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Abstract: The Network Formation problem has received increasing attention in recent
years. Previous works have addressed this problem considering only networks designed by
selfish users, which can be consistently suboptimal.

This paper addresses the network formation issue using cooperative game theory, which
permits to study ways to enforce and sustain cooperation among agents. Both the Nash
bargaining solution and the Shapley value are widely applicable concepts for solving these
games. However, we show that the Shapley value presents three main drawbacks in this
context: (1) it is non-trivial to define meaningful characteristic functions for the cooperative
network formation game, (2) it can determine for some players cost allocations that can be
higher than those at the Nash Equilibrium (and then, if the players refuse to cooperate),
and (3) it is computationally very cumbersome.

For this reason, we solve the cooperative network formation game using the Nash bar-
gaining solution (NBS) concept. More specifically, we extend the NBS approach to the case
of multiple players and give an explicit expression for users’ cost allocations. Furthermore,
we compare the NBS to the Shapley value and the Nash equilibrium solution, showing its
advantages and appealing properties in terms of cost allocation to users and computation
time to get the solution.

Numerical results demonstrate that the proposed Nash bargaining solution approach
permits to allocate costs fairly to users in a reasonable computation time, thus representing
a very effective framework for the design of efficient and stable networks.
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A Nash bargaining solution for Cooperative Network
Formation Games

Résumé : Le probléme de formation des réseaux a recu une attention croissante ces
derniéres années. Les travaux précédents ont abordé ce probléme supposant que les réseaux
soient créés par des utilisateurs égoistes ; toutefois, ces réseaux peuvent étre systématiquement
sous-optimaux.

Cet article aborde le probléme de formation des réseaux en utilisant la théorie des jeux
coopératifs, qui permet d’étudier les moyens pour faire respecter et soutenir la coopération
entre des agents.

La solution de “Nash bargaining” et la valeur de Shapley sont des concepts largement
applicables pour résoudre ces jeux.

Cependant, nous montrons que la valeur de Shapley présente trois inconvénients majeurs
dans ce contexte : (1) il nest pas évident de définir des fonctions caractéristiques significatives
pour le jeu que nous étudions, (2) il peut déterminer pour certains utilisateurs des allocations
de cout plus élevées que celles & I’équilibre de Nash (et donc, si les joueurs refusent de
coopérer), et (3) le temps de computation est trés long.

Pour cette raison, nous résolvons le jeu coopératif de formation de réseau en utilisant le
concept de “Nash bargaining solution” (NBS).

Plus spécifiquement, nous étendons cette derniére approche au cas de plusieurs joueurs,
et nous donnons une expression explicite pour l'allocation des cotlits aux utilisateurs. En
outre, nous comparons la NBS 4 la valeur de Shapley et a I’équilibre de Nash, montrant ses
avantages et ses propriétés attrayantes en termes d’allocation des cotts aux utilisateurs et
de temps de computation pour obtenir la solution.

Les résultats numériques montrent que I’approche proposée permet d’allouer aux utilisateurs
des cotits de maniére équitable avec un temps de computation raisonnable, représentant un
“framework” tres effectif pour la conception de réseaux efficaces et stables.

Mots-clés : Formation de Réseau, Théorie des Jeux Coopératifs, Coalition, Nash bargaining
solution, valeur de Shapley
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1 Introduction

The Network Formation problem has become increasingly important given the continued
growth of computer networks such as the Internet. The design of such networks is generally
carried out by a large number of self-interested actors (users, Internet Service Providers .. .)
all of whom seek to optimize the quality and cost of their own operation.

Over the past years, the network formation problem has been tackled almost exclusively
from a non-cooperative point of view. Recent works [1L 2, Bl 4 [5] have modeled how inde-
pendent selfish agents can build or maintain a large network by paying for possible edges.
Nash equilibria in such games, however, can be much more expensive than the optimal,
centralized solution. This is mainly due to the lack of cooperation among network users,
which leads to design costly networks.

The underlying assumption in all the above works is that agents are completely non-
cooperative, isolated entities. However, this assumption could be not entirely realistic, for
example when network design involves long-term decisions (e.g., in the case of Autonomous
Systems peering relations). It is more natural that agents will discuss possible strategies
and, as in other economic markets, form coalitions taking strategic actions that are beneficial
to all members of the group. Moreover, incentives could be introduced by some external
authority (e.g., the network administrator, the government authority) in order to increase
the users’ cooperation level.

Preliminary works, like [6 [7], tried to overcome this limitation by incorporating a
socially-aware component in the users’ utility functions. This solution, though, can be
insufficient to obtain cost-efficient networks in all scenarios. In fact, it has been demon-
strated in [6] that, quite surprisingly, highly socially-aware users can form stable networks
that are much more expensive than the networks designed by purely selfish users.

To address the above issues, in this paper we formulate the network formation problem
as a cooperative game, where groups of players (named coalitions) coordinate their actions
and pool their winnings; consequently, one of the problems is how to divide the cost savings
among the members of the formed coalition.

The Shapley value and the Nash bargaining solution are widely applicable solution con-
cepts for cooperative games. The former has appealing properties, since it provides a unique
and fair solution [8]. The Nash bargaining approach, on the other hand, studies situations
where two or more agents need to select one of the many possible outcomes of a joint col-
laboration [9, 10]. Examples include wage negotiation between an employer and a potential
employee, or trade negotiation between two countries. Each party in the negotiation has
the option of leaving the table, in which case the bargaining will result in a disagreement
outcome. The Nash bargaining solution (NBS) is a very effective tool to model interac-
tions among negotiators, and is unique for bargaining games satisfying Pareto optimality,
symmetry, scale independence, and independence of irrelevant alternatives [9] [10].

However, we will show that the Shapley value presents several drawbacks in this context:
(1) it is non-trivial to define meaningful characteristic functions for the cooperative network
formation game, (2) the cost allocation determined by the Shapley value can be, in some
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cases, even costlier than that obtained at some Nash equilibrium, and (3) for our network
formation game, it cannot be determined in a reasonable computation time.

For these reasons, we propose a Nash bargaining approach to solve the cooperative net-
work formation problem. More specifically, as a key contribution, we extend the Nash
bargaining solution for the cooperative network formation problem to the case of multiple
players with linear constraint, and give explicit expressions for users’ cost allocations. To
the best of our knowledge, the derived explicit expressions are new.

Furthermore, we perform a thorough comparison of the proposed Nash bargaining solu-
tion with other classic approaches like the Shapley value and the Nash equilibrium solutions,
using different network scenarios.

Numerical results demonstrate that the proposed Nash bargaining solution can compute
efficient cost allocations in a short computing time, thus representing a very effective tool
to plan efficient and stable networks.

The main contributions of this work can therefore be summarized as follows:

e the formulation of the network formation problem as a cooperative game, where players
cooperate to reduce their costs.

e The proposition of a novel Nash bargaining solution for the n-person cooperative net-
work formation problem, which has appealing properties in terms of planning efficient
networks and cost allocations in a reasonable computation time.

e A comparison of the proposed approach with classic solutions, like the Shapley value
and the Nash equilibrium concepts, in large-size network topologies.

The paper is organized as follows: Section [2] discusses related work. Section [3]introduces
the proposed cooperative network formation game, the proposed Nash bargaining solution
along with a distributed approach we propose for its computation. Section [ presents nu-
merical results that demonstrate the effectiveness of the NBS approach in different realistic
network scenarios. Finally, Section [5] concludes this paper.

2 Related Work

The network formation problem has been addressed in several recent works, mainly in the
context of non-cooperative games [1 [2, [6]. The works in [3| 4, 11, 12] have further considered
coordination issues among players.

The so-called Shapley network design game is proposed in [I]. In this non-cooperative
network formation game, each player chooses a path from its source to its destination, and
the overall network cost is shared among the players in the following way: each player
pays for each edge a proportional share 7= of the edge cost c., where z. is the number of
players that choose such edge. In [6] the Shapley network design game is extended, adding
a socially-aware component to users’ utility functions.

The survey article in [I1] presents the most notable works on network formation in
cooperative games; furthermore, the existence of networks that are stable against changes
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in link choices by any coalition is studied in [13]. In [14], Andelman et al. analyze strong
equilibria with respect to players’ scheduling as well as a different class of network creation
games in which links may be formed between any pair of agents. For these latter games,
strong Nash equilibria (i.e., equilibria where no coalition can improve the cost of each of its
members) achieve a constant Price of Anarchy, which is defined as the ratio between the
cost of the worst Nash equilibrium and the social optimum. Strong Nash equilibria ensure
stability against deviations by every conceivable coalition of agents. A similar problem is
considered in [12], where nodes can collaborate and share the cost of creating any edge in
the host graph.

The works in [3, 4] study the existence of strong Nash equilibria in network design games
under different cost sharing mechanisms. More specifically, the authors in [3] show that there
are graphs that do not admit strong Nash equilibria, and then give sufficient conditions for
the existence of approximate strong Nash equilibria.

The idea of using the Nash bargaining solution in the context of telecommunication
networks has been considered in different networking scenarios. Such approach was first
presented for packet-switched data networks by Mazumdar et al. [I5]. Yaiche et al. [16] use
the concept of Nash bargaining solution to derive a price-based resource allocation scheme
that can be applied to the available bit rate service in ATM networks. In [17] the authors
propose a scheme to allocate subcarrier, rate, and power for multiuser orthogonal frequency-
division multiple-access systems. The approach considers a fairness criterion, which is a
generalized proportional fairness based on Nash bargaining solutions and coalitions.

The reader is referred to the next section, to the book by Muthoo [9] and the paper by
Nash [I0] for a general introduction to the Nash bargaining solution concept.

3 Cooperative Network Formation Game: Formulation
and Solutions

This section illustrates the cooperative network formation game considered in this work,
and describes the proposed Nash bargaining solution (NBS). A review of the Shapley value
approach is preliminarily proposed for comparison reasons.

3.1 Network Model

We are given a directed graph G = (V, E), where each edge e has a nonnegative cost c.; each
player i € T = {1,2,...n} is identified with a source-destination pair (s;,t;), and wants to
connect his source to the destination node with the minimum possible cost. Note that c,
represents the total edge cost, which is shared among the players according to the allocation
algorithms we will describe in the following.

We consider a cooperative game in strategic form G = (Z, A,{J'}), where 7 is the set
of players, A; is the set of actions for player i, A = A; x ... x A,, and J* is the objective
(cost) function, which player ¢ wishes to optimize (minimize).
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In a cooperative game, players bargain with each other before the game is played. If
an agreement is reached, players act according to the agreement reached, otherwise players
act in a non-cooperative or antagonistic way. Note that the agreements reached must be
binding, so players are not allowed to deviate from what is agreed upon.

3.2 The Shapley value solution

We now review the Shapley value solution approach, and discuss meaningful definitions for
the characteristic function.

The Shapley value is a widely applied concept for solving cooperative games. It is
a possible way to allocate the total costs among the members of a coalition, taking into
account their different importance for the coalition. The main advantage of the Shapley
value is that it provides a solution that is both unique and fair: it is unique in the class of
subadditive cooperative games (see definition below); it is fair in a sense that it satisfies a
series of axioms intuitively associated with fairness (see [§]). However, while these are both
desirable properties, the Shapley value has one major drawback: for many coalition games,
including our network formation game, it cannot be determined in a reasonable time. We
shall discuss computation aspects in more detail below.

A Shapley function ¢ is a function that assigns to each possible characteristic function
v a vector of real numbers, i.e.,

QS(’U):[¢1(’U),...,QSZ-('U),...,(ﬁn(U)}, (1)

where ¢;(v) represents the cost of player 4 in the game.

The characteristic function, v, is a real-valued function that associates with every non-
empty subset S of Z (i.e., a coalition) a real number v(S), the cost of S; v(S) must satisfy
the following propertiesﬂ

1. v(®) =0.

2. (Subadditivity) if S and 7 are disjoint coalitions (SN7 = @), then v(S) + v(7) >
v(SUT).

This latter property means that cooperation can only help but never hurt.

Note that defining the characteristic function is not straightforward for the cooperative
network formation game considered in this work, since a “natural” definition can violate the
subadditivity property, as we will discuss in the following.

The three definitions reported hereafter “naturally” arise in our networking problem as
candidate characteristic functions:

1. Players in S and players in 7 — S form two separate coalitions. Each coalition tries
to minimize the total cost for its members, taking into account the selfish behavior of
the other coalition. A Nash equilibrium is reached, and v(S) is defined as the total
cost for members in S at this equilibrium.

I The second one is required to guarantee the uniqueness of the Shapley value solution.
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2. The value of the coalition S is defined as its security level, i.e. as the minimum total
cost that S can guarantee to itself when members in 7 — S act collectively in order to
maximize the cost for the coalition S.

3. The value of coalition S is equal to the minimum cost that its members would incur
if players in Z — S would be absent.

We note that, in our specific game, these three definitions give increasing value to a
coalition S. In fact, when players in Z — & minimize their own cost (first definition), their
path choices cannot be as bad for § as when they try to maximize the cost for S (second
definition). Still, when players in Z — S are present, they are obliged to select paths to
connect their source-destination pairs, and some of these links may be used also by players
in S, so that v(S) is smaller in the second definition than in the third.

To better illustrate the differences underlying these definitions, let us consider the hexagon
network scenario of Figure [I] with 6 links and 3 players having the following source-
destination pairs: (s1,t1), (S2,t2) and (s3,t3). All link costs are equal to 1, except for
link 3 — to, which has a cost equal to 1 — ¢, € being a very small constant.

Figure 1: Hexagon network topology: the 3 players must connect their source-destination
nodes (s;,t;). The optimal solution, which in this case coincides with both the Nash equi-
librium point and the Nash bargaining solution, is also illustrated with dashed lines.

Table 1 reports, for each of the three above definitions, the corresponding characteristic
function values.

It can be easily checked that definition (1) does not lead to a characteristic function, since
the subadditivity property is not satisfied (for example, v(12)+v(3) < v(123)), and therefore
it cannot be used to compute Shapley values. Indeed, with such definition, cooperation
among players can lead to costlier solutions. On the other hand, definitions (2) and (3) lead
to characteristic functions.

Theorem 1 In the Cooperative Network Formation Game, the security level and the mini-
mal cost of coalition satisfy the axioms of characteristic function.

Proof: See the Appendix.

To calculate the Shapley function, suppose we form the grand coalition (the coalition
containing all n players) by entering the players into this coalition one at a time. As each
player enters the coalition, he is charged the cost by which his entry increases the cost of
the coalition he has entered. The cost a player pays by this scheme depends on the order in
which the players enter. The Shapley value is just the average cost charged to the players if
they enter in a completely random order, i.e.

i = Z (IS = D¥n — |S|)!(v(5) — (8 - {i})). (2)

n!
SCI,ieS
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Table 1: Hexagon network scenario: characteristic function values, v(S), for definitions (1),

(2) and (3).
Characteristic Function value (v(S))
Coalition (S) | Definition (1) | Definition (2) | Definition (3)

0 0 0 0
1 1 1 1
2 2.5-¢ 25-¢€ 3-€
3 0.5 1 1
12 3 3 3
13 1.5 1.5 2
23 3-€ 3-€ 3-€
123 4-¢ 4-¢ 4-¢

It can be proved that the problem of computing the Shapley value is an NP-complete
problem. Polynomial methods, based on sampling theory, have been proposed in [I8] for
approximating the Shapley value; these estimations, though, are efficient only if the worth of
any coalition § can be calculated in polynomial time, which is not the case for our problem.

In fact, even using the approximation methods proposed for example in [18], it is nec-
essary to compute the worth of an extremely large number of coalitions, which is compu-
tationally very cumbersome, while as we see next, our proposed Nash bargaining solution
needs only computing the worth of the grand coalition.

3.3 The Nash bargaining solution (NBS)

Since the computation cost of the Shapley value can be extremely high in network scenarios
with many players, in this paper we consider another approach to cooperative game: Nash
bargaining. We will show that the computation of the Nash bargaining solution is very light.

Let u; denote the maximal acceptable cost that user ¢ is willing to pay. In the present
work we suggest the following three options:

1. the cost for user 7 to connect its source-destination nodes in a purely non-cooperative
game (i.e., the Nash equilibrium solution);

2. the cost for user 7 to connect its source-destination nodes in a zero-sum game where
all the other players are trying to maximize the cost of user i;

3. the cost for user i to connect its source-destination nodes when there is no other player.

The vector u = {u1,ua,...u,} is also denoted as the disagreement point of the coopera-
tive network formation game (i.e., what will happen if players cannot come to an agreement).
Clearly, the cost achieved by every player at any agreement point (every possible outcome

INRIA



A Nash bargaining solution for Cooperative Network Formation Games 9

of the bargaining game) has to be at most equal to the cost achieved at the disagreement
point.

We now derive a Nash bargaining solution for allocating the total network cost to users.
To this aim, we extend the well-known two-player NBS concept to the n-player network
formation game, considering transferable network costs, providing explicit expressions. This
assumption means that the players or the system administrator can redistribute the total
cost among the players.

Let ugo. denote the total network cost resulting from social optimization. This can
be computed, for example, formulating the generalized Steiner Tree problem [I9] with an
Integer Linear Program, using a mathematical programming model (like AMPL [20]), and
solving it with a commercial solver (like CPLEX [21]). Solving such problem provides the
least-cost network topology that connects all source-destination pairs.

Then, the Nash bargaining solution can be given in explicit form.

Theorem 2 The Nash bargaining solution for player i, «; is given by the following expres-
sion:
U — U
= u; — M7 (3)
m

where m coincides with the number of players n (i.e., m =n) if we allow for negative costs
(i.e., some «; values are negative, which means that some players are actually paid to ensure
their participation). Otherwise, if only non-negative costs are allowed (or equivalently, if no
positive transfers are permitted), m is defined as the largest integer for which the following

inequality is satisfied:
m—1

! (Z Ui — usoc) < Um (4)

m—1

having assumed, without loss of generality, that players are ordered such that uy > us >
R T

Proof: See the Appendix.

We would like to emphasize that in the first case a values can be positive or negative,
while in the second case « values are non-negative. In particular, m gives the number of non-
zero « values, i.e., a1, ao, . .. ay, are positive and given by expression , while 41, ...
are equal to zero.

3.4 Distributed algorithm for computing the NBS

We now outline a distributed algorithm for computing the Nash bargaining solution. The
minimal requirements w;, Vi € Z, defined in the previous section, can be easily computed.
In the first two cases, it can be observed that the computation of the Nash equilibrium
solution for a non-cooperative network formation game can be performed in a distributed
way, since the best-response dynamics is guaranteed to converge to a pure Nash equilibrium.

RR n°® 7480



10 Avrachenkov & Elias & Martignon & Neglia € Petrosyan

As for the third definition, the problem is simply to compute the least-cost path between all
source-destination pairs, for which there exist several distributed algorithms.

In order to compute the Nash bargaining solution given by expression , it is necessary
to find the cost of the socially optimal network (us,.). To this aim, the technique proposed in
[19] can be used. This is one of the first distributed algorithms proposed for the Generalized
Steiner tree problem; it is a probabilistic algorithm with O(logn) expected approximation,
based on a probabilistic tree embedding due to Fakcharoenphol et al. [22].

Then, each player i to calculate the NBS solution «; needs only to know the disagreement
point u of the cooperative game; this can be simply achieved by each player broadcasting
its minimal requirement u; to all other players.

4 Numerical Results

This section reports the numerical results obtained applying our proposed Nash bargaining
solution (NBS) to cooperative network design games played in different network scenarios,
including simple network instances and more complex random topologies. The NBS, com-
puted as illustrated in the previous section, is compared both to the cost allocation provided
by the Shapley value, as well as to a Nash equilibrium solution. This latter is determined
in the non-cooperative network formation framework proposed in [I], revised in Section
2, starting from the empty network and using a best response algorithm where each user
greedily minimizes its path cost until an equilibrium is reached.

We assume that positive transfers are allowed. To compute the Shapley value, we further
assume that the worth of a coalition § is the minimum cost that its members would incur if
players in Z — S would be absent (definition 3). This allows us to consider the “worst case”,
i.e. the costlier definition for a coalition, as discussed before. As for the disagreement point
u; in the NBS, we reasonably assume that it is the cost for user i to connect its source-
destination nodes in a purely non-cooperative game (i.e., the Nash equilibrium solution).
However, we underline that our proposed NBS approach is general and can be applied to
any problem setting. The investigation of the impact of other characteristic function and
disagreement point choices is left as future research issue.

Let us first consider the simple network scenario already illustrated in Figure [1} with 6
links and 3 players. The optimal network cost is here us,. = 4 — €, and coincides with the
cost of the network formed at the Nash Equilibrium Point (NEP). The Nash equilibrium
and the Shapley value solutions for this scenario are reported in Table 2, together with the
Nash bargaining solution, which in this case coincides with the NEP.

Numerical results show that the solution given by the Shapley value for player 3 (% R
0.83) is costlier than that of the Nash equilibrium, 0.5. We further observe that even defining
the value of a coalition as its security level (definition 2, Section leads to the same
Shapley values reported in Table 2. As a consequence, the Shapley value solution is somehow
unstable for all the considered definitions of the characteristic function, since some players
(i.e., player 3 in this scenario) can deviate to reduce their cost. This is surprising, because
the Shapley value satisfies the individual rationality property, so that the Shapley value

INRIA
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Table 2: Hexagon network scenario with 3 players. The table reports the cost paid by each
player at the Nash Equilibrium Point, the Shapley value and the Nash bargaining solution.
The total network cost is equal to 4 — € for all allocation algorithms.

Algorithm (817 f,l) (52, tg) (83, t3)
NEP 1 2.5 - ¢ 0.5
Shapley value | 2 ~ 0.83 [ 25 ~ 2.33 | 2% ~ 0.83
NBS 1 2.5-¢ 0.5

allocation is always preferable for each player than playing alone. The apparent paradox
originates from the fact that the value of the single player coalition has been defined either
as the cost incurred if all other players are absent (definition 3), or as its security value,
considering that all the other players are trying to maximize its cost (definition 2). In reality,
at the Nash equilibrium, the cost of player ¢ is smaller than such values and, as we have
shown, it can be even smaller than the Shapley value imputation.

The same behavior can be observed also in more general topologies. To show this,
we considered random network scenarios generated as follows: we randomly extract the
position of N nodes, uniformly distributed on a square area with edge equal to 1000. As for
the network links, which can be bought by players to connect their endpoints, we consider
random geometric graphs, where links exist between any two nodes located within a range
R. The link cost is set to its length.

Tables 3, 4 and Figure [2] illustrate the results obtained in a random geometric graph
scenario with 50 nodes, range R = 500 (which means approximately more than 1200 links)
and, respectively, 5, 10 and 15 source-destination pairs (players). The tables and figure
report the costs for the players reached at the Nash equilibrium, the Shapley value as well as
our proposed Nash bargaining solution. The total network cost is reported in the last column;
note that such values corresponds, for the Shapley value and the Nash bargaining allocation
algorithms, to the socially optimal solution (us,. parameter), which can be obtained as
explained in Section [3])

It can be observed that, in all scenarios, at least 2 players (marked in bold in the tables,
with arrows in Figure [2|) have a Shapley value that is higher than the Nash equilibrium cost.
However, the cost saving between the NEP and the optimal cost (which is approximately
700 and 1250 for the n = 10 and n = 15 scenarios, respectively) could be re-distributed,
which is what the Nash bargaining solution does, increasing the appeal of the cost sharing
solution.

Obviously, since both the Shapley value and the NBS distribute the social cost (usec)
among the players, there will be players whose allocation is costlier under the NBS than
with the Shapley value allocation. This happens, in the numerical example we considered,
for players that have a large cost at the Nash equilibrium. However, every player is always
better off under the NBS allocation than at the Nash equilibrium, since cost savings are
redistributed.
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Table 3: Random geometric network scenario with 5 players. The table reports the cost paid
by each player at the Nash Equilibrium Point, the Shapley value and the Nash bargaining
solution. The total network cost is also reported.

Algorithm P1 P2 P3 P4 P5 Total cost
NEP 299.1 | 149.4 | 400.0 | 824.4 | 580.3 2253.1
Shapley value | 298.9 | 167.5 | 380.4 | 817.3 | 589.0 2253.1
NBS 299.1 | 149.4 | 400.0 | 824.4 | 580.3 2253.1

Table 4: Random geometric network scenario with 10 players. The table reports the cost paid
by each player at the Nash Equilibrium Point, the Shapley value and the Nash bargaining
solution. The total network cost is also reported.

Algorithm P1 P2 P3 P4 P5 P6 pP7 P8 P9 P10 || Total cost
NEP 283.0 | 149.4 | 235.3 | 824.4 | 714.8 | 450.5 | 674.0 | 195.6 | 186.0 | 266.9 3979.9
Shapley value | 260.5 | 170.6 | 253.9 | 717.1 | 472.8 | 387.5 | 508.0 | 142.5 | 183.8 | 175.6 3272.2
NBS 212.3 | 78.6 164.6 | 753.6 | 644.0 | 379.7 | 603.2 | 124.8 | 115.3 | 196.2 3272.2

Furthermore, we observe that computing the Shapley value for n = 15 players took sev-
eral weeks of computation on the workstation used to obtain the numerical results reported
in this paper, i.e., an Intel Pentium 4 (TM) processor with CPUs operating at 3 GHz and
with 1024 Mbyte of RAM. Therefore, computing the Shapley value for a larger number of
players is practically infeasible in such network scenario. On the other hand, our proposed
n-person Nash bargaining solution is very simple to calculate, and could be computed within
a few minutes in all considered network scenarios, thus representing a practical and efficient
solution to the network formation problem.

Figure 2: Random geometric network scenario with 15 players. The figure reports the cost
paid by each player at the NEP, the Shapley value and the NBS. The total network cost is
equal to 5076.0 at the NEP and to 3802.7 for the Shapley value and NBS allocations.

5 Conclusion

In this paper we proposed a novel and efficient Nash bargaining solution for the cooperative
network formation problem with n players. Our solution has very appealing properties
in terms of planning efficient networks and determining cost allocations in a very short
computation time.
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We compared our proposed solution to classic approaches, like the Shapley value and the

Nash equilibrium concepts, in simple and large-size network topologies, with an increasing
number of players.

Numerical results demonstrate that our approach permits to achieve very effective cost

allocations, thus representing an efficient an promising framework for the planning of stable
networks.
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A Proof of Theorem 1

We need to prove that definitions (2) and (3) lead to subadditive characteristic functions.
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Let us first consider the charateristic function defined as in (2). We prove the result
directly for pure strategy games, i.e. when players cannot use more paths according to a
probability distribution.

Let pg be a strategy available to players in S, i.e. us € X;esA;. Observe that given a
strategy for the coalition SU 7T, u(SUT), it can be expressed as product of a strategy of
coalition S and a strategy of coalition 7. We denote Cs the total cost paid by users in S
for a given outcome of the game (for a given set of strategies of the players). Then, we can
express definition (2) as follows:

v(S8) = min max)Cg(ug,u(I— S)).

ns p(Z-S8
Let us consider then the value of the coalition SU7T, we denote by V the set Z— (SUT):

v(UT) = min maxCsyur(usur, py) =
n(SUT) pv

= min max (Cs(us, u1, pv) + C1(ps, pr, v)) <
BS 1T Ky

< min (qu Cs(ps, fit, pry) + max CT(/]S,MT,MV)) =
HS KT \ UV,HT Ky, ps

= min max Cs(us, fiT, pv) + min max Cr (jis, pr, py) =
Hs py,HT KT My, ps

= min max Cs(us, pz—s) + min max Cr(ur, pr—7) =
Hs HI-S HT HI-T

= o(S) + (7).

If we consider also mixed strategies, then the result follows immediately from the follow-
ing theorem in [23].

Theorem 3 Denote by Cs(us,vz—s) the cost of the coalition S in the zero-sum game be-
tween coalition S and T — S, where ug is the strategy of coalition S and vr_g is the strategy
of coalition T — S. Then the function

v(8) = inf sup Cs(us,vz-s) (5)

Svi_s

s subadditive.

The fact that the function defined by (2) is subadditive in the case of mixed strategies
follows immediately from the above theorem.

In order to prove that the function defined by (3) is also subadditive we modify the
network, so that the characteristic function according to (3) in the original game coincides
with the characteristic function according to (2) in the modified network. In particular, we
introduce auxiliary links with infinite cost connecting source and destination nodes of each
player. Now, the best strategy for the coalition Z—S& in the setting (2) is just to choose these
auxiliary links, that is equivalent to remove the players in Z — S from the game (as required
by definition (3)). Thus, subadditivity of the characteristic function (3) follows from above
results for function (2).
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B Proof of Theorem 2

We consider a Nash bargaining solution for the n-players cooperative game with transferable
cost. The assumption about the transferable cost means that the players or the system
administrator can redistribute the total cost among the players.

Then, the Nash bargaining solution is given by the following optimization problem:

n
max | | (u; — ), (6)
K-

1=

subject to
n
Z = Usoe- (7
i=1

Below we consider two cases: (a) individual costs «; can be negative (this can be interpreted
as the coalition pays some members to ensure their participation) and (b) costs cannot be
negative, i.e., no positive transfers are allowed; this precludes paying players to participate
to the network.

Both scenarios make practical sense.

B.1 The case without the requirement on the positivity of costs

If there are no positivity constraints on «;, the Lagrangian is given by

n

LNP = H(uz - ai) + N(Z Q; — usoc)7
i=1

i=1

and the Karush-Kuhn-Tucker condition takes the form:

OLnp
—— = |(wi—a)+p=0, (8)
aO[j 11;1

plus constraint . Multiplying by (u; — o) and dividing by p, we obtain

1 n
Uj — Qj = ; H(Ul — Oéi).
=1

Hence, the difference u; — o; for the optimal solution does not depend on the index j and
we can denote its value by §. Thus, we have

Q; = Ui — (5, (9)

where the value of § can be found from condition :

0= i(i Ui — Usoe)-
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It is interesting to observe that in this case every player gains an equal share of the difference
between the total cost of the Nash equilibrium and the total socially optimal cost. Some
player might actually be reimbursed.

B.2 The case with the requirement on the positivity of costs

In this case, in addition to the equality constraint , we have n inequality constraints
o; >0, i=1,..,n (10)

This formulation corresponds to the following Lagrangian

n

Lp= H(uz —a;) + Z; Aioy + u(; Q — Usoc)-

i=1
The Karush-Kuhn-Tucker condition takes the form:
OLp

e :—H(ui—ai)—&-)\j—kuzo, (11)
/ i#j
)\i Z O, AiOél' = 0, 1= 1, e n, (12)

plus conditions and .

Without loss of generality, we have ordered the players such that u; > us > ... > wuy,.
It follows that a1 > ap > ... > ;. In fact, let us assume that u; > wu; (then ¢ < j) and
a; > oy the vector of costs (ov,---,a;—1,04, -+, a;_1,0;, -+, a,) cannot be a solution
of the problem @, since the vector (a1, -, ;—1,@j, - @j_1,04, -, ) corresponds to a
higher value of the optimization function, being that (u; —o;)(u; — i) > (u; — o) (u; — @j).

Let us denote by m the number of non-zero a’s. In particular, it may happen that m = n.
We shall now illustrate how to determine m.

If ay, ..., ., > 0, by the complementarity slackness condition A;a; = 0, we have A; =0
for i = 1,...,m. Similarly to the first case, multiplying by (u; — «;) and dividing by u,
we conclude that

Uj — o = S,j =1,...,m.

In addition, from we have:
w=(u; —ag)(uz — az)...(Um — Qm)Ump1.. Up = Sm_lumﬂ...un.
Then, for k such that m + 1 < k < n, the equation gives

OLp

TZ—H(UI‘—C%)-F)\}@"‘M:O’
QL £k

—(u1 — 1) (Um — Q) U1 o U —1 Uk 1 Uy, + A + 0 = 0,
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sm sm—1
)\k =0 Um+1-- Up—1Uk41-- - Up — ) Um41---Un,

-1
/\k = [5 — uk]dm Um41-- - Uk —1Uk+1---Up-

Since according to the Karush-Kuhn-Tucker condition A\; must be non-negative, we obtain
the following condition .
d>ug, k=m+1,..n.

This condition allows us to determine m. Before proceeding towards this goal, we determine
¢ from condition , which gives us

5= 7711(2% — Ugpe)-

Then, we have the following algorithm to determine m: first, check if

1
n—1

n—1
(Z Ui — Uspe) < Up. (13)
i=1
If it is the case, then all a; are positive. We note that
1 n
E(; Ui — usoc) < Up

is an equivalent condition. If condition is not satisfied, find the largest m for which the
following condition holds

7(2 Uq — usoc) < Uy - (].4)

This m gives the number of non-zero a’s.
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