedded software team and tool development teathid way,

we experimented and checked it with the users amdaw that
UML / OCL could allow them to define their needslao check

them very soon in the development cycle. Followtimg project,

UML / OCL is now used, within an operational prdjefor the

development of a verification tool dedicated to gwntrol of

signals for the bus 1553 used by a fly-by-wire wafe of the

Airbus’ forthcoming A350.

CNES participated through a case study on thebielidesign of
operational procedures and associated operatidtjs The first

objective was to improve offline interoperability it the

possibility to build import/export tools for anyrgating procedure
language using meta-modeling technology. The seamasl to

improve efficiency for the production, validationcaexecution of
scripting procedures using operational specificeio For

instance, we successfully applied our ETraceToatf@m on a
transformation based on two main master modelsnpsti an

activity diagram which represents a procedure fyaf perform

a specific task, and various technical statemesésl o express
all the possible low-level satellite manipulatioonamands [4].
The target model is a grammarware model of a proeéd
language for satellite manipulation. We obtainedéds from this
transformation. Properties are expressed on irtteracliagram

elements and we aim to code them in the targetizge

CNES didn't only experiment model transformationg hlso

verification and validation of requirements. To lable to

capitalize on expertise for formal checking, itreseamportant to
structure the approach and the data handled dthrengroof. For
that purpose, we identified MDE components, cafieabf units,

referencing all the data, models, meta-models, retcessary to
the verification. Definition of such MDE componerdan take
part in a better methodological framework, for attdre
capitalization of software validation activitieychafterwards a
better integration of validation techniques in madievelopment
processes. This verification technique has dematestr its
effectiveness trough aeronautic (with Airbus) apatgl (with

CNES) case studies [9].

Proof units address behavioral requirements andeaeen as an
advanced test unit which explores many executiathspawith
regard to theDOM NO triangle representation, they can be used
starting from the beginning of the specificationaph with the
high level requirements to design it an iterativaywp to the
lower level requirements. This experimentation hhbsen
continued internally at CNES using space domainwkedge to
constrain the context expressed in CDL for the posubsystem
of PICARD spacecraft. CNES could check then withetste
explosion that the battery can stay sufficientharged despite
some worst scenarios during eclipse period andudgirt) one
failure of a sun array drive mechanism.

Tables 1 and 2 report the technical achievementshi® CNES
and Airbus case studies about the points menti@heye. The
items in italics refer to academic studies relatedase studies.
The first table relates to the validation of modafsl the second
one is related trustworthy components.

= A meta-model generator based on BNF rules applied to the
meta-modeling of O2PL language

= Proof of a behavioral property about {Bgidance
Navigation and Control (GNC) system

= Définition of a language common to two dialects inspired
from the Pluto standard

= A meta-model generator based on BNF rules appli¢de
meta-modeling of C language

= Proof of the properties of the model of
“COM/MON synchronization”

= Management of the “COM/MON synchronization”
requirements

= QOCL verification of the models at the input of twle
generators

Table 2. DomINO's achievements for trustworthy components

= Proof in B of the transformation of SOLM into O2PL

= pOCL verification of the transformation Activity Bgram
into O2PL

= Automatic generator of test data

= Co-evolution of business and properties models

From the academic point of view, the study providedetter
understanding and formalization of the notion aofistr The
different propositions have been consolidated feydéfinition of
a common framework of interaction between spedifica
implementation and verification of the componens & multi-
faceted concept, trust involves different formabsmwhich are
complementary: requirements and traceability of
transformations, proof units and traceability, modeformalism
and the creation of a unifying language for a fgrofl DSL.

5. DISCUSSION AND PERSPECTIVES

5.1 Diagnosis and analysis

The techniques developed byofdNo are meant to design
correctly and find defect in models or MDE compadsen
However, if these techniques allow detecting an@wakarly,
they currently provide little assistance to finc thource of the
error and to fix it. Providing relevant and undarstable feedback
to the user, based on the analysis provided dyiBo techniques,
is an important perspective in order to make theeshniques
applicable in an industrial context. For exampléilev studying
the applicability of OCL or proof units, the lack efficient
feedback has been identified has a major limitatgnAirbus.
Diagnosis information has to be provided as chaets, or logs,
which are technological spaces very different frilvia modeling
space. This shift between spaces is a major clygléor relevant
diagnosis and efficient assistance to diagnosis.

the

5.2 Adaptable components

The studies carried out during theomno project also
demonstrate the necessity to identify and quaritigy trust that
can be attributed to a MDE component, especiallynadel
transformation that automates parts of softwareckbgment. If
this is put into practice, software engineers wahlerefore have
access to libraries of MDE components and wouldoshothe
component(s) that best fit the process activities. the other
hand, it is necessary to take specific contexts adcount when
using a component as a part of a specific MDE m®c&his

raises the challenge of the variability of compdeend the way
they are used. This perspective is also about hmwotmpose
components in compliance with the global refereprmeess. The
use of such components can only be envisaged iintrestment
devoted to the requirement formalization actuatigds to more
trust and less tedious and error-prone developtasks. This will
leave time for the unambiguous management of &esviand
interference-free interpretation and will lead to efficient and
robust model-based development.

5.3 Multi-domain collaborative development
To ease the effective use obBINO technologies in an industrial
context, it is necessary to take into account bolative
engineering with experts coming from different damsa
Embedded systems such as space systems are oftemsyof
systems that would benefit from multi-views capigpiior design,
validation and also operation phases. However, ifdoiain
collaborative development of complex system modsisnot
currently supported by model-based environmentsrkiig on
different but related models can be critical whemsidering
dynamicity of models and domain-specific teams.ohder to
address complex inter-relationships and complexuéion cycles
of the whole process, we need to address consjstenecks
between viewpoints at some specific synchronizagieriods of
the development.

6. ACKNOWLEDGMENTS

The Domino project was supported by the French National

Research Agency (ANR) from March 2007 to June 2009.

7. REFERENCES

[1] A. Abou Dib, I. Ober, L. Féraud, C. Percebois. Toiga
Rigorous Framework for dealing with Domain Specific
Language Families. International Conference onrigeig of
Electronics, Technologies of Information and
Telecommunications (SETIT 2008), Damascus, SyrjlA
2008.First Best Paper Award.

[2] A. Abou Dib, I. Ober, L. Féraud, C. Percebois. Tolga
interoperability in component based development ait
family of DSLs. European Conference on Software
Architecture (ECSA 2008), Chypre, September 2008.

[3] B. Amar, H. Leblanc, B. Coulette. A Traceability dtmne
Dedicated to Model Transformation for Software
Engineering. ECMDA Traceability Workshop, Berling
2008.

[4] B. Amar, H. Leblanc, Ph. Dhaussy, B. Coulette. €rac
Transformation Reuse to Guide Co-evolution of MedBth
International Conference on Software and Data
Technologies, Athens, Greece, July 2010.

[5] B. Amar, H. Leblanc, B. Coulette, C. Nebut. Usingp&ct-
Oriented Programming to Trace Imperative Transfdiona.
14" International IEEE EDOC Conference (EDOC 2010),
IEEE Computer Society Press, 2010 (to appear).

[6] J.Bézivin, J. On the Unification Power of Mode&aftware
and System Modeling. SoSym 4(2):17-188, 2005.

[7] L.J.Camp. Design for Trust, Trust, Reputation Sedurity:
Theories and Practice. Ed. Rino Falcone, Springatavig
(Berlin) 2003.

[8] Ph. Dhaussy, J. Auvray, S. De Belloy, F. Bonioll&ndel.
Using context descriptions and property definifaiterns
for software formal verification. Workshop MoDeV\(8, 9
April 2008 (hosted by ICST 2008), Lillehammer, Naw

[9] Ph. Dhaussy, P.-Y. Pillain, S. Creff, A. Raji, Ye Iraon, B.
Baudry. Evaluating Context Descriptions and Prgpert
Definition Patterns for Software Formal Validatioh2"
IEEE/ACM International Conference on Model Driven
Engineering Languages and Systems (MoDELS'2009)920

[10] H. Dubois, M.-A. Peraldi-Frati, F. Lakhal. A Modfelr
Requirements Traceability in a Heterogeneous M&deled
Design Process: Application to Automotive Embedded
Systems. 15th International Conference on Engingesi
Complex Computer Systems, pp. 233-244, St. Anne's
College, University of Oxford, 22-26 March 2010, UK

[11] H. Le Dang, H. Dubois. Proving Model Transformatom
Proceedings of the 4th IEEE International Symposiumm
Theoretical Aspects of Software Engineering (TASHE®),
August 2010, Taipei, Taiwan.

[12] T.-T. Le Thi, P. Bazex, T. Millan. Modeling of Langges’
Grammars in UML/OCL: Applying to a Model Driven
Software Development Process. International Conferen
Theories and Applications of Computer Science (ICBA
2009), Nha Trang, Vietnam, February 2009.

[13] T.-T. Le Thi. Modeling of Programming Languages in
UML/OCL and Application in a MDE Process. IADIS
International Conference Applied Computing 2009eo
Italy, November 2009.

[14] H.-V. Luong, T. Lambolais, A.-L. Courbis. Implematibn
of the Conformance Relation for Incremental Devaiept
of Behavioural Models. fInternational Conference on
Model Driven Engineering Languages and Systems
(MoDELS’2008), 28 September -Cxtober 2008.

[15] T. Millan, L. Sabatier, T.-T. Le Thi, P. Bazex, Bercebois.
An OCL extension for checking and transforming UML
Models. International Conference on Software Eeefing,
Parallel and Distributed Systems (SEPADS'09), Caiger
United Kingdom, February 2009.

[16] J.-M. Mottu, B. Baudry, Y. Le Traon. Mutation Analg
Testing for Model Transformations, ECMDA’06 (Eurape
Conference on Model Driven Architecture), Bilbapa$,
2006.

[17] J.-M. Mottu, B. Baudry, Y. Le Traon. Reusable MDA
Components: A Testing-for-Trust Approactf. [ternational
Conference on Model Driven Engineering Languageks an
Systems (MoDELS’2006), October 2006.

[18] J.-M. Mottu, B. Baudry, Y. Le Traon. Model transfmtion
testing: oracle issue. Proceedings of MoDeVVa wiooksin
association with ICST'08, 2008, Lillehamer, Norway.

[19] I. Ober, A. Abou Dib. Using ASM to achieve execulip
within a family of DSL. International Conference ASM, B
and Z, London, September 2008.

[20] I. Ober, L. Féraud, C. Percebois. Dealing with afaitity
within a family of domain-specific languages: comgiave
analysis of different techniques. Innovations ist8yns and
Software Engineering, Springer, Vol. 6 Number 12528,
January 2010.

[21] E. Poupart, G. Jolly, C. Percebois, P. Bazex, Rrigae, S. [24] S. Sen, B. Baudry, J.-M. Mottu. Automatic Model

Basnyat, P. Rabault, L. Sabatier, A. Walrawenslirg@aff Generation Strategies for Model Transformation ifigst
interoperability, cost reduction and reliabilityr foperational International Conference on Model Transformatio@20
procedure using meta-modeling technology. Inteonaii (ICMT'09).

Conference on Space Operations (SpaceOps 2008, 200

[25] The Papyrus toohttp://www.eclipse.org/modeling/mdt/
[22] M. Rebout, L. Féraud, S. Soloviev. A Unified Categal

) . : [26] H.N. Tran, C. Percebois, A. Abou Dib, L. Féraud, S.
Approach for.Attrlbuted Graph Rewrltlng. 3rd Intational Soloviev. Attribute Computations in the DPoPb Graph
Computegrr Science Symposium in Russia 2008, Moscow, Transformation Engine. 4th International Workshop o
June 9-1%, 2008. Graph Based Tools (GraBaTs 2010), University of iise

[23] S. Sen, B. Baudry, J.-M. Mottu. On Combining Multi- Enschede, The Netherlands, September 2010.

formalism Knowledge to Select Models for Model
Transformation Testing. Proceedings of ICST'08
(International Conference on Software Testing \featfon
and Validation), 2008, Lillehamer, Norway.

