
HAL Id: inria-00555044
https://inria.hal.science/inria-00555044

Submitted on 12 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trust in MDE Components: the DOMINO Experiment
Benoit Baudry, Pierre Bazex, Jean-Charles Dalbin, Philippe Dhaussy, Hubert

Dubois, Christian Percebois, Erwann Poupart, Laurent Sabatier

To cite this version:
Benoit Baudry, Pierre Bazex, Jean-Charles Dalbin, Philippe Dhaussy, Hubert Dubois, et al.. Trust in
MDE Components: the DOMINO Experiment. SD4RCES workshop in conjunction with SAFECOMP
2010, 2010, Vienna, Austria. �inria-00555044�

https://inria.hal.science/inria-00555044
https://hal.archives-ouvertes.fr

Trust in MDE Components: the DOMINO Experiment

Benoît Baudry1, Pierre Bazex2, Jean-Charles Dalbin3, Philippe Dhaussy4,
Hubert Dubois5, Christian Percebois2, Erwann Poupart6, Laurent Sabatier7

(1) IRISA, Campus universitaire de Beaulieu, 35042 Rennes, France

(2) IRIT, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
 (3) Airbus France, 316 route de Bayonne, 31060 Toulouse Cedex 3, France

(4) ENSIETA, 2 rue François Verny, 29806 Brest Cedex 9, France
(5) CEA, LIST, Point Courrier 94, Gif-sur-Yvette, F-91191, France

(6) CNES, Toulouse, 31401 Toulouse Cedex 4, France
(7) Sodifrance, 15 chemin de la Crabe, 31300 Toulouse, France

bbaudry@irisa.fr, bazex@irit.fr, jean-charles.dalbin@airbus.com, Philippe.Dhaussy@ensieta.fr,

hubert.dubois@cea.fr, percebois@irit.fr, erwann.poupart@cnes.fr, LSabatier@sodifrance.fr

ABSTRACT
A large number of modeling activities can be automatic or
computer assisted. This automation ensures a more rapid and
robust software development. However, engineers must ensure
that the models have the properties required for the application. In
order to tend towards this requirement, the DOMINO project
(DOMaINs and methodological prOcess) proposes to use the so-
called trustworthy Model-Driven Engineering (MDE) components
and aims to provide a methodology for the validation and
qualification of such components.

Categories and Subject Descriptors
D.2 SOFTWARE ENGINEERING
D.2.1 Requirements/Specifications, D.2.2 Design Tools and
Techniques, D.2.3 Coding Tools and Techniques, D.2.4
Software/Program Verification, D.2.5 Testing and Debugging,
D.2.6 Programming Environments

General Terms
Design, Reliability, Verification, Languages, Experimentation.

Keywords
Model-Driven Engineering Trust, Component, Requirement,
Domain-specific languages, OCL contracts, Proofs, Mutation
analysis, Transformation tests, Transformation traceability.

1. INTRODUCTION
Software development is based on a complete set of methods and
tools for design, integration and verification. In the past, the role
of models was limited to documents, but now, these abstract and

simplified representations of a system become directly involved in
the development.

This observation has led to the creation of a new paradigm in
software engineering, Model-Driven Engineering (MDE) [6]. It
places models at the core of software development by making
them explicit assets that can be manipulated by programs. The
resulting development processes can therefore be considered as a
succession of models, at different levels of abstraction, from the
definition of requirements to the development of its actual code
for operation.

The DOMINO approach explicitly aims to increase the level of trust
[7] in software systems developed with a model-driven approach.
DOMINO proposes a set of concepts and techniques to domain
experts so that they can define and establish their own model-
based process to leverage models and model transformations and
build trustable systems. We present two complementary aspects:
the validation of models produced at the different steps of the
process and the development of trustworthy components that
completely or partially automate a development step.

The proposed methodology to establish trust in MDE components
is mainly based on the consistency between three characteristics:
specification, implementation and verification. We propose
various solutions to increase trust in the transformations, such as
keeping a relationship between the models of the application and
their verification, in order to test or prove them. The process tends
to be as continuous as possible offering model follow-up
functions throughout the different steps of an MDE process.

Along these processes, experts use specific models related to their
field. In particular, for embedded systems, software engineers
have defined specific modeling and programming languages to
better integrate the critical limits of operation safety. Introducing
the characteristics of such languages into abstract models enables
specialists to anticipate, in very early development stages, the
solutions that are the most appropriate for their applications. As
part of the MDE approach DOMINO transfers paradigms that are
well established in the theory of programming languages. Experts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
S&D4RCES 2010 September 14, 2010, Vienna, Austria.
Copyright (c) 2010 ACM 978-1-4503-0368-2 ...$10.00.

in the field can then adapt their development processes making
them more representative.

Two case studies were used to experiment with the methodologies
and the techniques proposed by DOMINO: the specification,
development and implementation of operational procedures in the
ATV cargo craft Jules Verne (CNES) and a synchronisation
function of two flight command units (Airbus). In both cases it
was possible to set up an MDE process integrating the activities of
transformation and verification of the models. In addition to using
these models, the DOMINO technology contributes to the definition
of a reasonable balance, for each of the activities of the process,
between human expertise and the tool that replace that expertise.

2. RELATED ISSUES
Model-Driven Engineering (MDE) improves the capitalization of
design know-how, the reuse - on an abstract level - of
development artefacts and the control of complexity by means of
the unifying framework that the models create. However, the lack
of robust tools for model manipulation and management, of well-
defined domain specific languages and associated technologies,
the issues related to separation of concerns in models and the lack
of validation techniques of models and model transformations are
critical barriers to a wide industrial adoption of MDE. Thus,
current processes use conventional software engineering processes
and tools and suffer from interpretation and implementation
errors. In most cases, verification occurs after the development
phase. As a consequence, verification, correction and maintenance
require a large human effort, whereas MDE tends to automate
critical development steps in order to increase quality by
construction, thus decreasing the effort needed at the end of the
development.

These activities should be reconsidered and more attention should
be paid to the new possibilities in modeling and meta-modeling
offered by MDE. Efforts should now be focused on the
requirements modeling and on ensuring the continuity in the
development process. In turn, the process can be implemented by
means of model transformations and intermediate verifications.

It is in this context that DOMINO aims to increase the quality in
software development by offering rigorous methods and
associated tools to evaluate and improve trust in basic
components. Below, we define trustworthiness as a set of
guarantees for the component. Engineers can therefore make the
component either totally or partially responsible for an activity in
a model-based process. More specifically, our study involves an
MDE development process. It approaches the questions of model
quality improvement and the trust in the transformations of
models that perform development stages automatically.

3. TECHNICAL APPROACH
Trust in a software system is supported both by the validation of
the models built along the development cycle and the use of
trustworthy MDE components that automate some development
steps. We propose modeling and verification techniques for model
validation. We also propose a model for MDE components based
on the integration of three characteristics: its specification, its
implementation and the techniques of V&V (Verification and
Validation).

3.1 Validation of models
This part of the study aims to ensure the relevance of the models
produced during the development process. Validation comes

down to seeking a certain form of completeness with respect to
the system being modeled and thus to link the models to expected
or perceived reality. The experiments on the two DOMINO case
studies (CNES and Airbus) more specifically involved checking
the requirements and the modeling of so-called domain-specific
languages, as illustrated by Figure 1.

Figure 1. DOMINO ’s techniques to validate a model

3.1.1 Verification of requirements
A well known challenge in the formal methods domain is to
improve their integration with practical engineering methods. In
the context of embedded systems, model checking requires first
to model the system to be validated, then to formalize the
properties to be satisfied, and finally to describe the behaviour of
the environment. This last point which we name as the proof
context is often neglected. It could, however, be of great
importance in order to reduce the complexity of the proof. The
question is then how to formalize such a proof context.

In DOMINO, we experimented a language, named CDL (Context
Description Language) [8] [9], for describing a system
environment using actors and sequence diagrams, together with
the properties to be checked. The properties are specified with
textual patterns and attached to specific regions in the context.
The idea behind context is that the requirements one want to
verify are often linked to specific use cases so that it’s not
necessary to explore all possible scenarios on the system.
Contrary to classical model checking methods where the system
is explored in its entirety, the CDL language aims at reducing the
system behaviour before its effective verification by interfacing
with an existing model checker. The context description thus
contributes to reduce the complexity of the system bypassing the
state explosion. CDL is designed so that formal artefacts required
by existing model checkers could be automatically generated
from it. This generation is currently implemented in our
prototype tool named OBP (Observer Based Prover) [8] [9].

3.1.2 Requirements management
The models must be validated with respect to the requirements. A
requirements meta-model has been proposed to define the
requirements and manage their traceability [10]. The meta-model
takes the form of a dedicated profile called DARWIN based on
SysML and includes tooling for requirements management in the
Papyrus environment [25]. In addition to the annotation and the
traceability links, the accent is placed on the coherence of the
requirements model, the solution model, and the requirements
V&V. The DARWIN profile has been experimented in the MDT
Papyrus [25].

3.1.3 Model of language
DOMINO contributes to the integration of Domain-Specific
Languages (DSL) into MDE developments. We propose an
intermediate modeling step to adapt design models before code

Validation

A model

� Requirements verification
� Requirements management
� Model of a language
� Family of domain-specific

languages

generation, by establishing, in terms of models, a clear and
unambiguous definition of the grammar of the target
programming language [12] [13]. The integration of models based
on the grammar of the languages enables software development
on a precise definition of the links between the models and the
programs. Two levels of assistance are proposed: one, which is
original, in the BNF concerning the grammar of a language and
another, which is more conventional, in the language model
concerning the program models. It then becomes possible, at these
two levels, to add domain specific properties.

3.1.4 Family of domain-specific languages
Any given professional field usually has a family of DSL.
Developers are supposed to speak the same single language. In
practice however, each group of specialists rewrites the concept of
that sector of activities in his own domain-specific language. In
order to ensure the interoperability of the domain-specific
components, we consider the formal semantics of each of the
languages. This formal specification, that covers both the syntax
and the semantics of each DSL, is considered as an object in the
category of algebraic specifications. Using results from category
theory, we obtain semi-automatically, the definition of a language
that can unify the family, as well as translators for the initial
languages [1] [2] [19] [20]. The same theoretical results ensure
that it is possible to transpose and to automatically prove a
property from one DSL towards the unified language. This
approach was validated for the operational procedure languages
used in the space industry.

3.2 Trust in MDE components
An important goal in DOMINO is to control the development of an
MDE component that automates a step of the process in order to
measure its level of trust. Generally speaking, the notion of trust
has many facets. It takes various forms depending on the level of
abstraction considered and is enforced either by construction, or
by redundancy. For model transformation for instance, trust can
be enforced by construction through the use of transformation
specific formalisms that can reduce the risk of errors. On the other
hand, redundancy aims to keep track of requirements in relation
with the implementation in order to prove and test the
transformation.

We propose a component model represented by the triangle in
Figure 2 that has three vertices: its specification, its
implementation and its associated assets for V&V. DOMINO
technologies aim to improve the specification and V&V protocols
for MDE components and contribute to the overall consistency of
the components’ facets.
The process for building trust in a MDE component consists in
three steps. The process starts with an initial component that
already has its three facets ready. The goal is then to improve each
facet and to check the global consistency between facets. It can be
noted that this triangular structure model can be used at each of
the stages of the engineering process.

For instance, considering a model transformation encapsulated
into a MDE component, we are able to estimate the consistency
between contracts, implementation and tests using mutation
analysis as the main qualification technique. The process to
improve the trustability of MDE components consists improving
the test set by analyzing their efficiency using a mutation analysis,
improving the implementation, thanks to the previously evaluated
test set, and finally improving the contracts by measuring their
accuracy as embedded oracles [17].

Figure 2. A trustworthy MDE component

For each facet of the triangle view of the MDE component,
techniques have been defined and proposed by DOMINO, and were
tested on the CNES and Airbus case studies. They apply distinct
levels of formalization – from semi-formal, such as model
transformation testing, to the formal level with the proof in B of
the transformation and contracts. We then evoke more prospective
studies concerning the rewriting of graphs and the refinement of
models more akin to development proved by construction.

3.2.1 Proof in B
We experimented the B language to formalize the meta-models
and the transformation rules from SOLM to O2PL for the CNES
case study [11]. The formalism helps to express the meta-models
and the source and target models by data elements (sets, constants
and variables) and by the predicates defining the properties of
these elements (B invariants). Each transformation rule is
modeled as an abstract B operation which defines a precondition
and a substitution. The B precondition formalizes the condition
for applying the transformation rule, while the substitution part
formalizes the target elements. The transformation specified in B
enables the use of the B-proof assistant to analyze and prove the
transformation formalization consistency with respect to the meta-
models and transformation invariants. This proof in B is done on
the specification of the transformation.

3.2.2 OCL contracts
These contracts are useful to test model transformations as they
represent an executable version of the specification and enable
errors to be detected at runtime [18]. It is therefore possible to
dynamically ensure that the component accepts the models that
are processed and, in turn, produces correct models. With
DOMINO, the contracts concern the syntax of the meta-models and
source and target models of the transformation as well as its
behavioral semantics. They can be written in OCL-Kermeta by
using the aspects mechanism to dissociate the structural from the
behavioral parts of the transformation, or in pOCL (procedural
Object Constraint Language) [15], an extension of OCL that
supports simultaneous manipulation by several models and allows
inter-model correspondences.

V&V

Specification

Implementation

� Proofs in B language
� OCL contrats
� Graph rewriting

� Mutation analysis
� Transformation tests
� Transformation traceability
� Incremental refinement

� Requirements
1

4a

2

3a

3b

4b

4c

5

3.2.3 Mutation analysis
Originally used for the qualification of a set of test models, we use
mutation analysis to measure the level of trust of the
transformation component [16]. The technique is based on the
creation of erroneous versions of the transformation to check how
the test models behave. The erroneous versions, called mutants,
are confronted with the contracts that implement an executable
form of the specification embedded in the component. We adapt
this technique for model transformation with new fault models
that capture the errors specifically found in transformations. Such
faults are related to the navigation and the filtering of the source
and target models and on the creation of the target model.

3.2.4 Transformation tests
Testing a model transformation consists in running the
transformation with test data, and checking that the model that is
produced is acceptable with respect to the transformation
specifications (expressed in natural language, in terms of rules or
in terms of contracts). In the DOMINO project, we focused on the
automatic generation of test models, taking into account two
essential issues in test data generation: these data must satisfy a
large number of constraints coming from heterogeneous sources
of knowledge – cover requirements, conform to the meta-model,
satisfy preconditions for the transformation – and these data are
structurally complex-graphs of objects [23]. The solution
proposed in DOMINO is based on the expression of all constraints
in a common formalism and on techniques for automatic
constraint solving using SAT solvers [23] [24].

3.2.5 Traceability of the transformations
The ETraceTool platform of DOMINO captures traces of
imperative model transformations [3] [4] [5]. Our objective is to
track transformational events (update, delete and create) during
imperative transformations and organize them in a trace model.
The transformation events are intercepted in a non intrusive way
by means of aspects-oriented techniques and represented as a
trace model which conforms to nested and arcs labeled traces
meta-model. Then we have a nested traces graph that is
isomorphic to the method calls. In a MDE way, if we tool all
along a refinement chain with our traceability tool and
repercussion transformation, we can obtain requirement
traceability in exhibiting design choices on properties refined
during the process. A model is generated for each execution of a
traced transformation. The platform has been used in the
refinement of properties defined in Context Description Language
(CDL). A new transformation obtained by co-evolution thus
allowed the automatic generation of the refined properties from
the transformation of an abstract context and its CDL properties
[4].

3.2.6 Graph rewriting
It is a unified approach for the category of attributed graphs
depending on inductive types to define the structure of graphs and
the associated attributes. In our framework which uses the double
pushout approach to rewrite graphs, the arrows for attribute parts
are reversed with respect to the arrows of the structural parts. This
reversal permits us to have a pseudo-pullback (pushout in dual
category) to organize the computations with attributes [22]. In
order to tend towards a program for operational model
transformation, we consider two paths: proof-oriented
implementation (Coq and other proof assistants) or
implementation in a functional language (Caml, Ocaml and
Haskell) [26].

3.2.7 Incremental refinement
We are working on definition of an incremental approach for the
construction of complete, valid and deterministic behavioral
specifications based on transition systems. The model would be
constructed from a succession of models obtained through a series
of transformations (addition or deletion of elements, reduction of
the indeterminism, etc.) with associated verification procedures.
The computability of the conformance relation on transition
systems relies on the composition of two operators: the reduction
relation (red) and the merge function of acceptance graphs
(Merge) associated with transition systems under comparison. We
demonstrated by a theorem the conformance relation
computability (conf) through a reduction relation applied on the
merging of acceptance graphs [14]. This result was illustrated
through a case study whose analysis is performed by a Java
prototype we have developed. We plan to study the applicability
of this approach to UML behavioral models, in particular to state
machines and sequence diagrams.

4. RESULTS
One of the DOMINO contributions for the industrial partners CNES
and Airbus is the improvement of an MDE process integrating the
activities of model transformation and validation.

DOMINO provides technologies that aim at building trust in
automatic transformations. This should reduce human efforts and
the amount of error-prone, tedious manual activities of the
development process. Moreover, they should reduce the amount
of test and manual checks on MDE components while maintaining
the necessary level of trust.

Expected MDE benefits are twofold: MDE provides the ability to
build more automated design processes and know-how
capitalization; it also provides an opportunity to capture well-
formed (IEEE 1220: unambiguous, testable or measurable, etc.)
and formal requirements. When requirements are modeled as
formal properties, the subsequent design and validation phases are
more effective, and trust may be provided by DOMINO formal
technologies. Another MDE benefit is the ability to use, early in
the requirement engineering process, high level concepts, easier to
use for humans compared to those coming from lower level
executable domain specific languages [20]. DOMINO’s DSL
technologies are elements that may help to achieve this goal.

We validated some techniques for building trust in MDE
components. The process iterates on the activities related to the
three vertices. At each step, one can choose the technology that is
the best suited to manage the current activity for the development
of the component. Improving a summit with respect to the two
others improves the overall consistency of a component. Thus, for
instance, in the context of V&V by testing, fixing an error in the
implementation leads to the creation of a new set of mutants. This
forces to iterate on the generation of test models and the definition
of contracts. Likewise, the improvement of the contracts involves
testing the implementation again, since the contracts can be used
as the oracle of any test case.

The case study proposed by Airbus suggested the MDE approach
to develop control functions implemented in tools used for the
development of the fly-by-wire software. The specification of
these controls was described in UML / OCL. OCL invariants, pre-
and post-conditions were applied to UML objects associated to
ICD files describing the input-output signals of the embedded
software. This experimentation allowed to define unambiguous

requirements and to implement them directly on the USE
framework. On top of these results which give trust in the
capabilities of this technology to save costs and delays in
industrial context, we found that UML / OCL could be very
interesting for define users' needs, as a common language between
embedded software team and tool development team. In this way,
we experimented and checked it with the users and we saw that
UML / OCL could allow them to define their needs and to check
them very soon in the development cycle. Following this project,
UML / OCL is now used, within an operational project, for the
development of a verification tool dedicated to the control of
signals for the bus 1553 used by a fly-by-wire software of the
Airbus’ forthcoming A350.

CNES participated through a case study on the reliable design of
operational procedures and associated operations [21]. The first
objective was to improve offline interoperability with the
possibility to build import/export tools for any scripting procedure
language using meta-modeling technology. The second was to
improve efficiency for the production, validation and execution of
scripting procedures using operational specifications. For
instance, we successfully applied our ETraceTool platform on a
transformation based on two main master models as input: an
activity diagram which represents a procedure to apply to perform
a specific task, and various technical statements used to express
all the possible low-level satellite manipulation commands [4].
The target model is a grammarware model of a procedural
language for satellite manipulation. We obtained traces from this
transformation. Properties are expressed on interaction diagram
elements and we aim to code them in the target language.

CNES didn't only experiment model transformations but also
verification and validation of requirements. To be able to
capitalize on expertise for formal checking, it seems important to
structure the approach and the data handled during the proof. For
that purpose, we identified MDE components, called proof units,
referencing all the data, models, meta-models, etc. necessary to
the verification. Definition of such MDE components can take
part in a better methodological framework, for a better
capitalization of software validation activities, and afterwards a
better integration of validation techniques in model development
processes. This verification technique has demonstrated its
effectiveness trough aeronautic (with Airbus) and spatial (with
CNES) case studies [9].

Proof units address behavioral requirements and can be seen as an
advanced test unit which explores many execution paths. With
regard to the DOMINO triangle representation, they can be used
starting from the beginning of the specification phase with the
high level requirements to design it an iterative way up to the
lower level requirements. This experimentation has been
continued internally at CNES using space domain knowledge to
constrain the context expressed in CDL for the power subsystem
of PICARD spacecraft. CNES could check then without state
explosion that the battery can stay sufficiently charged despite
some worst scenarios during eclipse period and including one
failure of a sun array drive mechanism.

Tables 1 and 2 report the technical achievements for the CNES
and Airbus case studies about the points mentioned above. The
items in italics refer to academic studies related to case studies.
The first table relates to the validation of models and the second
one is related trustworthy components.

Table 1. DOMINO ’s achievements for the validation of models

� A meta-model generator based on BNF rules applied to the
meta-modeling of O2PL language

� Proof of a behavioral property about the Guidance
Navigation and Control (GNC) system

� Definition of a language common to two dialects inspired
from the Pluto standard

� A meta-model generator based on BNF rules applied to the
meta-modeling of C language

� Proof of the properties of the model of
“COM/MON synchronization”

� Management of the “COM/MON synchronization”
requirements

� OCL verification of the models at the input of the code
generators

Table 2. DOMINO ’s achievements for trustworthy components

� Proof in B of the transformation of SOLM into O2PL
� pOCL verification of the transformation Activity Diagram

into O2PL
� Automatic generator of test data
� Co-evolution of business and properties models

From the academic point of view, the study provided a better
understanding and formalization of the notion of trust. The
different propositions have been consolidated by the definition of
a common framework of interaction between specification,
implementation and verification of the component. As a multi-
faceted concept, trust involves different formalisms which are
complementary: requirements and traceability of the
transformations, proof units and traceability, modeling formalism
and the creation of a unifying language for a family of DSL.

5. DISCUSSION AND PERSPECTIVES

5.1 Diagnosis and analysis
The techniques developed by DOMINO are meant to design
correctly and find defect in models or MDE components.
However, if these techniques allow detecting anomalies early,
they currently provide little assistance to find the source of the
error and to fix it. Providing relevant and understandable feedback
to the user, based on the analysis provided by DOMINO techniques,
is an important perspective in order to make these techniques
applicable in an industrial context. For example, while studying
the applicability of OCL or proof units, the lack of efficient
feedback has been identified has a major limitation by Airbus.
Diagnosis information has to be provided as charts, text or logs,
which are technological spaces very different from the modeling
space. This shift between spaces is a major challenge for relevant
diagnosis and efficient assistance to diagnosis.

5.2 Adaptable components
The studies carried out during the DOMINO project also
demonstrate the necessity to identify and quantify the trust that
can be attributed to a MDE component, especially a model
transformation that automates parts of software development. If
this is put into practice, software engineers would therefore have
access to libraries of MDE components and would choose the
component(s) that best fit the process activities. On the other
hand, it is necessary to take specific contexts into account when
using a component as a part of a specific MDE process. This

raises the challenge of the variability of components and the way
they are used. This perspective is also about how to compose
components in compliance with the global reference process. The
use of such components can only be envisaged if the investment
devoted to the requirement formalization actually leads to more
trust and less tedious and error-prone development tasks. This will
leave time for the unambiguous management of activities and
interference-free interpretation and will lead to an efficient and
robust model-based development.

5.3 Multi-domain collaborative development
To ease the effective use of DOMINO technologies in an industrial
context, it is necessary to take into account collaborative
engineering with experts coming from different domains.
Embedded systems such as space systems are often systems of
systems that would benefit from multi-views capability for design,
validation and also operation phases. However, multi-domain
collaborative development of complex system models is not
currently supported by model-based environments. Working on
different but related models can be critical when considering
dynamicity of models and domain-specific teams. In order to
address complex inter-relationships and complex evolution cycles
of the whole process, we need to address consistency checks
between viewpoints at some specific synchronization periods of
the development.

6. ACKNOWLEDGMENTS
The DOMINO project was supported by the French National
Research Agency (ANR) from March 2007 to June 2009.

7. REFERENCES
[1] A. Abou Dib, I. Ober, L. Féraud, C. Percebois. Towards a

Rigorous Framework for dealing with Domain Specific
Language Families. International Conference on Sciences of
Electronics, Technologies of Information and
Telecommunications (SETIT 2008), Damascus, Syria, April
2008. First Best Paper Award.

[2] A. Abou Dib, I. Ober, L. Féraud, C. Percebois. Towards
interoperability in component based development with a
family of DSLs. European Conference on Software
Architecture (ECSA 2008), Chypre, September 2008.

[3] B. Amar, H. Leblanc, B. Coulette. A Traceability Engine
Dedicated to Model Transformation for Software
Engineering. ECMDA Traceability Workshop, Berlin, June
2008.

[4] B. Amar, H. Leblanc, Ph. Dhaussy, B. Coulette. Trace
Transformation Reuse to Guide Co-evolution of Models. 5th
International Conference on Software and Data
Technologies, Athens, Greece, July 2010.

[5] B. Amar, H. Leblanc, B. Coulette, C. Nebut. Using Aspect-
Oriented Programming to Trace Imperative Transformations.
14th International IEEE EDOC Conference (EDOC 2010),
IEEE Computer Society Press, 2010 (to appear).

[6] J. Bézivin, J. On the Unification Power of Models. Software
and System Modeling. SoSym 4(2):17-188, 2005.

[7] L. J. Camp. Design for Trust, Trust, Reputation and Security:
Theories and Practice. Ed. Rino Falcone, Springer-Verlang
(Berlin) 2003.

[8] Ph. Dhaussy, J. Auvray, S. De Belloy, F. Boniol, E. Landel.
Using context descriptions and property definition patterns
for software formal verification. Workshop MoDeVVa’08, 9
April 2008 (hosted by ICST 2008), Lillehammer, Norway.

[9] Ph. Dhaussy, P.-Y. Pillain, S. Creff, A. Raji, Y. Le Traon, B.
Baudry. Evaluating Context Descriptions and Property
Definition Patterns for Software Formal Validation. 12th
IEEE/ACM International Conference on Model Driven
Engineering Languages and Systems (MoDELS’2009), 2009.

[10] H. Dubois, M.-A. Peraldi-Frati, F. Lakhal. A Model for
Requirements Traceability in a Heterogeneous Model-Based
Design Process: Application to Automotive Embedded
Systems. 15th International Conference on Engineering of
Complex Computer Systems, pp. 233-244, St. Anne's
College, University of Oxford, 22-26 March 2010, UK.

[11] H. Le Dang, H. Dubois. Proving Model Transformations. In
Proceedings of the 4th IEEE International Symposium on
Theoretical Aspects of Software Engineering (TASE 2010),
August 2010, Taipei, Taïwan.

[12] T.-T. Le Thi, P. Bazex, T. Millan. Modeling of Languages’
Grammars in UML/OCL: Applying to a Model Driven
Software Development Process. International Conference on
Theories and Applications of Computer Science (ICTACS
2009), Nha Trang, Vietnam, February 2009.

[13] T.-T. Le Thi. Modeling of Programming Languages in
UML/OCL and Application in a MDE Process. IADIS
International Conference Applied Computing 2009, Rome,
Italy, November 2009.

[14] H.-V. Luong, T. Lambolais, A.-L. Courbis. Implementation
of the Conformance Relation for Incremental Development
of Behavioural Models. 11th International Conference on
Model Driven Engineering Languages and Systems
(MoDELS’2008), 28 September - 3 October 2008.

[15] T. Millan, L. Sabatier, T.-T. Le Thi, P. Bazex, C. Percebois.
An OCL extension for checking and transforming UML
Models. International Conference on Software Engineering,
Parallel and Distributed Systems (SEPADS'09), Cambridge,
United Kingdom, February 2009.

[16] J.-M. Mottu, B. Baudry, Y. Le Traon. Mutation Analysis
Testing for Model Transformations, ECMDA’06 (European
Conference on Model Driven Architecture), Bilbao, Spain,
2006.

[17] J.-M. Mottu, B. Baudry, Y. Le Traon. Reusable MDA
Components: A Testing-for-Trust Approach. 9th International
Conference on Model Driven Engineering Languages and
Systems (MoDELS’2006), October 2006.

[18] J.-M. Mottu, B. Baudry, Y. Le Traon. Model transformation
testing: oracle issue. Proceedings of MoDeVVa workshop in
association with ICST'08, 2008, Lillehamer, Norway.

[19] I. Ober, A. Abou Dib. Using ASM to achieve executability
within a family of DSL. International Conference on ASM, B
and Z, London, September 2008.

[20] I. Ober, L. Féraud, C. Percebois. Dealing with variability
within a family of domain-specific languages: comparative
analysis of different techniques. Innovations in Systems and
Software Engineering, Springer, Vol. 6 Number 1, p. 21-28,
January 2010.

[21] E. Poupart, G. Jolly, C. Percebois, P. Bazex, P. Palanque, S.
Basnyat, P. Rabault, L. Sabatier, A. Walrawens. Offline
interoperability, cost reduction and reliability for operational
procedure using meta-modeling technology. International
Conference on Space Operations (SpaceOps 2008), 2008.

[22] M. Rebout, L. Féraud, S. Soloviev. A Unified Categorical
Approach for Attributed Graph Rewriting. 3rd International
Computer Science Symposium in Russia 2008, Moscow,
June 9-14th, 2008.

[23] S. Sen, B. Baudry, J.-M. Mottu. On Combining Multi-
formalism Knowledge to Select Models for Model
Transformation Testing. Proceedings of ICST'08
(International Conference on Software Testing Verification
and Validation), 2008, Lillehamer, Norway.

[24] S. Sen, B. Baudry, J.-M. Mottu. Automatic Model
Generation Strategies for Model Transformation Testing.
International Conference on Model Transformation 2009
(ICMT'09).

[25] The Papyrus tool: http://www.eclipse.org/modeling/mdt/

[26] H.N. Tran, C. Percebois, A. Abou Dib, L. Féraud, S.
Soloviev. Attribute Computations in the DPoPb Graph
Transformation Engine. 4th International Workshop on
Graph Based Tools (GraBaTs 2010), University of Twente,
Enschede, The Netherlands, September 2010.

