Skip to Main content Skip to Navigation
Journal articles

The dual minimum distance of arbitrary-dimensional algebraic-geometric codes

Alain Couvreur 1, 2
1 GRACE - Geometry, arithmetic, algorithms, codes and encryption
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France
Abstract : In this article, the minimum distance of the dual of a functional code on an arbitrary dimensional variety X over a finite field is studied. The approach consists in finding minimal configurations of points on X which are not in "general position". If X is a curve, the result improves in some situations the well-known Goppa designed distance.
Complete list of metadata

Cited literature [15 references]  Display  Hide  Download
Contributor : Alain Couvreur Connect in order to contact the contributor
Submitted on : Thursday, November 10, 2011 - 11:37:16 PM
Last modification on : Monday, March 1, 2021 - 11:29:27 AM
Long-term archiving on: : Friday, November 16, 2012 - 10:40:26 AM


Files produced by the author(s)




Alain Couvreur. The dual minimum distance of arbitrary-dimensional algebraic-geometric codes. Journal of Algebra, Elsevier, 2012, 350 (1), pp.84-107. ⟨10.1016/j.jalgebra.2011.09.030⟩. ⟨inria-00540022v3⟩



Les métriques sont temporairement indisponibles