

Geometry Aware Direction Field Processing

Nicolas Ray, Bruno Vallet, Laurent Alonso, Bruno Lévy

▶ To cite this version:

Nicolas Ray, Bruno Vallet, Laurent Alonso, Bruno Lévy. Geometry Aware Direction Field Processing. ACM Transactions on Graphics, 2009, 29 (1), pp.Article 1. 10.1145/1640443.1640444. inria-00547716

HAL Id: inria-00547716 https://inria.hal.science/inria-00547716

Submitted on 17 Dec 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Geometry Aware Direction Field Processing

Nicolas Ray, Bruno Vallet, Laurent Alonso and Bruno Levy INRIA

Many algorithms in texture synthesis, non-photorealistic rendering (hatching), or re-meshing require to define the orientation of some features (texture, hatches or edges) at each point of a surface. In early works, tangent vector (or tensor) fields were used to define the orientation of these features. Extrapolating and smoothing such fields is usually performed by minimizing an energy composed of a smoothness term and of a data fitting term. More recently, dedicated structures (N-RoSy and N-symmetry direction fields) were introduced in order to unify the manipulation of these fields, and provide control over the field's topology (singularities). On the one hand, controlling the topology makes it possible to have few singularities, even in the presence of high frequencies (fine details) in the surface geometry. On the other hand, the user has to explicitly specify all singularities, which can be a tedious task. It would be better to let them emerge naturally from the direction extrapolation and smoothing.

This paper introduces an intermediate representation that still allows the intuitive design operations such as smoothing and directional constraints, but restates the objective function in a way that avoids the singularities yielded by smaller geometric details. The resulting design tool is intuitive, simple, and allows to create fields with simple topology, even in the presence of high geometric frequencies. The generated field can be used to steer global parameterization methods (e.g. QuadCover).

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—*Color, shading, shadowing, and texture*; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling; G.1.6 [Numerical Analysis]: Optimization; J.6 [Computer Aided Engineering]:

General Terms: Algorithms

Additional Key Words and Phrases: Vector field design, topology, filtering

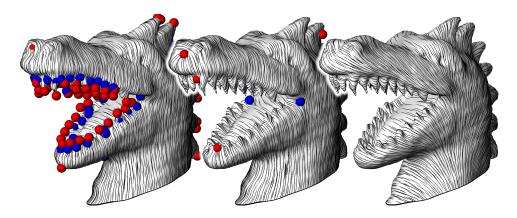


Fig. 1. Our new direction field processing method lets the user choose the size of geometric features for which the algorithm is allowed to create singularities. Classical algorithms can either automatically place (too many) singularities (Left), or avoid creating any singularity (Right) at the expense of distorting the field a lot (like in the neck of the monster). In this paper, we present a tradeoff between those two extreme configurations that places singularities only for significant features (Middle).

Introduction

Many algorithms in Computer Graphics require to decorate a surface with various visual features. Most of the time, the algorithm has to answer the question 'how do I orient these features on the surface ?'. For texture synthesis [Lefebvre and Hoppe 2006; Turk 2001], a smooth tangent vector field can provide the orientation to give to the sample image onto the surface. However, feature orientation on a surface cannot always be defined by a tangent vector field. For example, in Non Photorealistic Rendering [Praun et al. 2001], the orientation of strokes is defined up to a rotation of $\pi/2$, i.e. it is given by two orthogonal directions (which is called a "cross field" in [Hertzmann and Zorin 2000]). The same type of fields is also needed to orient edges in quad-dominant re-meshing [Alliez et al. 2003], or to determine the orientation of iso-u and iso-v in global parameterization [Ray et al. 2006; Kalberer et al. 2007]. Li *et al.* [2006] have unified the representation of all types of orientations by introducing the notion of N-symmetry direction field. The orientation is then given by a set of N unit vectors in the tangent plane of the surface such that turning them by $2\pi/N$ generates the same set of vectors.

The first processing algorithms for direction fields [Praun et al. 2001; Ray et al. 2006] are based on the minimization of the field curvature estimated by the angle deviation between the direction sampled on adjacent triangles (or vertices). The benefits of this approach are that it is easy to handle user-defined directional constraints and to smooth an existing field (usually initialized with the main directions of the curvature tensor). Another important feature is that the singularities of the field (pole, saddles, bisectors, trisectors, etc.) are automatically generated in a way that minimizes the energy. On the one hand, this is interesting because the field topology captures the shape of the object by placing singularities such as poles at the tips of fingers in Figure 3. On the other hand, geometric details will yield many singularities (see Figure 1, Left). Such a complex topology is difficult to manage in the application. For example, in quad-remeshing, each singularity will generate an extraordinary vertex (or facet).

Undesirables singularities can be avoided by algorithms that control the direction field topology [Ray et al. 2008; Palacios and Zhang 2007], but at the expense of loosing the ability of automatically capturing the object shape. As a consequence, the user must manually set all singularities which can be a painful task for complex objects.

As illustrated in Figure 2, there is a tradeoff between the field curvature and the number of singularities. As a consequence, the methods that are solely based on curvature minimization may generate a large number of singularities whereas in methods that provides topology control, the user must carefully place singularities in order to avoid large field curvature. In practice, current solutions to define the field topology either suffer from a lack of user control, or require too much user interaction. This paper proposes an intermediate solution that is able to automatically generate the field topology, but places only singularities that capture 'meaningful' geometric features. The user can control what 'meaningful' means by setting a minimal feature size for which the algorithm is allowed to create a singularity, and can edit the field topology by moving singularities. For example, in Figure 1 (Middle) the teeth of the dinausor are considered to be too small to be 'meaningful' features whereas singularities are still generated to capture the global shape of the head.

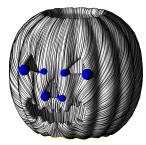


Fig. 2. Generating a direction field without any singularity may lead to high curvature of the field (Left). Introducing singularities (saddles represented by blue spheres) allows to minimize the field curvature (Right).

Problem Statement

Our objective is to design a direction field processing algorithm that is easy to use and gives suitable results for applications. The desired features for such a tool are listed bellow:

- (1) *Direction smoothness:* the direction field should be as smooth as possible. This ensures visual quality, but also makes singularities emerge naturally. Since only orientation, and not size, matters in these applications, it is more meaningful to smooth *directions* (normalized vectors) than *vectors*. Notice that the field curvature (variation of orientation) captures both the straightness of streamlines (in the direction of the streamlines) and the parallelism of streamlines (in the orthogonal direction).
- (2) Rotational symmetry: the orientation of features is generally defined by N-symmetry directions (sets of N directions that form angles multiple of $2\pi/N$). In particular 1,2 and 4-symmetry direction fields correspond to direction (\rightarrow), line (-) and cross (+) fields. Line fields are used in surface hatching and cross fields in quad re-meshing and global parameterization. Using N-symmetry leads to a more accurate control of the field topology.
- (3) *Geometry control:* we want either to extrapolate user constraints or to smooth an existing field such as the principal curvature directions field. In both cases this will result in hard or smooth constraints on the geometry of the field.
- (4) *Topology control:* it is very important for the direction field to have a minimum number of singularities that will capture the global shape of the object. Explicit control can require too much user interaction, whereas no topology control at all may lead to too many singularities. In practice, a good solution would automatically place singularities, but only for 'meaningful' geometric features. Our goal is to define a new algorithm that offers a good tradeoff between these two extreme configurations. In other words our algorithm will automatically place singularities only for "meaningful" geometric features.

Contributions

Our main contribution is a direction field processing framework that combines all the aforementioned features. It provides a tradeoff between *geometric* algorithms that only aim at maximizing the smoothness of a direction field without control over the topology and

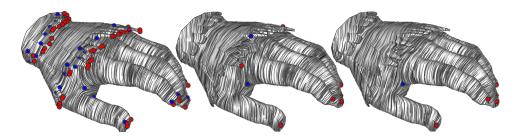


Fig. 3. Smoothing a 2-symmetry direction field on a surface with small geometric details. **Left**: Local smoothing creates many singularities. **Middle**: The singularity-merging strategy proposed in N-RoSy reduces the number of singularities but does not ensure that a global optimum will be found. **Right**: Our method allows to ignore all the details while being still sensitive to more global features (fingers).

Method	Local	DTVF	N-RoSy	NSDF	GADF
Normalized	both	no	no	yes	yes
Symmetries	1,2,4	1	N*	N*	\mathbb{N}^*
Geometry ctrl	yes	yes ¹	yes	yes ³	yes
Topology ctrl	no	no^1	yes ²	yes ²	yes^2

Table I. Main features of direction field smoothing and design. ¹ the Design of Tangent Vector Field (DTVF) approach ensures topology control only in case where there are no constraints (no Geometry control). ² in N-RoSy the topology is controlled *a posteriori* (after the smoothing) whereas in N-symmetry direction field (NSDF) it is controlled *a priori*. In this work (GADF), topology is controlled implicitly by minimizing the number of singularities. ³ geometric constraints can only be applied *a posteriori* in NSDF by modifying a given field so it cannot be used for smoothing an existing field.

topological algorithms that smooth the direction field with explicit control over its topology. Geometric algorithms usually generate too many singularities when the geometry is complex (high frequencies) while topological algorithms require the user to manually control all the topology. In contrast, our algorithm allows to significantly reduce the number of singularities due to high geometric frequencies while letting a global topology emerge from the smoothing.

The *geometric* limit of our algorithm is a classical local smoothing algorithm similar to the one used in [Li et al. 2006]. The *topological* limit sacrifices smoothness to guarantee a simple topology. In particular, on topological disks and without directional constraints, the algorithm controls the position and type of singularities (see Section 3.1 for a proof).

Previous work

We will now present existing works and their position with respect to the desired features we mentioned (see Table I). Note that in most works, generating a direction field was only considered as a preprocessing step for a more specific application.

Most previous approaches rely on local smoothing. In texture synthesis [Praun et al. 2000; Turk 2001], extrapolation of tangent vector field is used to give a coherent orientation of the texture synthesized on the surface. In real-time hatching [Praun et al. 2001] and anisotropic re-meshing [Alliez et al. 2003], the orientation of strokes (respectively quad edges) is defined by the principal axis of the curvature tensor. This tensor defines a direc-

ACM Journal Name, Vol. V, No. N, Month 20YY.

tion modulo a rotation of π , that can be smoothed to remove meaningless singularities and avoid jitter effects in the application. More recently, Fischer *et. al.* [Fisher et al. 2007] proposed a Discrete Exterior Calculus (DEC)-based method allowing for Hodge decomposition to generate smooth 1-forms (equivalent to vector fields) used for texture synthesis. In quad re-meshing, Periodic Global Parameterization [Ray et al. 2006] introduces direction fields defined with a modulo of $\pi/2$ to take into account the quad orientation invariance by rotation of $\pi/2$. In fact they can smooth a direction fields with rotational invariance of $2\pi/N, N \in \mathbb{N}^*$, such as direction fields (N=1), line fields (N=2), or cross fields (N=4). This first family of algorithms does not provide fine control over the field topology, but smoothing and extrapolation are quite easy to achieve.

In most applications, the field singularities play an important role. For instance, a source in quad re-meshing will generate a pole i.e., a vertex with valence $\neq 4$ or a non-quad polygon. The same singularity in hatching will generate a point of convergence of strokes that has an important visual impact. Zhang et al. [2006] propose a vector field design able to repair a field after smoothing by moving singularities and removing pairs of singularities. They extend it [Palacios and Zhang 2007] to N-rotational symmetry (N-RoSy) field design. As the Poincaré Hopf theorem makes it impossible to introduce a single singularity without introducing another one with opposite index, their interface is based on moving singularities and placing directional constraints. As illustrated in Figure 3, the iterative pair cancellation strategy may not lead to an optimal topology simplification. Finally, Ray et al. [Ray et al. 2008] present an N-symmetry direction field (NSDF) design that solely focuses on the direction (does not take the vector norm into account) and provides exact control of the singularities.

The method introduced in this paper is *geometry aware* in the sense that a precomputation step estimates the field distortion created by the geometry. It is then integrated into the objective function of a *geometric* algorithm that prevents high geometric frequencies from generating singularities.

This feature is critical for global parameterization applications as singularities should only capture the global shape of the object. Some algorithms [Tong et al. 2006; Kalberer et al. 2007; Ray et al. 2006] suggest to smooth the curvature tensor to automatically place the singularities. Another approach [Kharevych et al. 2006] uses the distortion of a mapping as heuristic to place singularities. This idea was extended in [Ben-Chen et al. 2008; Springborn et al. 2008] to work with an isotropic metric and to iteratively introduce singularities to reduce its distortion. As illustrated in Figure 4, such an iterative process does not lead to an optimal placement of singularities.

The rest of the paper is organized as follows: Section 1 introduces the theory and structure of direction fields on triangulated surfaces and restates the objectives in this new formalism. Section 2 and 3 present algorithms that respectively consider every geometric feature as meaningful (Figure 1, Left) or as meaningless (Figure 1, Right). From these two extreme cases, we derive an intermediate algorithm in section 4 (Figure 1, Middle) that is able to consider geometric features larger than a user-defined size as meaningful.

DIRECTION FIELD ON A TRIANGULATED SURFACE

An N-symmetry direction field is the definition, for each point of the surface, of a set of N unit vectors of the tangent plane which is invariant by rotation of $2\pi/N$. As both its topology and geometric variations are defined by the angle deviation relative to parallel

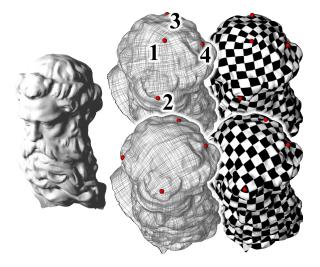


Fig. 4. To compute a global parameterization of Neptune head, cone singularities can be iteratively introduced (up), or computed simultaneously (down). Note how the second option better distributes them.

transport, it can be nicely represented on triangulated surfaces using the Discrete Exterior Calculus formalism. In this section, we first recall Discrete Exterior Calculus notations (§1.1) and explain how a direction field is sampled by a 0-form in the DEC formalism (§1.2). This allows us to define the field curvature as a 1-form using exterior derivation (§1.3) and to define the index of singularities as a 2-form using 2^{nd} order exterior derivatives (§1.4). The problem is then restated in this formalism (§1.5).

1.1 Discrete exterior calculus notations

We assume that our mesh is oriented i.e. facets have coherent normals and each edge has an orientation. This allows us to define a unique orientation for dual edges. We use notations from Discrete Exterior Calculus (DEC) [Desbrun et al. 2005] on the dual mesh $M^* = (\mathcal{F}^*, \mathcal{E}^*, \mathcal{V}^*)$ as it makes the exposition clearer and the proofs easier. In this setting, 0-forms are scalars on dual vertices (\mathcal{F}^*) , 1-forms are scalars on oriented dual edges (\mathcal{E}^*) , and 2-forms are scalars on dual facets (\mathcal{V}^*) . Throughout the paper, we will use the convention that a quantity indexed by 0,1 or 2 is a 0,1 or 2-form. Indices i,j,\ldots will refer to vertices of the dual mesh (triangles of the primal mesh), and ij denotes the dual edge between primal triangles i and j. Finally, we will make use of the DEC norm for dual 1-forms defined as:

$$||f_1||^2 = \sum_{ij \in E^*} w_{ij}^{-1} f_1(ij)^2$$
 (1)

where $w_{ij} = cot(\beta) + cot(\beta')$ are the cotan weights [Pinkall and Polthier 1993] and β and β' are the two angles facing ij.

1.2 Direction field sampling

As shown in Figure 5, an N-symmetry direction \mathbf{v}^N on a smooth surface is defined as a set of N unit vectors lying in the tangent plane of the surface that is preserved by rotation of $2\pi/N$ around the normal. We define our N-symmetry directions on the triangles of a

ACM Journal Name, Vol. V, No. N, Month 20YY.

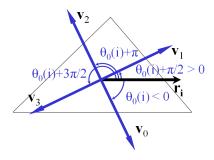


Fig. 5. A N-symmetry direction (here N=4) on a triangle T_i is a set of vectors $\mathbf{v}_k, k \in \{0..N-1\}$ defined as the images of a reference vector \mathbf{r}_i by rotations of $\theta_0(i) + k(2\pi/N)$. By convention, negative angles correspond to clockwise orientation (here $\theta_0(i) < 0$ and $\theta_0(i) + \pi/2 > 0$).

mesh where the tangent space is well defined. In each triangle T_i , an oriented edge \mathbf{r}_i is used as the reference vector. A 0-form θ_0 then defines the N-symmetry direction \mathbf{v}_i^N on T_i as the set of images of \mathbf{r}_i by rotations (around the triangle normal) of $\theta_0(i) + 2\pi k/N$, $k \in \mathbb{Z}$.

1.3 Direction field curvature

In continuous settings, the 'curvature' of a direction field is a one form that for neighbor points A and B gives the angle difference between the field direction at point B and the field direction at point A parallel transported to point B. This notion, introduced in [Ray et al. 2008] using covariant derivatives, is used to define the "smoothness" of a field as the squared norm of the curvature.

In discrete settings, let i and j be two adjacent triangles such that the dual edge ij is oriented from i to j. We can isometrically bring i and j to be in the same plane, and define the *curvature* 1-form C_1 of the direction field \mathbf{v}^N along ij as the angle of rotation that brings \mathbf{v}_i^N to \mathbf{v}_j^N . Simple geometry (see Figure 6) shows that θ_0 only defines the curvature 1-form C_1 up to integer multiples of $2\pi/N$:

$$C_1(\theta_0, p_1) = r_1 + d_0\theta_0 + 2\pi p_1/N \tag{2}$$

where:

- $-r_1(ij)$ is the angle of a rotation that brings \mathbf{r}_i to \mathbf{r}_j , given by: $r_1(ij) = \angle(\mathbf{r}_i, ij) + \angle(ij, \mathbf{r}_j)$ where \angle is the angle oriented by the triangle normal. Defining $r_1(ji) = -r_1(ij)$ makes r_1 a 1-form;
- $-d_0$ is the exterior derivative for 0-forms given by $(d_0\theta_0)(ij) = \theta_0(j) \theta_0(i)$;
- $-p_1$ is an 1-form such that $p_1(ij)$ is an integer for each ij. This property will be used further to prove the validity of our method (see Section 3.1). This variable is equivalent to the "period jumps" [Ray et al. 2008]: it determines how directions are interpolated by removing the modulo $2\pi/N$ (see Figure 6).

The couple (θ_0, p_1) along with the choice of reference vectors defines a unique direction field with a well defined curvature. This allows us to define the indices of its singularities.

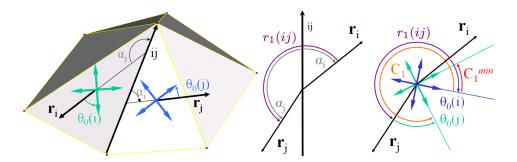


Fig. 6. Left: 4-symmetry directions on adjacent facets with common edge e_{ij} . Middle: The rotation angle between reference vectors \mathbf{r}_i and \mathbf{r}_j is $r_1(ij) = \alpha_j - \alpha_i$. Right: $C_1 = r_1(ij) + \theta_0(j) - \theta_0(i)$ is a rotation angle between the directions on t_i and t_j , and so is any angle $C_1 + p_1(ij)(2\pi/N)$. We represent here C_1 and the minimum angle C_1^{min} corresponding to $p_1(ij) = 0$ and $p_1^{min}(ij) = -3$.

1.4 Index

The singularities of a *N*-symmetry direction field can be classified by their indices defined as a 2-form [Ray et al. 2008]:

$$I(\theta_0, p_1) = \frac{d_1 C_1(\theta_0, p_1) + K_2}{2\pi} = \frac{d_1 r_1 + K_2}{2\pi} + \frac{d_1 p_1}{N}$$
(3)

where:

- — d_1 is the exterior derivative for 1-forms given by $(d_1f_1)(v^*) = \sum_{e^* \in \partial v^*} f_1(e^*)$ where ∂v^* denotes the oriented boundary of the dual cell relative to vertex v
- $-K_2$ is the angle defect 2-form. $K_2(v^*)$ is 2π minus the sum of angles of triangle corners adjacent to v, which corresponds to the integrated Gaussian curvature over the dual cell v^* . The average Gaussian curvature over v^* is then given by $K_2^{av}(v^*) = K_2(v^*)/|v^*|$ where $|v^*|$ is the area of v^* , approximated by (one third of) the 1-ring area of v^* .

Indices are multiples of 1/N and a zero index corresponds to the abscence of singularity. On the figures, singularities with positive (resp. negative) indices are marked by small red (resp. blue) spheres. Note that the indices of singularities are controlled by p_1 alone, whatever the choice for θ . The term $(d_1r_1+K_2)/2\pi$ is necessarily an integer that depends only on the choice of the reference vectors.

1.5 Problem statement in our formalism

The problem statement given in the introduction includes a list of desirable features for a direction field processing algorithm. Now we can translate them into our formalism.

- (1) Direction smoothness: a natural smoothness criterion for a direction field depending only on the direction (not on a vector norm) will be the objective $C_1(\theta_0, p_1) = 0$. Note that this is different from the usual vector field smoothness criterion, but coherent with Hertzmann's definition of direction field smoothness [Hertzmann and Zorin 2000]. This definition of the direction field smoothness both quantifies the curvature of the streamlines of the field and the parallelism of streamlines. One can notice that these two quantities are switched for the orthogonal direction.
- (2) *Rotational symmetry:* The angle-based representation of direction fields trivially meets this requirement.

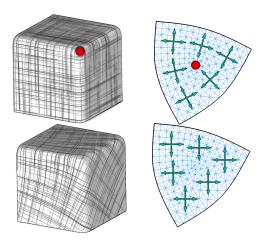


Fig. 7. 4-symmetry direction field on a cube corner. Top row: a singularity of index 1/4 placed at the corner exactly balances the angle defect, so the field is not distorted on the cube (Left) but distorted in the map (Right). Bottom row: removing the singularity allows to define a direction field that is constant in the map (Right) but necessarily distorted on the surface (Left).

- (3) Geometry control: Directional constraints can always be achieved by fixing the corresponding values of θ_0 (modulo $2\pi/N$). For smoothing an existing field, geometric algorithms [Hertzmann and Zorin 2000; Li et al. 2006] just need a data-fitting term (like $|\theta_0 \theta_0^{\rm init} + 2k\pi|^2$) while doing it with algorithms that exactly controls the topology is very difficult. Indeed, the modulo defined by $2k\pi$ must be is explicitly given as it controls the topology (see [Ray et al. 2008]).
- (4) Topology control: The control of the geometric influence will then be based on the relation between index, direction field curvature and surface angle defect (see Equation 3). If we generate a smooth field, it will have a small curvature $C_1(\theta_0,p_1)$. Thus $d_1C_1(\theta_0,p_1)$ will be small too as it sums $C_1(\theta_0,p_1)$ over one rings. In this case, the index will be close to $K_2/2\pi$. As a consequence, smoothing algorithms introduce singularities in a way that balance the angle defects. For instance, in Figure 7, introducing a singularity of index 1/4 on a cube corner (of angle defect $\pi/2$) allows to cancel the curvature $C_1(\theta_0,p_1)$. Conversely, removing singularities $(I_2(\theta_0,p_1)=0)$ leads to generate an amount of curvature that is proportional to the angle defect. We capture this curvature in a (minimal norm) target 1-form C_1^t such that $d_1C_1^t=-K_2$. We can then modify our objective to $C_1(\theta_0,p_1)=C_1^t$. Indeed, if $C_1(\theta_0,p_1)$ is close to C_1^t , the index will tend to be zero even if the angle defect is high. Choosing C_1^t to have minimal norm keeps the new objective as close as possible to the original smoothness criterion.

The rest of the paper is organized as follows: Section 2 presents a 'naive' approach to smooth a direction field by simply minimizing its curvature, Section 3.1 shows that it is possible to modify the objective function such that the same algorithm produces a direction field that respects a prescribed topology (on a topological disk), then Section 4 explains how to perturb the objective function in order to avoid 'meaningless geometric details' generating too many singularities.

FULL GEOMETRIC INFLUENCE

When no control over the field topology is required, existing *geometric* smoothing algorithm [Li et al. 2006] can be used to smooth direction fields given a set of soft and hard constraints. Here, we just change the weighting coefficients to make them compatible with the DEC theory. The objective function is derived from the curvature definition (Equation 2):

$$C_1(\theta_0, p_1)(ij) = r_1(ij) + \theta_0(j) - \theta_0(i) + 2\pi p_1(ij)/N = 0$$
(4)

for each dual edge ij. We remove the integer variables p_1 by taking the cosine and sine of Equation 4 and by choosing new variables $V_i = (\cos(N\theta_0(i)), \sin(N\theta_0(i)))$:

$$V_i - R(N.r_1(ij))V_j = 0 (5)$$

where $R(\beta)$ is the matrix of rotation of angle β :

$$R(\beta) = \begin{pmatrix} \cos(\beta) & -\sin(\beta) \\ \sin(\beta) & \cos(\beta) \end{pmatrix}$$

We weight our objectives according to the 1-form norm (Equation 1) by building a smoothness energy:

$$E_{smooth} = \sum_{ij \in \mathcal{E}^*} w_{ij}^{-1} (V_i - R(Nr_1(ij))V_j)^2$$

For field smoothing, we can add a fitting term $E_{fit} = \sum_i |T_i| (V_i - V_i^{init})^2$, where $|T_i|$ is the area of triangle T_i , and V_i^{init} is the direction of the field to be smoothed on triangle T_i . This leads to minimize $E_{smooth} + \lambda E_{fit}$ where λ balances between smoothness and data fitting. Hard constraints are easy to introduce in the system by locking the corresponding V_i as explained in [Levy 2005].

This energy is a sum of square of linear equations that can be minimized easily. However the new variables need to respect $||V_i|| = 1$ to be valid. As this constraint is non-linear, we do not enforce it explicitly but iterate with the normalized solution chosen as smooth constraints for the next step.

The angles $\theta_0(i)$ are then given by $\theta_0(i) = \tan(V_i.(0,1)/V_i.(1,0))/N$ which gets incremented by π/N when $V_i.(1,0) < 0$. Finally, p_1 is defined to minimize the field curvature as the closest integer to $N(-r_1-d_0\theta)/2\pi$. Notice that setting p_1 is important as it defines the indices (see Equation 3).

3. NO GEOMETRIC INFLUENCE

The aim of this section is to show that the *geometric* algorithm presented in the previous section can be used to generate a direction field that will not make the shape of the surface generate additional singularities. This is achieved by removing from the objective function (Equation 2) the portion of the field curvature that is a direct consequence of the surface geometry.

—First, we consider the case of a topological disk, where the new objective function is defined to be zero for direction fields without singularities and with minimal curvature. We can then prove that the singularities can be exactly controlled by simply modifying the objective function;

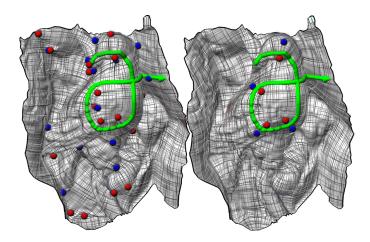


Fig. 8. Directional constraints (green arrow) with filtered geometric influence (Left) and without geometric influence (Right). Note the smaller number of singularities.

—then we extend this idea on arbitrary topologies and see that in practice, the minimum number of singularities required to satisfy the Poincaré Hopf theorem will emerge naturally.

3.1 Topological disks

On a topological disk, we can exactly control the singularities by choosing a 2-form I_2^t that constrains the desired index:

THEOREM 3.1 EXACT CONTROL. Let \mathcal{D} be a mesh with disk topology, and I_2^t be a target 2-form with values multiple of 1/N on \mathcal{D} . Then for any 1-form C_1^t such that:

$$d_1 C_1^t = -K_2 + 2\pi I_2^t (6)$$

there exists a discrete direction field (θ_0, p_1) such that $I_2(\theta_0, p_1) = I_2^t$ and $C_1(\theta_0, p_1) = C_1^t$.

PROOF. The Discrete Poincaré Lemma [Desbrun et al. 2005] implies that for a k-form ω_k on a topological disk, $d_k\omega_k=0$ iff it exists a (k-1)-form σ_{k-1} such that $\omega_k=d_{k-1}\sigma_{k-1}$. We will invoke this argument twice.

- (1) $I_2^r = I_2(0,0) = (d_1r_1 + K_2)/2\pi$ is the index of the singularities of the field defined by the reference vectors with curvature r_1 , such that $N(I_2^t I_2^r)$ is an integer 2-form. $d_2N(I_2^t I_2^r) = 0$ by definition of d_2 so there exists an integer 1-form p_1 such that $N(I_2^t I_2^r) = d_1p_1$. Then by definition of the index (Equation 3), $I(\theta_0, p_1) = (d_1r_1 + K_2)/2\pi + d_1p_1/N = I_2^r + (I_2^t I_2^r) = I_2^t$.
- (2) we have $d_1(C_1^t-r_1-2\pi p_1/N)=-K_2+2\pi I_2^t-d_1r_1-2\pi(I_2^t-I_2^r)=0$ so there exists a 0-form θ_0 such that $d_0\theta_0=C_1^t-r_1+2\pi p_1/N$. Inserting these expressions into the definition of curvature (2) we have $C_1(\theta_0,p_1)=C_1^t$

The first part of the theorem $(I_2(\theta_0, p_1) = I_2^t)$ shows that we can exactly control singularity indices by setting an appropriate p_1 (independently of θ_0). In particular, we can

ACM Journal Name, Vol. V, No. N, Month 20YY.

2

remove all singularities by setting $I_2^t=0$. The second part shows that we can control the curvature of the field as long as the target curvature C_1^t satisfies $d_1C_1^t=-K_2+2\pi I_2^t$. Hence if we want to smooth a field with topology control, we cannot ask for $C_1^t=0$ anymore, but only for the C_1^t of minimal norm (defined in Equation 1) under this constraint. The discrete Poincaré lemma also implies that there exists at least one exact solution to $d_1C_1^t=-K_2+2\pi I_2^t$, and we select the one of minimal norm. These constraints are linear and can be exactly fulfilled, so we can enforce them with Lagrange multipliers. However, in practice we do not need to exactly enforce these constraints, and it is sufficient to add a strong penalty term in our energy. This leads to a smaller system and gives similar results.

Once the optimal C_1^t has been computed, the smoothing algorithm (Section 2) can be adapted by replacing the objective (5) with the new objective $C_1(\theta_0, p_1) = C_1^t$, which by the same transformation becomes:

$$V_i = R(N(r_1(ij) - C_1^t(ij)))V_j. (7)$$

If a unique hard constraint on V_i is given, the system admits an exact solution that can be computed by an exact solver, and corresponds to the smoothest field with no singularity (see left model in Figure 9). In other terms, this corresponds to smoothing the surface with virtually zero Gaussian curvature.

3.2 Extension to surfaces of arbitrary genus

For open surfaces of arbitrary genus, the same algorithm will not generate any singularity in practice (see right model in Figure 9). For closed surfaces of arbitrary genus, we must have $\sum_{v\in\mathcal{S}}d_1C_1^t(v^*)=0$ and $\sum_vK_2(v^*)=2\pi\chi$, where χ is the Euler characteristic of the surface. As a consequence, it is impossible to enforce $d_1C_1^t=-K_2$. The solution proposed in this section, and improved in Section 4 is to chose a C_1^t satisfying $d_1C_1^t=\bar{K}_2-K_2$ where \bar{K}_2 is defined such that $\bar{K}_2/|v^*|$ is constant :

$$\bar{K}_2(v^*) = \frac{|v^*| \sum_{v'^*} K_2(v'^*)}{\sum_{v'^*} |v'^*|} = \frac{2\pi \chi |v^*|}{\sum_{v'^*} |v'^*|}$$

where $|v^*|$ is the dual cell area of v. With this new C_1^t , Equation (7) does not have an exact solution so we apply the iterative process described in Section 2 with objective curvature C_1^t such that $d_1C_1^t = \bar{K}_2 - K_2$. This smoothing behaves as if the surface had a constant Gaussian curvature, so it evenly distributes singularities over the surface (see Figure 9). Obviously this is an extreme solution where the singularities appear independently of the geometry. Next section presents a tradeoff where only the influence of high geometric frequencies is removed.

Note on singularities indices

Computing the indices requires p_1 to be defined (see Equation 3). This integer one form p_1 is now defined as the integer minimizer of $(C_1(\theta_0,p_1)-C_1^t)^2$, which by Equation 2 is the closest integer to $N(C_1^t-r_1-d_0\theta)/2\pi$. Notice that this expression differs from the usual way to compute the index because we take into account the geometric correction term C_1^t .

4. FINAL ALGORITHM: FILTERED GEOMETRIC INFLUENCE

We have presented a smoothing direction field algorithm (Section 2) that generates singularities to capture the surface geometry. By changing only its objective function (Section 3), the same algorithm can also generate direction fields where the surface geometry has

ACM Journal Name, Vol. V, No. N, Month 20YY.

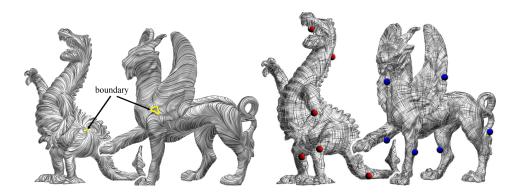


Fig. 9. **Left**: Removing geometric influence on a topological disk (left) and a genus 2 surface with a boundary (right). **Right**: If no geometric influence is wanted, the algorithm evenly distributes singularities on the surface: 8 singularities of index 1/4 on a topological sphere (left), and 8 singularities of index -1/4 on a genus-two surface (right)

a minimal influence on this apparition of singularities. In this section, we explore how to modify the objective function such that only 'meaningful features' will be captured by the singularities.

A straightforward solution would be to weight the part of the objective function that captures the influence of the geometry (C_1^t) . This would remove a part of the geometry influence, but in a way that is not related to the geometric feature size. For this reason, we prefer restating the objective function by filtering the angle defect influence.

We have seen in Section 3 that the influence of the surface's geometry on the smoothing can be canceled by changing the objective function to $C_1(\theta_0,p_1)=C_1^t$ such that $d_1C_1^t=\bar{K}_2-K_2$. In this case, the smoothing behaves as if the surface has a constant Gaussian curvature $K_2^{av}=\bar{K}_2/|v^*|$. More generally, changing the objective to $d_1C_1^t=K_2^{corr}-K_2$ will make the smoothing behave as if the surface had angle defects K_2^{corr} instead of K_2 . What most applications need is to remove only the singularities due to high geometric frequencies while placing singularities according to the global shape of the surface. To achieve this, we chose as K_2^{corr} a low-pass filtered version of K_2 . As it must still be an admissible angle defect, K_2^{corr} needs to satisfy $\sum_{v^*} K_2^{corr}(v^*) = 2\pi\chi$.

Section 4.1 explains how to obtain K_2^{corr} by low-pass filtering K_2 , then Section 4.2 presents a practical solution to edit the field topology.

4.1 Filtering K_2

We will smooth the density of curvature K_2^{av} defined in Section 1.4 (to be mesh independent) with a Gaussian smoothing algorithm based on an raw estimation of the geodesic distance using the shortest path of edges between two points. Note that the algorithm acts on K_2 directly but it smooths K_2^{av} . We choose a Gaussian radius σ , then for each vertex v_i , we use a Dijkstra algorithm to compute the distance D_{ij} from vertex v_i to vertex v_j , stopping when $D_{ij} > 2\sigma$. The filter can then be computed as:

$$K_2^{corr}(v_j^*) = \sum_{v_i^*} \frac{c_{ij} K_2(v_i^*)}{\sum_{v_k^*} c_{ik}} \quad with \quad c_{ij} = |v_j^*| e^{-\left(\frac{D_{ij}}{\sigma}\right)^2}.$$

Fig. 10. **Left**: Topological editing is useful to adjust the topology, especially when the surface exhibits local symmetries. **Right**: Merging 1/4 index singularities into 1/2 index singularities can simplify the field topology.

Notice that the smoothing ensures:

$$\sum_{v^*} K_2(v^*) = \sum_{v^*} K_2^{corr}(v^*)$$

as $\sum_j c_{ij} K_2(v_i^*)/\sum_k c_{ik} = K_2(v_i^*)$. Large values of σ will correspond to smoother K_2^{corr} thus remove larger geometric details, but will require longer computation time. The geometry smoothing algorithm of Section 2 corresponds to the limit $\sigma \to 0$, where $c_{ij} \to 0$ except $c_{ii} \to v^*(i)$ and $K_2^{corr} \to K_2$. The geometry canceling smoothing algorithm of Section 3 corresponds to the limit $\sigma \to \infty$, where $c_{ij} \to v^*(j)$ and $K_2^{corr} \to \bar{K}_2$. Once K_2^{corr} is computed, we get C_1^t as in Section 3 except that the constraint is replaced by $d_1C_1^t = K_2^{corr} - K_2$.

4.2 Editing the direction field topology

The field topology obtained automatically by our algorithm can be improved by the user by merging singularities (see Figure 10), or to moving them to semantically meaningful positions, for instance to respect local symmetries (see Figure 10). Such topological editing operations could be guarantied using previous work [Ray et al. 2008], but this approach makes it impossible to continue editing the field geometry as before. For this reason, we prefer another approach based on editing K_2^{corr} that has no theoretical guarantees but never fails in practice.

Our method is based on updating C_1^t accordingly to the desired topology. Canceling a pair of singularities of indices +I at v^* and -I at v'^* , or equivalently moving an index +I singularity from v^* to v'^* is done by adding I to $K_2^{corr}(v^{*})$ and subtracting I to $K_2^{corr}(v^*)$. Then C_1^t is computed as usual, and the user can continue processing the field as before (adding directional constraints, smoothing the field, etc.).

RESULTS AND APPLICATIONS

We provide some insights on the parameter tuning and timings for the Michelangelo's David statue at a resolution 100K triangles. Here are the three main steps of our final algorithm applied to this model:

- (1) Smoothing the angle defect K_2 is done by a Gaussian filter and the result is called K_2^{corr} (Section 4.1). The only tuning parameter is the Gaussian radius σ . Increasing σ makes it possible to "trade" some field smoothness against a simpler field topology. It takes respectively 20s, 1min 15s and 5 min 30s to smooth with $\sigma=0.05h,0.1h$, and 0.2h, where h denotes the height of the statue.
- (2) Computing the target curvature C_1^t : minimize its squared norm under constraint $d_1C_1^t =$ ACM Journal Name, Vol. V. No. N. Month 20YY.

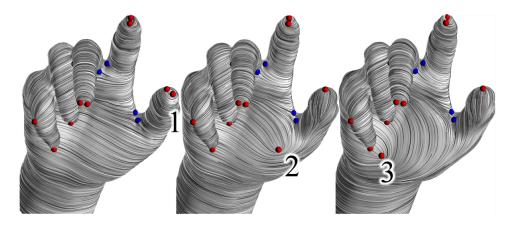


Fig. 11. Moving an index from (1) to new positions (2) then (3), by a modification of C_1^t is robust enough in practice.

- $K_2^{corr} K_2$ (Section 3). Computing C_1^t from K_2^{corr} requires 2 seconds with an efficient linear solver (CHOLMOD [Davis and Hager 2005]).
- (3) Enforcing $C_1(\theta_0,p_1)=C_1^t$ in the least square sense after a change of variables as in [Li et al. 2006] (Section 2). It requires a series of quadratic minimizations. The tuning parameters are the trade-off λ between smoothness and data-fitting and the number of iterations. 1 to 5 iterations are usually sufficient, and each step costs 2.5 seconds with CHOLMOD on the David.

As the filtering of the influence of geometric details is performed in pre-computation steps (1 and 2), it is then possible to apply many direction field processing algorithms such as field generation, smoothing or direction extrapolation (using step 3) that will always preserve the property of ignoring geometric details for the generation of singularities. Compared with previous works, this framework makes it much simpler to design direction fields:

- —N-RoSy [Palacios and Zhang 2007] does not allow to preserve a simple topology while editing the direction field because it uses topology simplification as a post-processing step.
- —NSDF [Ray et al. 2008] requires manually placing singularities. It may be tedious for high genus models such as the Michelangelo's David statue (genus 8) that requires at least 56 singularities of index -1/4 for a 4-symmetry direction field (see Figure 12).

For interactive design of direction fields, our algorithm allows controlling the field by simply "painting" hard constraints on the surface while preserving the tradeoff between simple topology and smoothness. Since new constraints are usually introduced to locally modify the field geometry, the smoothing is also performed locally. This allows real-time feedback while painting new constraints.

It has been shown in [Palacios and Zhang 2007] that complex field topology may affect the quality in texturing / hatching applications. For global parameterization based on cone singularities, that topological complexity becomes critical as it determines the type of parametric domain. Our method provides direction fields suitable for this application as they have the minimal number of singularities to capture the global shape of the object.

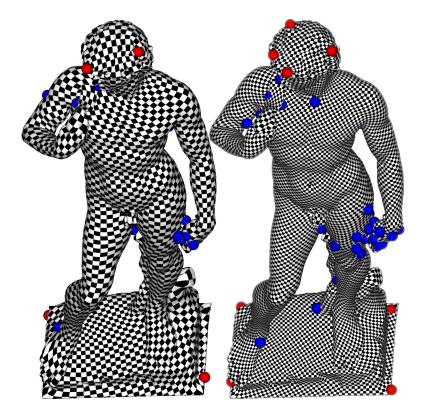


Fig. 12. 2-symmetry (left) and 4-symmetry (right) direction fields generated by our method are used as input for a global parameterization (using quadcover).

As illustrated in Figure 13, the global parameterization (very coarse quad mesh) is simple enough to be used as a parametric domain for geometry images [Gu et al. 2002] (increasing the geometry image resolution gives finer meshes).

Finally, the generality of the N-symmetry framework makes it eligible for triangular re-meshing based on 6-symmetry directions fields. As explained in section 1.5, increasing the number of symmetries will also increase the number of singularities generated by high geometric frequencies. Figure 14 shows that our framework allows to create 6-symmetry directions fields with few singularities even in the presence of high geometric frequencies.

Conclusion

In the past few years, the research topics of quad re-meshing and mesh parameterization have been converging toward what can be called quad parameterization. We believe that Computer Graphics and modeling applications would greatly benefit from quad parameterization as it allows for both seamless texture mapping and automatic conversions between surface representations. However, quad parameterization is still a theoretic concept as existing methods either fail on complex models or require too much user interaction. This work removes some limitations by providing a simple yet efficient tool to define quad orientation with a clean global topology. We hope this will help quad parameterization to become tomorrow's standard in the computer Graphics industry.

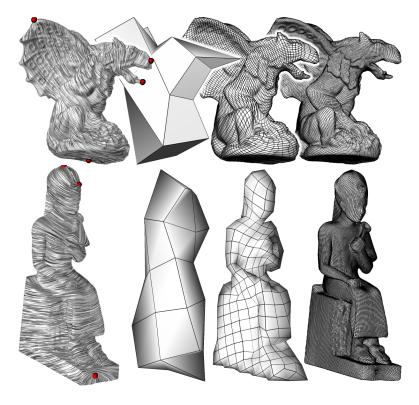


Fig. 13. Producing few singularities allows to create very coarse quad mesh (right) with quad cover. This mesh can be used as base domain for geometric images with different resolution (middle).

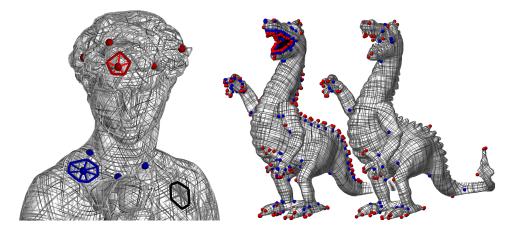


Fig. 14. Left: A 6-symmetry direction fields generated on the head of the Michelangelo's David statue. Notice that for triangular re-meshing applications, 1/6 indices will become valence 5 vertices (red), -1/6 indices will become valence 7 vertices (blue), and zero indices become regular (valence 6) vertices (black). **Right**: Our method (right) allows to remove singularities that are due to geometric high frequencies (left).

- ALLIEZ, P., COHEN-STEINER, D., DEVILLERS, O., LEVY, B., AND DESBRUN, M. 2003. Anisotropic polygonal remeshing. ACM Transactions on Graphics. Special issue for SIGGRAPH conference, 485–493.
- BEN-CHEN, M., GOTSMAN, C., AND BUNIN, G. 2008. Conformal flattening by curvature prescription and metric scaling. In *IEEE Eurographics*. Eurographics.
- DAVIS, T. A. AND HAGER, W. W. 2005. Row modifications of a sparse Cholesky factorization. *Journal on Matrix Analysis and Applications* 26, 3, 621–639.
- DESBRUN, M., KANZO, E., AND TONG, Y. 2005. Discrete differential forms for computational modeling. Siggraph '05 course notes on Discrete Differential Geometry, Chapter 7.
- DESBRUN, M., LEOK, M., AND MARSDEN, J. 2005. Discrete Poincaré lemma. In Applied Numerical Mathematics Volume 53, Issues 2-4. 231–248.
- FISHER, M., SCHRÖDER, P., DESBRUN, M., AND HOPPE, H. 2007. Design of tangent vector fields. In SIG-GRAPH '07. ACM, New York, NY, USA, 56.
- Gu, X., Gortler, S., and Hoppe, H. 2002. Geometry images. In SIGGRAPH '02. 355-361.
- HERTZMANN, A. AND ZORIN, D. 2000. Illustrating smooth surfaces. In *Proceedings of ACM SIGGRAPH*. 517–526.
- KALBERER, F., NIESER, M., AND POLTHIER, K. 2007. Quadcover surface parameterization using branched coverings. *Computer Graphics Forum 26*, 3 (September), 375–384.
- KHAREVYCH, L., SPRINGBORN, B., AND SCHRÖDER, P. 2006. Discrete conformal mappings via circle patterns. ACM Trans. Graph. 25, 2, 412–438.
- LEFEBVRE, S. AND HOPPE, H. 2006. Appearance-space texture synthesis. In *SIGGRAPH '06*. ACM Press, New York, NY, USA, 541–548.
- LEVY, B. 2005. Numerical methods for digital geometry processing. In *Israel Korea Bi-National Conference Invited talk*.
- LI, W.-C., RAY, N., AND LEVY, B. 2006. Automatic and interactive mesh to T-spline conversion. In *EG/ACM Symposium on Geometry Processing*.
- LI, W.-C., VALLET, B., RAY, N., AND LEVY, B. 2006. Representing higher-order singularities in vector fields on piecewise linear surfaces. *IEEE Transactions on Visualization and Computer Graphics*.
- PALACIOS, J. AND ZHANG, E. 2007. Rotational symmetry field design on surfaces. In SIGGRAPH '07. ACM, New York, NY, USA, 55.
- PINKALL, U. AND POLTHIER, K. 1993. Computing discrete minimal surfaces and their conjugates. *Experimental Mathematics* 2, 1, 15–36.
- PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2000. Lapped textures. In SIGGRAPH '00, K. Akeley, Ed. 465–470.
- PRAUN, E., HOPPE, H., WEBB, M., AND FINKELSTEIN, A. 2001. Real-time hatching. In *SIGGRAPH'01*, E. Fiume, Ed. 579–584.
- RAY, N., LI, W. C., LEVY, B., SHEFFER, A., AND ALLIEZ, P. 2006. Periodic global parameterization. In *ACM Transactions on Graphics*.
- RAY, N., VALLET, B., LI, W.-C., AND LEVY, B. 2008. N-symmetry direction fields on surfaces of arbitrary genus. In ACM Transactions On Graphics.
- SPRINGBORN, B., SCHRÖDER, P., AND PINKALL, U. 2008. Conformal equivalence of triangle meshes. *ACM Trans. Graph.* 27, 3, 1–11.
- TONG, Y., ALLIEZ, P., COHEN-STEINER, D., AND DESBRUN, M. 2006. Designing quadrangulations with discrete harmonic forms. In *Symposium on Geometry Processing*. Eurographics, 201–210.
- TURK, G. 2001. Texture synthesis on surfaces. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM Press, New York, NY, USA, 347–354.
- ZHANG, E., MISCHAIKOW, K., AND TURK, G. 2006. Vector field design on surfaces. In ACM Transactions on Graphics. 1294–1326.