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Two-Discipline Optimization

A methodology for the numerical treatment of a two-objeztivinimization prob-
lem, possibly subject to equality constraints is proposedch a problem is a basic
step in multidisciplinary optimization, sometimes reéefto asconcurrent engineer-
ing. Here, we consider the case where one criterion to be mieiz,, is prepon-
derant over the secondp, that is, either more critical or more fragile. The problem
is formulated as a parametric optimization in which the twitecia are smooth func-
tions of a common design vectdt € RY. The numerical procedure is made in two
steps.

In the first step, the criterion associated with the prepeanaecriterion 4 (Y), or
primary discipline, is minimized first, alone, to full comgence by hypothesis, yield-
ing the design vectaY;. As a result, the gradient vectov,J;, the Hessian matrix,
H?, and theK constraint gradientsyg; are assumed to be known &t = Y.
In practice, such information may be difficult to calculateaetly when the finite-
dimensional parametric formulation is the result of diieieg functionals of the dis-
tributed solution of a complex set of partial differentigluations, as it is the case in
the prototype example of aerodynamic optimum-shape dgsign, possibly, but not
necessarily, the exact derivatives can be replaced by appations through meta-
modeling of the functionals.

In preparation of the second step, the entire parametricesggathen split into
two supplementary subspaces on the basis of the analydie gketond variation of
the primary functional. The construction is such that inéisimal perturbations in
the design vectot” aboutY; lying in the second subspace, whose dimengios
adjustable < N — K), cause potentially the least degradation of the primang{fu
tional value. In other words, the second subspace is thepaobsf dimensiop of
least sensitivity of the preponderant criterida.

Chapter written by Jean-AntoineH3IDERI.
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In the second step of the optimization, a Nash equilibriurA$N61] is sought
between the two disciplines by introducing two virtual ey, each one in charge of
minimizing its own criterion,/4 or Jg, w.r.t. a small set of parameters that generates
one of the above two supplementary subspaces. In this waggetondary criterion is
potentially reduced, while not increasing unduly the pmiyneriterion from its initial
minimum.

The Nash game is given a particular form in which a contirmmparametee
(0 < € < 1) is introduced. The optimum solutiori; achieved at completion of
the first step of the optimization is proved to be a Nash duoypiilm solution of our
formulation fore = 0. Thus, as increases from 0 to 1, the formulation provides a
continuum of Nash equilibrium solutions, corresponding ttmooth introduction of
the trade-off between the two disciplines. Along the camtim, the initial derivative
of the primary functional w.r.t.c is also proved to be equal to zero, which can be
viewed as a robust design result. In practice this offersitrségner the possibility to
elect a design point along the continuum.

Lastly we observe that the hierarchy introduced above kmtwbe criteria is
applied to the split of territory in preparation of a Nash gamwhich is by essence
symmetrical. The bias is therefore different in nature friv® unsymmetrical treat-
ment of the variables introduced in a Stackelberg-type g&A& 95].

Our formulation was first demonstrated in the simple cas@é®htinimization of
two quadratic forms ifR* subject to a linear or a nonlinear equality constraint in
[DES 07a). The methodology is illustrated here by the treatia difficult exercise
of a generic aircraft wing shape optimization w.r.t. twaeria, one representative of
the aerodynamic performance (drag) and the other of thetstal design (average
stress) taken from B. Abou El Majd’s doctoral thesis [Abo.07]

0.1. Pareto optimality, game strategies and split of territory in multiobjective
optimization

In the engineering office, the optimization problems that aised by design-
ers of complex systems are by natunaltiobjective For instance, in aerodynamic
shape optimization for the design of commercial airplames focus is the maxi-
mization of lift in the critical phase of take-off or landingnother is drag in the cruise
regime since it directly determines kerosene consumptiaioge, but other crite-
ria are also important : those related to stability or maeeability and linked to
aerodynamic moments, or manufacturing criteria, etc. &y, the resulting multi-
objective optimization problems are inevitably alsaltipoint, since they are associ-
ated with different flight regimes (different Mach numbensiangles of attack) and
configurations (e.g. possible deployment of special hifjliévices). Consequently,
the accurate evaluation of such criteria by means of highlifidmodels requires the
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efficient simulation of several flowfields by the numericapagximation of the gas-
dynamics equations, typically by finite volumes. Lastlffatient couplings of aero-
dynamics with other physical phenomena are also crucidléranalysis of structural
deformation, stress and fatigue, dynamic fluid-structateraction, acoustics, ther-
mal, etc. These aspects can be treated in various ways witimeed numerical pro-
cedures. For example, in her doctoral thesisIMAR 08], M. &ééat, in preparation
of an aerodynamic aircraft wing shape optimization, haswered a model in which
the compressible turbulent Navier-Stokes equations heaea lised to compute the
three-dimensional flow about the wing, whereas the stradtas been modeled as a
beam subject to bending and torsion under the aerodynamdedpand thus estab-
lished the expression for the discrete gradient of aerawymaoefficients. In this
area, where functional gradients of complex coupled dissgstems are calculated,
Automatic Differentiatioras it is more and more routinely developed in tools such as
TAPENADE (cf. http://www-sop.inria.fr/tropics), is expected to becomereasingly
useful. Another form ofmultidisciplinarydesign consists in considering a multiobjec-
tive problem in which the various objectives share a comnebEdesign variables,
the so-called “public variables” of tHaIVE approach of Chapter 7, such as those rep-
resenting a shape parametrically when the shape influenoesthran one discipline.
How should the public variables be optimized concurremntlgd¢count for antagonis-
tic criteria originating from different disciplines? Thihiapter focuses on this ques-
tion sometimes referred to asdncurrent engineeririg In optimum-shape design,
often the different physical phenomena are accurately teddwy partial-differential
equations to be solved in domains that are identical orrdistut share a common
geometrical boundary at which appropriate conditions afereed and whose shape
is to be optimized. Besides the case of the aerostructusnl®f an aircraft wing
cited above, in the design of a stealth airplane, one woutinie the wing-shape
w.r.t. an appropriate aerodynamic criterion, or severahstriteria, concurrently with
an electromagnetic criterion, such as cross-radar se(®@%) reduction. In the lat-
ter case, both distributed P.D.E. systems are formulatéteimlomain exterior to the
aircraft, but have very different computational charastis in particular concerning
the mesh requirements.

In the area of pure numerical simulation of multidisciptynaoupled systems, the
computational cost to evaluate a configuration may be vegly.t# fortiori, in multi-
disciplinary optimization, one is led to evaluate a numifettifierent configurations
to iterate on the design parameters. This observation atetithe search for the most
innovative and computationally efficient approaches irttadl sectors of the compu-
tational chain : at the level of the solvers (using a hienamhphysical models), the
meshes and geometrical parameterizations for shape, jpe sleformation, the imple-
mentation (on a sequential or parallel architecture; goithguting), and the optimiz-
ers (deterministic or semi-stochastic, or hybrid; synalergs, or asynchronous).

Classically, the simplest way to account for several dateimultaneously consists
in agglomerating them all in a single performance index Wiy each criterion with
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an appropriate coefficient, or weight. For example, with wviberia J4 and Jp,
consider :
Ja
= X—
T3

whereJ§ and J% are reference values, for example, those associated withitéah
design. Hereq andj3 are positive weights to be chosen somehow. This approach is
very commonly-used, particularly when an initial good dess provided and only a
better or slightly different optimum is to be sought. Howetke construction of the
agglomerated criterion involves a large amount of arhitess, in particular (but not
only) w.r.t. the weightsy and 3 that can strongly influence the result and require to
be calibrated by an experienced practitioner. Thus, thisaaxh is poorly general,
physically or mathematically relevant.

JB
J ——
+6J%

An alternative to the unique criterion by agglomeration@feral objective func-
tions, consists of a two-step process in which each critégdirst optimized alone,
possibly under constraints; for the above two-objectivabpam, one thus gets; and
J}, as the solutions to two independent single-objective dptitions. Then, in the
second step, one solves the following single-objectivestramed problem :

min p
subject to the following inequality constraints :
Ja<Ji+ap and Jg < Jg+0p

In this alternative, assuming all the cited single-objexproblems make sense sepa-
rately, without physical coupling, the difficulty is heretteat a problem with func-
tional inequality constraints of physically-differenttoee. Additionally, the same
arbitrariness resides in the calibration of the weighendg.

A real alternative to the unique agglomerated objectiver@ggh, is to establish
the front of Pareto-optimal solutionsTo introduce this, we first recall the notion of
dominanceandnon-dominance

Definition : When considering the minimization of severdtiecia concurrently (/ 4,
Jg, etc), a design poinD() in the parameter space is said to dominate the design
D®) | which we denote as follows :

DO » D&
iff, for all the criteria J to be minimized, the following holds :
J [D(l)] <J [D(Q)] ’
and if, for at least one criterion, the inequality is strittwersely, if instead :

DW 2 D@ andD® % DM
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the two design-point®") and D) are said to be non-dominated.

This notion can be used to sort a collection, or populatiodesfign-points eval-
uated w.r.t. the various criterid,, Jp, etc, according to the so-call&areto fronts
The first front is made of all the design-points dominated byother; the second,
the front of those dominated by no other in the remainingeset; The result of this
sorting process is sketched atk 1.

JB

Ja
Figure 1. Sketch of a population of design-points sorted in Paretotfro

Relying on this sorting process, Srinivas and Deb [SRI 95haroposed the
genetic algorithnNSGA (Non-dominated Sorting Genetic Algorithaf)ich utilizes
essentially the front index as thHigness functionthe engine of the GA. Goldberg
[GOL 89] improved the method by introducingnéching technique in order to pre-
vent the accumulation of non-dominated design-points oivengront. To illustrate
theNSGA we present an experiment made by Maetal [MAR 99] in which an air-
foil shape was optimized to reduce drag (in transonic flond@tions) and maximize
lift (in subsonic flow conditions) concurrently. TRdSGAwas implemented in two
independent experiments corresponding to finite-volumeksitions of the compress-
ible Euler equations using different meshes, a coarse amtka Tihe totality of the
design-points accumulated during the successive geaesati the two experiments
indistinctly, are represented ond= 2 a). In each experiment, the set of design-points
does not cover the entire quarter plane : not all péiig, J5) can be achieved by
the system. The boundary of the domain of realizable pairside of Pareto-optimal
solutions. The corresponding two (discrete) fronts andafsociated shapes (for the
fine-mesh experiment only) are depicted as F2 b) and c).

For a more detailed and mathematical discussion on Paggttsfand Pareto opti-
mality, the reader is directed to the excellent K.M. Miedtirs textbook [MIE 99].



8 Multidisciplinary Design Optimization in Computatiordlechanics

a) Realizable design-point accumulation by applicatiothef NSGA
(independent Eulerian flow simulations on a coarse and a fieghes)
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Figure 2. An illustration of the NSGA in which an airfoil shape is optied to reduce drag
and maximize lift concurrently
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This experiment allows us to point out the principal meritd aeaknesses of this
approach. The method provides the designer with a rich abéhsed information
on the behavior of the criteria when the parameters varypbatcan also regret the
lack of hierarchy between the Pareto-optimal solutiongrgrwhich a definite oper-
ating design-point requires to be elected on the basis oésuher criterion still to be
introduced. Other experiments in literature have showhttfemethod is very gen-
eral since it has been applied to cases where the Paretlibeqguoi front was either
non-convex or discontinuous. On the other hand, the cortipntd cost of a standard
application of theNSGAIs fairly high since a large number of configurations ought to
be evaluated, if an accurate identification of the front isgdd. In our example, this
was achieved by instantiations of a two-dimensional Eatefiow code for purpose
of demonstration; however today, realistic flow simulasi@bout aircraft wings are
based on three-dimensional turbulent Navier-Stokes amnsat The cost-efficiency
issue can be somewhat attenuated by the usage of parallputiog, which is possi-
ble at several levels : the parallelization of the analystedy domain decomposition,
the natural parallelization of its independent instaidiat, as well as the paralleliza-
tion the crossover operator in the GA [MAR 00].

When the front of Pareto-optimal solutions is convex andatimat may be possi-
ble to identify it pointwise, by treating all but one criten as equality constraints, as
depicted on K. 3. However this approach is much less general since, asoneat
before, functional constraints are difficult to implemeadgitionally, the identification
is logically complex in cases of more than two objectives.

st.Ja=q

Ja

6%

Figure 3. Schematic of a Pareto front pointwise identification by teatiment of certain
criteria as equality constraints
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An alternate treatment of multiobjective problems thatwmvents the usually
very arbitrary question of adjusting penalty constantshim agglomerated-criterion
approach, and that is much more economical thamN&@Atype method to estab-
lish the Pareto-equilibrium front, consists in simulatandynamic game in which the
design variables are split in complementary subsets andbdiged to virtual players
asindividual strategies. Symmetrical as well as unsymoa{jor hierarchical) games
can be considered [NAS 51], [BAS 95]. In a symmetrical Nasimg@NAS 51], each
player accommodates its own strategy to the other playextegtes to optimize only
one criterion. If an equilibrium pointis reached, a tradibetween the various crite-
ria is achieved.

In his doctoral thesis, B. Abou El Majd [Abo 07] has realizechamber of
aerostructural shape-optimization exercises related ¢ergeric business-jet wing
using either Nash or Stackelberg games, some of which arertezbhere for
illustration.

In this chapter, we focus on the symmetrical formulation aN games involving
two playersA and B controlling the subvectorg, andYp composing the complete
vector of design variables :

Y =(Ya,YB)

In this case, the vectof” = (Y 4,Y ) is said to realize a Nash equilibrium of the
criteriaJ4 andJg, iff :

Ya= ArgminYA Ja (YA,YB)

and symmetrically :
Y= Argminy, Jp (YA,YB)
This formulation is inspired by the negotiation mechanidmwvbich economics and

social sciences provide numerous examples.

The Nash equilibrium-point can be achieved by the followragallel algorithm
[TAN 07] :

Step 1 :Initialize both subvectors :

Ya=Y"  Ypi=vy

Step 2 : Perform in parallel optimization iterations of both sulisyss (by
independent and generally different analysis and optitisimanethods) :
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e Retrieve and maintain fixed e Retrieve and maintain fixed
Yp =Y Ya=Y

e Perform K4 minimization steps of e Perform Kz minimization steps of
Ja (YA,YéO)) by iterating onY, Jp (Yf(‘O),YB) by iterating on Yp

KA)' KB)'

alone and ger1 alone and geYE(g

Step 3 :Update both subvectors in preparation of the informatiarherge :
v =v{FY v .=y
and go back to Step 2 or stop (at equilibrium).

Note that in practice, under-relaxation is very often esakto convergence. This
point is particularly critical when the two criteridy andJg originate from different
physical disciplines associated with different dependesand scales, as it is the case
for optimum design w.r.t. aerodynamics and structural raeats, or electromagnet-
ics. However, certain rather general mathematical statitin techniques exist; see
for example [ATT 07].

Important remark : assume that’ = (Y 4,Y ) realizes a Nash equilibrium of
the criteriaJ4 andJg, and let® and ¥ be some arbitrary but smooth and strictly-
monotone increasing functions; then, evidentyalso realizes a Nash equilibrium
of the criteria® [J4] and ¥ [Jg]. In other words, the notion of Nash equilibrium is
independent of the scales and the physical dimensions osaéasure the criteria :
for example, replacing by J< or ezp(J) has no effects other than, perhaps, a differ-
ent conditioning of the numerical procedures. By this ifaace property, the Nash
game formulation contrasts outstandingly from the agglatee criterion approach
in which dimensioning the penalty constants has a strordjuanally unknown influ-
ence on the solution. The equilibrium solution, unique dr, ronly determined by
the split of the design vector, which is here referred to astiit of territory by which
each virtual player is allocated a subspace of action, atdey.

Under the thrust of Jacques Périaux, this approach has bstutsuccessfully
over a number of cases related to optimum design in aer@sairiparticular within
the framework of the Jacques-Louis Lions Laboratory commaotne University of
Paris 6 and Dassault Aviation. One of the earliest contidmsthas been Wang's doc-
toral thesis [WAN 01] in which multicriterion optimizatigoroblems in aerodynamics
have been treated by Nash games by taking the best advaritagkstributed envi-
ronment. Nevertheless, note that in some cases of multideéy minimization, the
lift constraint was introduced by the penalty approachstlsomewnhat artificially, all
the criteria were unconstrained and this results in a sfiogtion, because it allows
the Nash equilibrium to be sought from an initial point whtre functional gradient
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is equal to zero, and the dynamic game develops in a regiohichwhe functional is
not very sensitive to parameter changes.

For purpose of illustration, we reproduce here partially tesults of a two-point
airfoil shape aerodynamic optimization taken from [TAN OThe targets are to max-
imize the lift in a subsonic regime representative of takeaad landing (/,, =
0.2, o = 10.8°) defining the first point, and concurrently minimize the dirag tran-
sonic flow representative of cruisgf(,, = 0.77, a = 1°) defining the second point.
For both points, the airfoil is assumed to be immersed in apessible Eulerian
flow. Here, both optimizations are treated as inverse probleA first airfoil shape
is associated with the subsonic point; this airfoil is cdesed satisfactory w.r.t. lift
in this regime, and the corresponding pressure distribwtiong the airfoil is denoted
pgyp This airfoil may be the result of a single-point optimizati However, this
airfoil should be improved w.r.t. drag at the transonic pof second airfoil has the
opposite characteristics. It is satisfactory w.r.t. dragha transonic point, and the
corresponding pressure distribution along the airfoilénatedptrgng but not w.r.t.
lift at the subsonic point. Then one seeks an airfoil shapegtoduces in each point a
pressure distribution as close as possible to the relesegettprofile pg O ptrans

For this, the airfoil boundary'. is split into two complementary territorids;
andT's, corresponding approximately to the fore and aft regionthefairfoil (see
FIG. 4, top). The airfoil is parameterized classically by meahthe Hicks-Henne
basis functions, and the associated weights are the desibies of the experiment.
One such design variable is allocated to either territopeteing on the location of
the maximum of the corresponding bell-shaped functionhisway,I'; andI'; are
associated with specific distinct subsets of the desigrablas. A trade-off between
the two target airfoils is then sought by realizing a Nashildarium associated with
the following formulation :

min I; = /F (p— peyp)” (1)

1
c

(in which it is implicit that the field is calculated in the ssdnic conditions of the first
point), and

s

min I = / (p — ptrans” (2)
(in which it is implicit that the field is calculated in the frgonic conditions of the
second point).

Starting with some appropriate initial airfoil, a virtudbger performs 5 design
cycles to reduce criteriofy by acting only on the subset of the design variables asso-
ciated withI';, and maintaining the other variables fixed. The optimizersteepest-
descent-type method based on a functional gradient reguitthm discretizing a con-
tinuous adjoint equation. In parallel, another virtualygiaperforms 10 design cycles
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a) Split of geometrical parameters
Optimization Strategy

Player 1 Player 2

Optimized Fixed Fixed Optimized
0.15 | 0.85 0.15 0.85
0.95 0.95

b) Convergence of the two criteria

" 5 Convergence history of optimization procedure
. - = Player2
1.0F — player1

0.5F 1

Log(l)

0.0f

0 100 200 300 400 500 600 700
Design Cycles

Figure4. Split of territory and optimization strategy; informati@xchange every || 10
parallel optimization iterations (top); asymptotic congence of the two criteria towards a
Nash equilibrium (bottom)
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to reduce criterior/y by acting only on the subset of the design variables associ-
ated withI's, and maintaining the other variables fixed. Then, both paggchange
their best respective subvectors of design variables, amh sintil an equilibrium is
reached. The iterative convergence of this process isateticat Fc. 4 (bottom) :
both criteria approach a stable asymptote.

FiG. 5 illustrate how the trade-off airfoil shape correspomdio the Nash equi-
librium solution compares with the initial and target ail$pand RG. 6 provides the
pressure distributions over this optimized geometry intteecalculation points.

—0.02p.

3
-0.04],
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________ - NI -~ INITIAL
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~ -01
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Figure 5. Comparison between the optimized airfoil (solid line) with initial airfoil and the
target airfoil associated with the subsonic conditionstf first point (left), and the target
airfoil associated with the transonic conditions of theaat point (right)
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Figure 6. Pressure distributions over the initial, target and optaed (solid line) shapes in the
subsonic conditions of the first point (left), and in the sanic conditions of the second point

(right)
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Keeping this example in mind, we return now to our generajudision on multi-
objective, or multidiscipline optimization. In optimuniape design in aerodynamics,
we are facing two major difficulties.

The first difficulty is related to the fact that only the simtiida of a complex flow
by a high-fidelity model can provide a realistic evaluatidthe aerodynamic coeffi-
cients. For instance, the solution of the three-dimensiooimpressible Euler equa-
tions, not so long ago considered as an accomplishmentpoolydes the wave drag
and friction forces are neglected. The computational cbah@ccurate evaluation of
the aerodynamic functionals is thus very high.

Secondly, by nature transonic flows are only weak solutianghe partial-
differential equations of gasdynamics. As such, they arg sensitive to variations
in boundary conditions, such as shape variations. The geamlic performance is
therefore very fragile, in particular drag, and toleran@gms are small. By coupling
aerodynamics with one or more other disciplines in a mutighlinary optimization,
it is imperative to maintain the aerodynamic performanae tiee optimal level.

We introduce the notion girimary functionalw.r.t. which sub-optimality should
be maintained, ansecondary functionab be reduced under possible constraints.

In our notations, the dimension of the full design spack’isA first optimization
step is completed in which the sole principal criterién is minimized w.r.t. the
totality of the design variables, yielding a vectd} that realizes, by hypothesis, a
local or global minimum of this criterion. It is also assunildt at this point/ scalar
constraints . = 0, £k = 1,2, ..., K, or more compactlyy = 0) are active. Then,
one wishes to conduct a second optimization step, multikbge and competitive
in nature, by establishing a Nash equilibrium between tliteréa J4, and Jg. To
extend the formulation of the previous experiment, theofeihg more generalplit of
territory is introduced :

Y:Y(U,V):YX—FS(g) 3)
where :
U1l Up
v=| : |. v=| : (4)
UN—p U1

in which S is an adjustable matrix of dimensidv x N, referred to as theplitting
matrix, and to utilize the subvectots (U € RY~?) andV (V € RP) as strategies, or
territories of two virtual playerst and B in charge of the minimization of 4 and.Jp
respectively.
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The Nash equilibrium point, if it exists, is denot&d= Y (U, V), and it is asso-
ciated with the following coupled optimization formulatio

min Ja|V (U7)]

UERN-» 5)
Subject to :g[Y (U,V)} =0
and:
sy [y @) i

Subject to : no constraints

The dimensiorp of subvector’” which controls the subspace of action of player
B is adjustableif > 1); however, the dimensiofV — p of subvector/ must be at
least equal to 1, and at least equal to the nundbékK > 0) of active constraints; this
gives the following bounds op:

1<p< N -—max(K,1) (7)

In the limiting case V — p = K), in the above Nash game formulation, the minimiza-
tion of J 4 under constraints reduces to the adjustment offfmmponents of subvec-
tor U to satisfy theK scalar constraints. This case has been examined in [DES 074]
Hereafter, unless mentioned otherwise, a strict inequialidissumed instead.

In the examples cited above, [WAN 01] and [TAN 07], the sgitai partition of
the primitive variables that is, the original components of the design veé&forOur
new and more general formulation encompasses this paticake obtained when
the splitting matrix is a permutation matrix.

In a parametric shape optimization, the primitive varialdee geometrical control
parameters, such as the weights put on the different Hicksale basis functions, or
the coordinates of control points in a Bézier parametadratThus, typically, these
variables are associated with specific locations of thendp&d geometry. Hence,
when the splitting is a permutation, the permutation reflectr intuitive understand-
ing of the dependency of the physical functionals on the ggomor regions of it.
For instance, in the example of& 4, the split was guided by the knowledge that in a
transonic flow, the wave drag is the result of the shock iritgasd it depends mostly
on the delicate design of the geometry on the upper surfaamethe shock, whereas,
in a subsonic flow, the lift is essentially proportional te thirfoil thickness. In his
doctoral thesis, Wang [WAN 01] demonstrated that iteratioased on choices for the
splitting opposite to this physical sense, unsurprisingdjiyerge.

These considerations lead us to raise the following questibow should the
split be defined in a general and systematic manner to reipephysical sense? In



Two-Discipline Optimization 17

particular, if the Nash game is initiated from a viable, gbgBy-relevant solution
corresponding to an optimum of the primary criteridg, can near-optimality of this
criterion be maintained at equilibrium?

With the formulation of (3), the subspace spanned by the fifst p column
vectors of the splitting matrix§ can be viewed as the territory assigned to plager
in charge of minimizing the primary criteriofi4, and the subspace spanned by the
lastp column vectors as the territory assigned to plaien charge of minimizing the
secondary criterio’s. Thus the above open questions are those of the adequacy of
the split of territory. The option which is adopted here dsissin making this choice
statically (and not adaptively in the course of the dynanaimg), at completion of the
first step of the procedure in which the primary criterion isimized alone (possibly
under constraints) in full dimensialN, yielding the optimal design vectdf}, and
before any competitive strategy is initiated. Thus the cbas made on the basis
of the analysis of the sensitivity of this criterion only. \§pecifically enforce the
following condition : the second step of the optimizationgedure, the competitive
step, should be such that infinitesimal perturbations optrameters about; that
lie in the subspace identified as the territory of the secgndaterion should cause
the least possible degradation of the primary criterioni{whe minimum achieved at
completion of the first step). As a basis for the identificatd the optimal splitting,
one considers the formal Taylor’s expansion of the primancfional to second order
aboutY’; in the direction of a unit vectar € RY :

52

JA(Y;;Jrsw):JA(YA*)+EVJ;.w+5w.ngw+0(s3) (8)

Our goal is to propose a sensible splitting associated wighdefinition of a vector
basis{ w* } (k = 1, ..., N). To fix the ideas, let us assume that the first few elements,
{wk} (k =1,2,..), of the basis are dedicated to player A in charge of reduttiag
primary criterion.J 4, and inversely, the tail element§w*} (k = N,N — 1...), to
player B in charge of reducing the secondary criterign Note that the direction

of maximum sensitivity of the primary criteriof,, or steepest-descent direction, is
given by the gradient/ J} atY = Y;. Thus, the following two conditions should be
satisfied by the basis :

1) the first few elements should span the gradi®nt};;

2) inversely, the differencels (Y} + ew) — Ja (Y})|, whene is small and fixed,
should be as small as possible whers a tail element of the basis.

AtY =Y}, the optimality conditions imply that the gradievit’}; is a linear com-
bination of theK active constraint gradients, the coefficients being theduage mul-
tipliers. Thus a way to achieve the first condition is to enéahat the firsK” elements
of the basis have the same span as the gradients d&f thetive constraints. For this,
one requires thafw” } (k = 1,2, ..., K) be the result of applying the Gram-Schmidt
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orthogonalization process to the constraint gradiéntg; } (k = 1,2, ..., K). Then,
let P be the following projection matrix :

P=1I- i [wh] [wb]" ©)

1

where[w"] denotes the column-vector matrix made of the componentsaibw”,
and consider the following real-symmetric matrix :

H,=PH,P (10)

We claim that the eigenvectors of the matf,, ordered appropriately, constitute the
best choice.

First, these eigenvectors contain the null space of theptiopn matrixP, that is,
{wh} (k = 1,2, ..., K). Thus the first condition is satisfied simply if the orderiag
such that these vectors appear first.

Second, the basis is orthogonal; hence the tail elementyidr@gonal to the first
K, and toV.J} as a consequence of the first condition. Thusfer w* (k > K +1),
the principal term in the expansion of the differencl, (Y} + ew) — Ja (V)] is the
quadratic term. This term, including the absolute valuduces to the Rayleigh quo-
tient associated with the matri’, (assuming positive-definiteness), and the classical
characterization of eigenvectors, here by decreasingeédige, holds[]

Starting from the above observations, the following thegretaken from
[DES 07a], exploits this basic principle and draws certalditional consequences
related to the Nash game. It is assumed that the two criteyiand Jg are strictly
positive and such that :

Ja=Ja(Y3)>0, Jp=Jp(Yy)>0 (11)
If necessary the problem can easily be reformulated to rhesetrequirements.

Theorem 1
Let N, p andK be positive integers such that :

1<p< N-—max(K,1) (12)

Let Ju, Jg and, if K > 1, {gr} (1 < k < K), be K 4+ 2 smooth real-valued
functions of the vectoy’ ¢ R™. Assume thatl, and.Jp are positive, and consider
the following primary optimization problem,

min J4(Y) (13)
Y eRN
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that is either unconstrained( = 0), or subject to the following< equality con-
Straints :

9(Y) = (g1, 92, - gx )" =0 (14)
Assume that the above minimization problem admits a localobal solution at a
pointY; € RN at whichJ} = J4(Y}) > 0 andJy = Jp (Y};) > 0, and letH?,
denote the Hessian matrix of the criteridg atY =Y.

If K =0, letP =1 andH', = H3; otherwise, assume that the constraint gra-
dients,{Vg; } (1 < k < K), are linearly independent and apply the Gram-Schmidt
orthogonalization process to the constraint gradientsJet{ w*} (1 < k < K) be
the resulting orthonormal vectors. L&t be the matrix associated with the projec-
tion operator onto thé& -dimensional subspace tangent to the hyper-surfaces 0
(1<k<K)aty =Y},

P=1I- i [wF] [wk]" (15)

where|w*] denotes the column-vector matrix made of the componentsatbw.*,
and consider the following real-symmetric matrix :

H),=PH,P (16)

Let ) be an orthogonal matrix whose column-vectors are nornthmgenvectors of
the matrixH', organized in such a way that the fifstare preciselyf w* } (1 < k <
K), and the subsequeit — K are arranged by decreasing order of the eigenvalue

=W H WP =0F H W (K+1<Ek<N) (17)
Consider the splitting of parameters defined by :
ul Up
x U . .
Y_YA+Q<V>, U= : , V= : (18)

UN—p U1

Let < be a small positive parametér € ¢ < 1), and lel’. denote the Nash equilib-
rium point associated with the concurrent optimizationtem :

miﬁlﬁ Ja min Jap
UeRN—P and VeRr (19)
Subjectto g =0 Subject to : no constraints

in which again the constraigt= 0 is not considered wheR = 0, and

Jp Ja
Jp Ja

J
Tup =244 . <9 (20)

Ja
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wheref is a strictly-positive relaxation parametér<€ 1 : under-relaxationd > 1 :
over-relaxation).

Then :

— [Optimality of orthogonal decompositiprf the matrix H/, is positive semi-
definite, which is the case in particular if the primary prebi is unconstrained
(K = 0), orif it is subject to linear equality constraints, its eigvalues have the
following structure :

Ry =hy=..=hx=0 hig, gy >hkx ,>..>hy>0 (21)

and the tail associated eigenvectdrs* } (K + 1 < k < N) have the following
variational characterization :

wh = Argmin,, |w. Hj w| s.t.||lw| =1 andw L {wh, w?, .., wK}
wN =1 = Argmin,, |w. Hjw| sit.|jw| =1 andw L {wh, w?, .., Wk, wN}
w72 = Argmin,, |w. Hjw| s.t.|jw|| =1 andw L {wh, w?, .., W, W, N1

(22)

— [Preservation of optimum point as a Nash equilibrirar ¢ = 0, a Nash equi-
librium point exists and it is :

Yo=Y} (23)
— [Robustness of original desipti the Nash equilibrium poirit. exists fors > 0
and sufficiently small, and if it depends smoothly on thispaater, the functions :

jale) =Ja (), Jjap(e) =Jap (¥-:) (24)
are such that :
74(0) =0 (29)
ap(0)=0-1<0 (26)
and
ja(e) = J5 + O(?) (27)
jap(e) =1+ (0= 1) +0() (28)

— In case of linear equality constraints, the Nash equilibripoint satisfies iden-
tically :

wl(e) =0 (1<k<K) (29)
N-p p _
Y.=Yi+ Z ug () W + Z v;(e) wN T (30)
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—For K = 1 andp = N — 1, the Nash equilibrium point. is Pareto optimal

We have seen already why the proposed basis of eigenvestopimal for the
problematics raised by the case of a preponderant or frdigitépline, in relation with
the performance of the Nash equilibrium solution; shorfigaking, the spliiting is
such that a minimal degradation df, is caused by the reduction dfz. Another
aspect is the existence itself of this equilibrium. Withpest to this, and without
entering all the details of the full proof, given in [DES 07k} us examine the mech-
anism by which the present choice of territory splittingogb&rmits to guarantee the
preservation of initial optimum point of discipliné alone,Y;, as a Nash equilibrium
of the above formulation for = 0, as stated in (23).

Fore = 0, let the criterion/ 4 = J for notational simplicity. The criterid sz and
J are functionally proportional, and so are their gradieli¥&. wish to establish that
U =V = 0indeed corresponds to a Nash equilibrium.

On one side, for fixed” = 0, the subvectol/ = 0 indeed realizes the minimum of
Ja4 = J subject to the constraigt= 0, because the optimization bfis equivalent to
the minimization ofJ4 in a subset that contains the solutibyj of the minimization
in the full design space.

On the other side, for fixetd = 0, the (unconstrained) derivative dfi g w.r.t. V'

is proportional to :

8. Y )%

because, by construction of the split, the vec%éris a linear combination of the tail
elements of the eigenvector basis, and these are orthagahalfirstK” elements, and
those span a subspace containing}. Hence, for fixed/ = 0, the unconstrained
criterionJ,p ~ J is also stationary w.r.t. subvectbratV = 0.

In summary, this theorem establishes two main achievenelated to the Nash
equilibrium solution :

— A potential performance result : it permits to identify &hstly an orthogo-
nal decomposition of the parameter-space that is such thagifen dimensiorp
(»p < N — max(K,1)), the tailp vectors of the basis correspond to the directions
of least variation of the primary functiond], from its minimum value under possible
equality constraints; in this sense, these eigenvectars g subspace of dimension
p in which the primary functional is the most insensitive te ttmall variations in
the design vector that will be made, in a second phase of gtion, to reduce a
secondary functionalis;

— An existence result : a procedure involving a continugpiarametee (0 < ¢ <

1) has been set up permitting to introduce gradually and shiytite secondary func-
tional Jg in competition with the primary functional, in a Nash game; far = 0, it
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is established that the original optimal solutiby is a Nash equilibrium point of the
initially-trivial game formulation; consequently, by dimuity, the Nash equilibrium
solution exists, at least far sufficiently small. Another parametérappears in the
formulation; it allows under or over-relaxation of the pess; if6 < 1, the auxil-
iary criterionJ4 5 at the Nash equilibrium poinf. decreases whenincreases, but
remains sufficiently small; sindé, = Y}, the locus of’. ase varies is viewed as a
continuation of the original optimum point of the primaryfttional alone.

The construction of the orthogonal basis is made at full eogence of the mini-
mization of the primary functional by diagonalization oétHessian matrix restricted
to the subspace tangent to the hypersurfaces represehéragctive constraints. To
identify this tangent subspace, a Gram-Schmidt orthogratadn process is applied
to the constraint gradients. In practice, the Hessian caralmilated exactly either
formally or by automatic differentiation; otherwise, anpapximation can be made
by differentiating ametamodefor the primary functional and constraints valid in a
neighborhood of the optimal solutidrif. This metamodel can be, for example, an
artificial neural network or a Kriging model (see for instaf€HA 07] [DUV 07]).

We close this section by emphasizing again the merit of orm@itation, when
equality constraints are active, to remain consistent With single-criterion mini-
mization of the primary functional alone at the initial pbin= 0 of the continuation
procedure}(, = Y};). This nontrivial property usually does not hold when thétsp
is made over the primitive variables as formerly proposef\AAN 01] [TAN 07],
unless the constraints are treated by the penalty apprd@dahvariations in the pri-
mary functional are initially second-order én thus the new formulation permits to
identify smoothly the locus of Nash equilibrium solutiorszavaries, by an algorithm
whose iterative convergence is facilitated by this robessmroperty, since the poten-
tial antagonism between the two criteria can be introduseshaoothly as necessary
by small enough steps in the continuation parameter

0.2. Aerostructural shape optimization of a businessjet wing

In order to illustrate the influence of the split of territasp the result of a prac-
tical two-discipline optimization, the main results actgd by B. Abou El Majd in
his doctoral thesis [Abo 07] concerning a case of aerosiratshape optimization
of a business jet wing are reproduced here. In his thesista@lete description of a
number of algorithmic variants, including those whose falation relies on a hierar-
chical Stackelberg game (instead of a symmetrical Nash pdraee been tested and
analyzed systematically.

Aerodynamics is treated as the preponderant disciplirvejlialso reveal to be a
fragile discipline. The flow about the wing is computed by @&dvolume simulation
of the three-dimensional Euler equations. The method lesnathstructured grids by
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the construction of a medians-based dual finite-volume mast employs a Roe-
type upwind solver. The computation yields the wave dradfimient, Cp, as well

as other aerodynamic coefficients, such asdift, The simulation point is transonic
(Ms = 0.83, a = 2°). The primary objective is to minimize the drag coefficient
augmented by a penalty term which is active when a minimatdiéfficient constraint
is violated. Thus, the primary criterion admits the follogiexpression :

Cp

Cr,
J4 = —= +10* 0,1— 31
A= + maX( , CLO) (31)

in which the reference quantities, indicated by the supsgrtorrespond to an initial
geometry defined by an initial three-dimensional unstnectgrid about the wing.

Throughout the optimization process, the geometry istiterly modified accord-
ing to the so-called-ree-Form Deformation (FFD)method which originates from
computer vision, and was proposed in the context of an aexdstal design loop by
Samareh [SAM 00]. In this approach, a formula is giepriori, in a closed form
involving adjustable parameters, to a three-dimenside&drmation field formally
and independently of the discrete or continuous repretentaf the geometry itself,
here an unstructured volume mesh. By construction, therohefiton field is made to
be smooth and equal to zero outside of a support, which isllysudounding box
of simple shape whose boundaries are not made in generalsbfpoimts. At a given
optimization iteration, the deformation field is redefined applied to the meshpoints
lying inside the support, thus permitting an update of thfase meshpoints, but also
of meshpoints in the computed volume in the vicinity of théimjzed surface. In this
way, an initial unstructured volume mesh evolves accortbregdeformation defined
explicitly in terms of the=FD parameters. These parameters are taken to be the design
variables of the optimization loop and they are updated hecerding to the Nelder-
Mead [NEL 65] simplex method to reduce the above criterign

This procedure results in a simple and fairly robust iteeadilgorithm. In our expe-
rience, this procedure is less subject to mesh overlappang volume mesh recon-
struction from the displacement of the boundary meshpdinta pseudo-elasticity
equation, such as the spring method.

In our experiments, a system of generalized coordingies ¢) is defined and
corresponds to longitudinal, vertical and span-wise dioes.When the bounding box
is a parallelepiped, the transfinite interpolation of thet€san coordinates suffices to
define these transformed coordinates throughout the bcen, Tthe deformation field
is defined as a linear combination of products of three Bemgolynomials of these
coordinates. Precisely, an arbitrary pajris given the following displacemenriq :

ng  Nj Nk

Ag= Z Z Z By, (&) B, (ng) B, (¢q) APy (32)

i=0 j=0 k=0
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in which, for thekth Bernstein polynomial of degreg

n!

By(t) = W — )

th (1 —t)n* (33)
The degrees of the parameterization in the three physicattibns, (n;,n;,ng),
are fixed, and the vector-valued weighting coefficiefusP;;,} (0 < i < n; ,

0 <j <my, 0<k < nyg)are the design variables of the optimization. Such
a geometrical parameterization generalizes the Bézieedarmula, and combined
with the classical degree-elevation process, it facdgdahe construction of multilevel
optimization algorithms inspired by multigrid methods. Maletails on this method,
and more examples of application can be found in [DES 07bp[A8].

The deformation field was chosen to be linear span-wise fomtto tip (2, = 1).
Additionally, the leading and trailing edges, and the eigiittices of the bounding
box were fixed throughout the optimization. Finally, onlytieal displacements were
considered for simplicity.

In a first experiment (seel&. 7), 6 control points at the root and at the tip were
considered, for a total of 12 degrees of freedom.

Aﬁ sﬁ A

D
%

Figure 7. Aerostructural shape optimization of a business jet wingt fiplit of territory,
according to the primitive variables : parameters markedrd associated to aerodynamics,
and those marked S to structural design.

In order to define an exercise in which the wing shape is opgtiw.r.t. two
disciplines, aerodynamics and structural design, thateshaommon set of design
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variables, the wing structure was treated as a thin shettlwtdéforms under the load
of aerodynamic forces. The distribution of stresses owestiell has been calculated
by linear-elasticity, using a code of the public domain, ARlIdeveloped b¥lectric-
ité de France (EDF)

The four degrees of freedom located at mid-chord (at roottgnaver the upper
and lower surfaces), marked S omGE 7, were assigned to a player in charge of
minimizing the following secondary criterion :

Jp = Js :// lon| dS
S

v S
+ K3 max(O,l—V—A)—i—Kg max(O,S—A—l)

(34)

in which o is the stress tensof§4 and V4 are the wing outer surface and volume
at convergence of the purely-aerodynamic optimizatiod, &n and K> and penalty
constants. By the reduction of this criterion, one expect®ee uniform distribution
of the load, and thus a more robust structure.

The remaining 8 degrees of freedom, marked A o@.F7, were assigned to a
player A in charge of minimizing the primary criterios.

It was possible to achieve a Nash equilibrium solution assed with the above
split of the primitive variables as indicated on iE. 8 which displays the conver-
gence history of the aerodynamic and structural criteriae Sudden and occasional
peaks correspond to iterations at which the constraintfois iolated. The simplex
method accommodates to this situation by discarding thetpd&vidently, a stable
Nash equilibrium is reached eventually.

Regrettably, this Nash-equilibrium configuration is thtalnacceptable from a
physical standpoint. The drag coefficient has doubled. Tihg shape presents oscil-
lations and the flow has been profoundly disrupted as inglichy the Mach number
field (see kG. 9).

By this first experiment, we emphasize that even in case ofargence of the
Nash equilibrium, the achieved configuration makes senlgdfahe split of variables
is physically relevant.

In a second experiment, the number of design variables vadasee to 8 by con-
sidering a deformation field, only vertical and associatét e polynomial degrees
(3,1,1) along the longitudinal, vertical and span-wise directioAfter a number of
unsuccessful trials, a certain split of the primitive vhles yielded acceptable results.
The split corresponds to assign the 4 degrees of freedone abdt to player S (=B)
in charge of reducing the structural criterion, and the othat the tip, to player A in
charge of reducing the aerodynamic criterion (se& R0).
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Figure 8. Aerostructural shape optimization of a business jet wingt fiplit of territory,
according to the primitive variables : convergence histofyhe aerodynamic and structural
criteria.
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a) Purely aerodynamic optimization

mach
1.50

1.18
0.850

0.525

0.200

b) Nash equilibrium (unacceptable)

Figure 9. Aerostructural shape optimization of a business jet wirrgt fiplit of territory,
according to the primitive variables : shape and Mach nunfi®dd : a) purely aerodynamic
optimization, and b) Nash equilibrium.
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$A
Figure 10. Aerostructural shape optimization of a business jet wirgosd split of territory,

according to the primitive variables : parameters markedré associated to aerodynamics,
and those marked S to structural design.

The convergence history of the two criteria in the dynamimgaorresponding
to this new split of design variables is indicated atF11. The aerodynamic crite-
rion is subject to numerous jumps due to the violation of threstraint on lift, but, as
mentioned above, the simplex method accommodates to this phase of optimiza-
tion is interrupted, somewhat arbitrarily after some 380cttiral design steps; strictly
speaking, convergence is not achieved, but the solutidgsfaetbry since it realizes a
visible improvement of the structural criterion of about 5@ile the aerodynamic
criterion has been increased of about the same percentalge (o

The cross sections at root, mid-span and wing tip correspgrid the initial and
optimized shapes are represented oa.F12. It appears that the structural control
parameters tend to round out very slightly the root crossisedor a better load
distribution. This trend augments the drag, but here in @ridgns still acceptable,
because the process was interrupted after a variation of 5 criterion. In fact,
at this level of only partial convergence, the shape vametiare still very small in
amplitude because the coupling mechanism realized by thardic game is very
stringent. Additionally, oua priori knowledge of the flow led us to locate the aerody-
namic control parameters near the wing tip in the vicinityief most sensitive region
of the shock wave. Thus, this experiment does not reflecta jplit of variables, but
instead one that was anticipated to be physically soundtlaadvas confirmed.

In the third experiment, the split of variables based on tteppsed orthogonal
decomposition of the restricted Hessian was implementedceQhe optimum of
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NASH GAME COUPLING THE EULER EQUATIONS WITH A THIN-SHELL MODEL
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Figure 11. Aerostructural shape optimization of a business jet wirgosd split of territory,
according to the primitive variables : convergence histofyhe two criteria

aerodynamics alone has been found’at= Y1, a number of independent simula-
tions corresponding to design vectors clos& fohave been made to set up a database
to model the behavior of the primary criteriofy in terms ofY by an RBF neural
network [CHA 07] [DUV 07]. This metamodel was then used to ragpmate the
gradient ofC'p, the primary criterion to be minimized, the gradient(®f, the con-
strained quantity, and the Hessian(®# to form the restricted Hessian matrix. After
diagonalization, the corresponding eigenvectors have beded by decreasing order
of the associated eigenvalue, and split evenly in two selifdbur. Those associated
with the four largest eigenvalues have been assigned teiphain charge of aerody-
namics, and the remaining four to player S (=B) in charge @ficing the criterion of
structural design.

The proposed eigensplit led to a new dynamic Nash game, wtmsesrgence
history is indicated on i6. 13. The process was continued to a stage of convergence
similar to previously in terms of coupling iterations. Howee a notably superior
performance was achieved : while the aerodynamic critexias here only degraded
of 3%, the structural criterion was reduced of 8 %; equiviljemt equal stage of
drag degradation, the improvement on the structural ariteis nearly three times
larger. Note how the envelopes of the two curves are appgieitially tangent to the
horizontal axis, a hint that in this formulation, the inif@oint is a robust design.
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Figure 12. Aerostructural shape optimization of a business jet wirgosnd split of territory,
according to the primitive variables : cross-section vaioas at a) root, b) mid-span, and c)
wing tip.
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NASH GAME COUPLING THE EULER EQUATIONS WITH A THIN-SHELL MODEL
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Figure 13. Aerostructural shape optimization of a business jet wimgjt ©f variables
according to the orthogonal decomposition; convergensgohy of the two criteria (after 50
couplings).

FiG. 14 indicates the evolution of cross-sections at root, aidrd and wing tip. It
clearly appears from this figure that the shape variatiomgfliarger amplitude in this
experiment than before, in the previous two experimentsirimre distinctly located,
as for example, on the lower surface of the wing at the rootusTé wider opera-
tional territory for the secondary criterion is identifieddause a small and acceptable
degradation only of the first criterion.

The split based on the orthogonal decomposition has pewinit$ to identify by a
blind and automatic procedure, a set of structural parassée which variations of
larger amplitude, mostly visible on the lower surface oftheg, are possible without
excessively affecting the shape in the critical region efghock wave. Consequently,
the principal characteristics of the flow are preservedndigated on K. 15 which
shows that the Mach number field has not been much alteredtfranobtained by
pure aerodynamic optimization.

Thus, in conclusion, a significant reduction of 8% of the &tuwal criterion
was realized while maintaining the flowfield configurationsg to optimality (drag
increase < 3%), by an automatic procedure of orthogonal rdpoeition of the
parameter space.
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Figure 14. Aerostructural

shape optimization of a business jet wimjt ®f variables

according to the orthogonal decomposition; cross-sectiarations at a) root, b) mid-chord,

and c) wing tip.
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Figure 15. Geometrical configuration and Mach number field : a) initi@radynamic
optimum solution, and b) aerostructural Nash game solutising the orthogonal
decomposition.
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0.3. Conclusions

The multiobjective optimization of an aerodynamic crisgrconcurrently with one
or more criteria originating from other disciplines raigkdicate problems to solve
since the flowfields are very sensitive to parameter charsges, as perturbations in
shape parameters, particularly when the flow is transongupersonic and contains
shocks.

A theoretical formulation has been proposed for situatiohthis type, permit-
ting to identify a suboptimal solution as a Nash-equilibrigolution between virtual
players in charge of reducing independent criteria. Anagtinal decomposition of
the design space is made to assign the player in charge oétomdary criterion a
subspace of action, or territory, in the primary criteri@sfittle sensitivity.

The method has been tested over a simplified testcase otraetasal design of a
business jet wing shape combining drag reduction undecdifistraint in a transonic
cruise configuration with the reduction of an integral of gtieess over the structure.
In this example, after a first phase of pure aerodynamic dépdition, the primary
criterion (drag) was modeled at convergence by an RBF netaork in order to
approximate gradients and Hessians necessary to the wotiatrof the orthogonal
basis. This basis was then used as the support of a dynamicdéase in a novel
formulation.

The numerical experiments, taken from B. Abou El Majd’s doat thesis, have
clearly demonstrated the superiority of concurrent optations realized using the
orthogonal decomposition as a support, in terms of asymeptohvergence stability,
and achieved performance as well.
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