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Abstract: In this paper we study the extraction of closed patterns associ-
ated to their generators in numerical data. Many works have addressed the
problem of extracting itemsets for generating association rules. Considering
numerical data, an appropriate discretization is most of the time necessary, in
order to split attribute ranges into intervals maximizing some interest functions,
e.g. support, confidence, or other statistical measures. We investigate here an
alternative point of view using pattern structures in Formal Concept Analysis.
Pattern structures can be efficiently used to extract closed patterns without any
prior discretization. Two original and efficient algorithms for characterizing fre-
quent closed patterns and their generators in numerical data are proposed and
experimented. Finally, we conclude showing the usefulness of such patterns in
classification problems and privacy preserving data-mining.
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Extraction de motifs fermés et gnrateurs à

partir de données numériques

Résumé : Dans cet article, nous tudions l’extraction de motifs ferms et leurs
gnrateurs partir de donnes numriques. De nombreux travaux s’intressent
l’extraction de motifs pour la gnration de rgles d’association dans le cadre de
la dcouverte de connaissances. Concernant les donnes numriques, une tape de
discrtisation est gnralement ncessaire, afin de dcouper les domaines des attrib-
uts en un certain nombre d’intervalles, maximisant certaines fonctions d’intrt,
comme le support ou la confiance. Nous proposons ici une mthode alternative se
basant sur la notion de structures de patrons dfinies dans le cadre de l’analyse
formelle de concepts (FCA). Les structures de patrons peuvent tre efficacement
utilises pour extraire des motifs ferms partir de donnes numriques sans discr-
tisation pralable des donnes. Nous proposons alors deux algorithme originaux
et efficaces pour caractriser et extraire les motifs ferms et gnrateurs dans les
donnes numriques. Nous concluons sur l’utilit de tels motifs pour des tches de
classification, mais aussi d’anonymisation de donnes.

Mots-clés : Extraction de motifs, donnes numeriques, analyse formelle de
concepts
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1 Introduction

We discuss the mining of numerical data with symbolic methods based on an
adaptation of classical pattern mining methods. Numerical data are commonly
found in many application domains, and especially in agronomy, biology, chem-
istry, or medicine. Usually, such data are analyzed by methods based either
on data analysis, statistics, or probabilities [13], e.g. clustering.These methods
are usually efficient but also return results hard to understand and to interpret.
Indeed, when the emphasis is put on knowledge discovery, it is expected that
the results returned by a data mining process can be interpreted in terms of
knowledge units [19]. This is one reason for combining symbolic and numerical
methods.

In parallel, the application of pattern mining methods is well studied on bi-
nary data as well as the design of concept lattices using Formal Concept Analysis
(FCA [9]). For example, applying FCA and extensions such as Relational Con-
cept Analysis [22] in text mining can return units that can be embedded in an
ontology [4]. Accordingly, it seems interesting to apply pattern mining tech-
niques on numerical data for extracting patterns, for data analysis and ontology
engineering purposes.

The present work is rooted both in FCA and pattern mining with the ob-
jective of extracting interval patterns from numerical data. Our approach is
based on “pattern structures” where complex descriptions can be associated
with objects [8]. Such descriptions can be numbers, intervals, and even graphs
[16]. In [15], in the context of gene expression data mining, we introduced pat-
tern structures for numerical data, and showed how to extract closed interval
patterns. Intuitively, an interval pattern is a vector of intervals, each dimension
corresponding to a range of values of a given attribute. In the present paper,
we complete and extend this first attempt. Considering numerical data, some
general characteristics of equivalence classes remain, e.g. one maximal element
which is a closed pattern and possibly several generators which are minimal
patterns w.r.t. a subsumption relation defined on patterns. We also provide a
semantic to interval patterns in the Euclidean space, and design and experiment
algorithms to extract frequent closed interval patterns and their generators.

The problem of mining patterns in numerical data is usually referred as
quantitative itemset/association rule mining [25]. Generally, an appropriate
discretization splits attribute ranges into intervals maximizing some interest
functions, e.g. support, confidence. However, none of these works discusses the
notion of equivalence classes, closed patterns, and generators, and this is one of
the originality of the present paper.

The plan of the paper is as follows. After the introduction, Section 2 explains
the problem of extracting pattern from numerical data. Then, closed interval
patterns, generators, and equivalence classes are properly defined in Section 3,
and a semantic is provided. Section 4 discusses links with classical itemset
mining in binary data. Section 5 details different algorithms for extracting
frequent closed patterns and their generators in numerical data. Experiments
on the proposed algorithms and a discussion terminate the paper, showing the
usefulness of such patterns in classification problems and privacy preserving
data-mining.
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2 Problem Specification

We propose a definition of interval patterns for numerical data following ideas
in [8, 15]. Intuitively, each object of a numerical dataset is a vector of numbers,
where each dimension corresponds to an attribute. Accordingly, an interval
pattern is a vector of intervals, where each dimension describes the range of
possible values for a given numerical attributes associated with some objects.
We only consider finite intervals.

Definition 2.1 (Numerical dataset) A numerical dataset is given by a set
of objects G, a set of numerical attributes M , each attribute m ∈M having for
range a set of real numbers Wm. We denote by m(g) = w the fact that w is the
value of attribute m for object g.

m1 m2 m3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5

Table 1: A numerical dataset.

Definition 2.2 (Interval pattern and support) In a numerical dataset, an
interval pattern is a vector of intervals d = 〈[ai, bi]〉i∈{1,...,|M|} where ai, bi ∈
Wmi

, and each component corresponds to an attribute following a canonical
order on vector dimensions, and |M | denotes the number of attributes. An object
g is in the image of an interval pattern 〈[ai, bi]〉i∈{1,...,|M|} when mi(g) ∈ [ai, bi],
∀i ∈ {1, ..., |M |}. The support sup(d) of d is the cardinality of the image of d.

Running example. Table 1 is a numerical dataset with objects inG = {g1, ..., g5},
attributes in M = {m1,m2,m3}. The range of m1 is Wm1

= {4, 5, 6}, and we
have m1(g1) = 5. Here, we do not consider either missing values or multiple
values for an attribute. 〈[5, 6], [7, 8], [4, 6]〉 is an interval pattern in Table 1, where
a vector dimension i corresponds to an attribute mi. Its image is {g1, g2, g5}
and its support is 3.

Definition 2.3 (Interval pattern search space) Given a set of attributes
M = {mi}i∈{1,|M|}, the search space of interval patterns is the set D of all
interval vectors 〈[ai, bi]〉i∈{1,...,|M|}, with ai, bi ∈ Wmi

and ai ≤ bi. The size of
the search space is given by

|D| =
∏

i∈{1,...,|M|}

|Wmi
| × (|Wmi

|+ 1)

2

where
|Wmi

|×(|Wmi
|+1)

2 is the number of possible intervals for the attribute mi.

For example, all possible intervals form1 are in {[4, 4], [5, 5], [6, 6], [4, 5], [5, 6],
[4, 6]}. Considering also attributes m2 and m3, the interval pattern search space
is naturally larger, composed of 6×6×10 = 360 interval patterns in our example.

RR n° 7416
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Among well-known solutions to deal with “pattern flooding” in data-mining,
one is to efficiently mine frequent patterns, i.e. patterns having support greater
than a given threshold, while a second is to define condensed representations of
patterns [24], e.g. closed patterns, (minimal) generators (also called key-sets,
free-sets), etc. While generators can be preferable to closed patterns following
the minimum descriptions length principle [20], closed patterns and their gen-
erators are known to be crucial for extracting valid and interesting association
rules [3]. Therefore, we discuss and solve the following problems.

Problem 1: Mining frequent closed interval patterns. Whereas an algorithm
was proposed for mining closed interval patterns in [15], it addressed the
dual problem of un-frequent interval patterns mining, i.e. with support
smaller than given threshold. We propose the algorithm MinIntChange
for efficiently mining frequent closed interval patterns. Most importantly,
this algorithm is useful for considering the two next problems.

Problem 2: Mining interval pattern generators. Closed patterns determine
equivalence classes. One should expect that these classes have minimal
elements w.r.t. a subsumption relation on patterns, called interval pattern
generators. We propose to characterize these notions and to design an
algorithm to efficiently mine frequent generators, called MinIntChangeG.

Problem 3: Associating generators to their closure. MinIntChangeG can pro-
vide each generator with its closure, allowing to produce valid and confi-
dent association rules.

Problem 4: Mining equivalent binary data. In [15], we showed that numerical
data can be turned into binary with a so-called interordinal scaling, and
that resulting binary data (i) can be mined with existing itemset mining
algorithms, and (ii) there is a one-to-one correspondence between closed
interval patterns and closed itemsets. However, we showed that closed
interval patterns have better representation, avoid a local redundancy, and
are much more efficient to mine directly in numerical data. Therefore, we
should ensure that the same holds for generators, and than our algorithms
are more efficient that classical algorithms in these particular binary data.

Before solving these problems, we properly define (freqeunt)(closed) interval
patterns (and generators) and their semantics in R|M|.

3 Interval Patterns: Semantics and Definitions

3.1 Semantics

Consider a numerical dataset with objects in G and numerical attributes in M .
An interval pattern d is a |M |-dimensional vector of intervals, and can repre-
sented by a hyperrectangle (or rectangle for short) in Euclidean space R|M|,
whose sides are parallel to the coordinate axes. This geometrical representation
will be considered as the semantics of interval patterns. Formally, an interpre-
tation is given by I = (R|M|, (.)I) with R|M| the interpretation domain, and
(.)I : D → R|M| the interpretation function.

RR n° 7416
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Example. When illustrating patterns in R|M|, we consider the numerical dataset
of Table 1 with attributes m1 and m3 only (it is more convenient here to work
on two dimensions). The Figure 1 (left) gives four interval patterns d1, d2, d3, d4
and their representation in R2. In two dimensions, a pattern with two intervals
with same left and right borders is a point, while a pattern having only one
interval with same borders is a segment, e.g. d3 and d4. Otherwise, a pattern
is represented by a rectangle, e.g. d1 and d2.

3

4

5

6

7

8

3 4 5 6

b

b

b

b

b

δ(g1)

δ(g2)

δ(g3)

δ(g4)

δ(g5)

m1

m3

d1

d2

d1

d2

d3

d4

d1 = 〈[4, 5], [5, 8]〉
d�1 = {g1, g3, g4, g5}
d2 = 〈[4, 5], [4, 5]〉
d�2 = {g3, g5}
d3 = 〈[5, 6], [4, 4]〉
d�3 = {g2}
d4 = 〈[6, 6], [4, 8]〉
d�4 = {g2}

Figure 1: Interval patterns in the Euclidean space.

3.2 Ordering interval patterns

A basic idea in pattern mining is to define an intersection on patterns allowing
to build more general patterns, i.e. shared by more objects. As stated in [8],
the set-theoric intersection has the properties of an infimum ⊓ in a semi-lattice
(D,⊓), i.e. idempotent, commutative, and associative. Accordingly, we intro-
duced an infimum operation on interval patterns [15]:

Definition 3.1 (Infimum of Interval patterns) Given two intervals patterns
c = 〈[ai, bi]〉i∈{1,...,|M|}, and d = 〈[ei, fi]〉i∈{1,...,|M|}, their infimum is given by
c ⊓ d = 〈[min(ai, ei),max(bi, fi)]〉i∈{1,...,|M|}.

The infimum of several patterns is interpreted as the convex hull of their hy-
perrectangles in R|M|, e.g. d1 ⊓ d2 = 〈[4, 5], [4, 8]〉 in Figure 1. This definition
induces partial order, or subsomption relation ⊑ on interval patterns, knowing
that c ⊓ d = c⇔ c ⊑ d.

Definition 3.2 (Subsumption relation) Given two interval patterns c and
d, c ⊑ d holds if dI ⊆ cI .

This means that two interval patterns c and d are comparable whenever cI ⊆ dI

or dI ⊆ cI and that patterns with “larger” intervals are subsumed by pat-
terns with “smaller” intervals. For example, 〈[4, 5], [4, 8]〉 ⊑ 〈[4, 5], [4, 5]〉 but
〈[4, 5], [4, 5]〉 and 〈[4, 5], [5, 8]〉 are not comparable.

Example. We consider in this example one-dimensional interval patterns. Choos-
ing attribute m1 from Table 1, the set of all possible interval patterns is Dm1

=

RR n° 7416
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{[4, 4], [5, 5], [6, 6], [4, 5], [5, 6], [4, 6]}. The semi-lattice (D,⊓), or equivalently
(D,⊑) is given in Figure 2. The interval labelling a node is the infimum of
all intervals labelling its descending nodes, e.g. [4, 5] = [4, 4] ⊓ [5, 5], and is also
subsumed by these intervals, e.g. [4, 5] ⊑ [5, 5] and [4, 5] ⊑ [4, 4].

[4,4] [5,5] [6,6]

[4,5] [5,6]

[4,6]

Figure 2: Diagram of (Dm1
,⊓) or equivalently(Dm1

,⊑).

Finally, the support of an interval pattern d is interpreted as the the number
of objects described by a rectangle included in dI , e.g. support of d1 is four in
Figure 1, with δ(g) represents the rectangle describing object g ∈ G.

3.3 Pattern Structures in FCA

The following definitions formally define pattern structures, involving a clo-
sure operator on patterns, based on a Galois connection. Pattern structure is
an extension of well-know formal contexts (binary tables) to complex data in
FCA [9, 8].

Definition 3.3 (Pattern structure) Let G be a set of objects, let (D,⊓) be
a meet-semi-lattice of object descriptions, called patterns, and let δ : G −→ D

be a mapping: (G, (D,⊓), δ) is called a pattern structure.

Definition 3.4 Let the two following operators (.)� defined as follows.

A� =
l

g∈A

δ(g), for A ⊆ G

d� = {g ∈ G|d ⊑ δ(g)}, for d ∈ (D,⊓).

These operators form a Galois connection between (P(G),⊆) and (D,⊑). The
operator (.)�� is a closure operator.

Example. Considering the example of Table 1. (D,⊑) is the finite ordered set
of all interval patterns. δ(g) ∈ D is the pattern associated to an object g ∈ G.
Then:

〈[5, 6], [7, 8], [4, 8]〉� = {g ∈ G|〈[5, 6], [7, 8], [4, 8]〉 ⊑ δ(g)}
= {g1, g2, g5}

{g1, g2, g5}� = δ(g1) ⊓ δ(g2) ⊓ δ(g3)
= 〈[5, 6], [7, 8], [4, 6]〉

This means that 〈[5, 6], [7, 8], [4, 8]〉 is not a closed interval pattern, its closure
being 〈[5, 6], [7, 8], [4, 6]〉. The first operator applies to an arbitrary description
d ∈ (D,⊓) and returns the set of objects described by rectangles included in
dI . Dually, the second operator applies to a of objects A ⊆ G and returns the
convex hull of their interpretation, i.e. a rectangle.

RR n° 7416
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Based on these definitions, we now define the notions of (frequent) closed
interval pattern ((F)CIP), equivalence classes of patterns and (frequent) interval
patterns generators ((F)IPG), adapted from the classical binary case [21]. We
illustrate these definitions with two dimensional interval patterns, and their
representation in Figure 1, i.e. considering attributes m1 and m3 only.

Definition 3.5 (Equivalence class) Let image(d) be the function that as-
signs to each interval pattern the set of objects supporting d, i.e. image(d) = d�.
Two interval patterns c and d are said equivalent iff they have the same image
and we write c ∼= d. The set of patterns that are equivalent to a pattern d is
denoted by [d] = {c|c ∼= d} and is called the equivalence class of d.

Example. 〈[4, 5], [6, 8]〉 ∼= 〈[4, 6], [6, 8]〉 as they have the same image {g1, g4}.

Definition 3.6 (Closed interval pattern) A pattern d is closed if there does
not exist any pattern e such as d ⊑ e with d ∼= e.

Example. 〈[4, 6], [6, 8]〉 is not closed as 〈[4, 6], [6, 8]〉 ⊑ 〈[4, 5], [6, 8]〉, these two
patterns having same image, i.e. {g1, g3, g4, g5}. 〈[4, 6], [6, 8]〉 is closed.

Definition 3.7 (Interval pattern generator) A pattern d is a generator if
there does not exist a pattern e such as e ⊑ d with d ∼= e.

Example. 〈[4, 6], [5, 8]〉 and 〈[4, 5], [4, 8]〉 are the generators of the closed interval
pattern d1 = 〈[4, 5], [5, 8]〉 with image {g1, g3, g4, g5}.

Definition 3.8 (Frequent Interval pattern) A pattern d is frequent if its
image has a higher cardinality than a given minimal support threshold minSup,
i.e |d�| ≥ minSup. Otherwise, d is not frequent.

Example. Among the four patterns in Figure 1, d1 is the only frequent interval
pattern with minSup = 3.

An equivalence class is a set of interval patterns having the same image.
According to the defined closure operator, each class is provided with a unique
CIP. The interpretation of this closed pattern is the rectangle with smallest
area, while generators are rectangles with largest area.

We dedicate a particular attention to interval patterns with null support. In
Figure 1, such patterns correspond to rectangles, segments or points containing
no object description from the dataset, e.g. c1 = 〈[6, 6], [5, 8]〉, c2 = 〈[5, 6], [6, 8]〉,
c3 = 〈[4, 4], [4, 4]〉. Such patterns would not exist if each point in the rectangle
〈[4, 6], [4, 8]〉 were covered by some object of the dataset (since the search space is
finite). If interval patterns with null support exist, their equivalence class should
have a closed element with one or more generators. However, the closed pattern
of null support does not exist, since it should subsume any closed pattern of
support 1. Any CIP with support 1 is defined by g� for some g ∈ G. Since
dealing with numerical attributes with domains values in R, intervals of g�

are degenerate (same left and right borders), e.g. δ(g1) = 〈[5, 5], [7, 7], [6, 6]〉.
Therefore, we cannot find a subsumer of this pattern: it is not defined (any
degenerate interval has no subintervals). When existing, the generators of null
support provide a meaningful information: it characterizes the largest subspaces
of the data covered by no objects.

RR n° 7416
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m1 ≤ 4

m1 ≤ 5

m1 ≤ 6

m1 ≥ 4

m1 ≥ 5

m1 ≥ 6

m2 ≤ 7

m2 ≤ 8

m2 ≤ 9

m2 ≥ 7

m2 ≥ 8

m2 ≥ 9

m3 ≤ 4

m3 ≤ 5

m3 ≤ 6

m3 ≤ 8

m3 ≥ 4

m3 ≥ 5

m3 ≥ 6

m3 ≥ 8

g1

×
×
×
×

×
×
×
×

×
×
×
×
×

g2

×
×
×
×

×
×
×
×

×
×
×
×
×

g3

×
×
×
×

×
×
×
×

×
×
×
×
×

g4

×
×
×
×

×
×
×
×

×
×
×
×
×

g5

×
×
×
×

×
×
×
×

×
×
×
×
×

Table 2: Interordinally scaled context encoding the dataset from Table 1.

4 Interval Patterns in Binary Data

In this section, we recall how numerical data can be turned into binary with a
so-called interordinal scaling. This data transformation is defined in the frame-
work of formal concept analysis (FCA) [9], and allows to produce binary data
from which interval patterns can be extracted [15]. For making the paper self-
contained, we recall the basics of FCA necessary for understanding the following.
Most importantly, we show that, in these particular binary data, collections of
closed itemsets and generators highlight two forms of redundancy, leading to

RR n° 7416



Pattern Mining in Numerical Data: Extracting Closed Patterns and Generators10

design efficient algorithms working directly on numerical data in the next sec-
tion.

4.1 Formal Concept Analysis

FCA starts with a formal context (G,N, I) where G denotes a set of objects, N
a set of attributes, or items, and I ⊆ G×N a binary relation between G and N .
The statement (g, n) ∈ I is interpreted as “the object g has attribute n”. The
two operators (·)′ define a Galois connection between the powersets (P(G),⊆)
and (P(N),⊆), with A ⊆ G and B ⊆ N :

A′ = {n ∈ N | ∀g ∈ A : gIn}

B′ = {g ∈ G | ∀n ∈ B : gIn}

For A ⊆ G, B ⊆ N , a pair (A,B), such that A′ = B and B′ = A, is called
a (formal) concept. In (A,B), the set A is called the extent and the set B

the intent of the concept (A,B). Concepts are partially ordered by (A1, B1) ≤
(A2, B2) ⇔ A1 ⊆ A2 (⇔ B2 ⊆ B1). With respect to this partial order, the
set of all formal concepts forms a complete lattice called the concept lattice of
(G,N, I).

From an itemset-mining point of view, concept intents correspond to closed
itemsets, since (.)′′ is a closure operator. Moreover, a subset B ⊆ N is a
generator iff ∄C ⊂ B with C′ = B′. An equivalence class is a set of itemsets
with same closure. Therefore, closed itemsets can be computed either with FCA
algorithms (compared in [18]), or algorithms of the data-mining community, e.g.
Charm [27], FP-Growth [12].

4.2 Interordinal Scaling

Conceptual scaling is often used for discretizing numerical data and obtaining
a (binary) formal context [9]. Given a numerical attribute, the search space of
interval patterns can be expressed in terms of binary attributes, or items, thanks
to interordinal scaling. We recall here a basic definition while more details lie
in [9, 15, 17].

In FCA, a numerical dataset is described by a many-valued context (G,M,W, J)
where G is a set of objects, M a set of numerical attributes, W a set of real
numbers, and J a ternary relation defined on the Cartesian product G×M×W .
(g,m,w) ∈ J or simply m(g) = w means that the object g takes the value w for
the attribute m.

Definition 4.1 (Interordinal scaling) Given a numerical attribute m with
value domain the set Wm of real numbers, interordinal scaling builds 2 × |Wm|
binary attributes, denoted by “m ≤ w” and “m ≥ w”, ∀w ∈ Wm, called “in-
terordinal scale attributes” or IS-items for short.

Definition 4.2 (Interordinal scaled context) A formal context (G,N, I) is
an interordinal scaled context when it results from the application of interordinal
scaling to numerical context (G,M,W, J). N is the set of all IS-items of the
form “m ≤ w” or “m ≥ w” for each numerical attribute m ∈ M and value
w ∈ Wm. An object g has an IS-item “m ≤ w” (resp. “m ≥ w”) iff m(g) ≤ w

(resp. m(g) ≥ w).

RR n° 7416
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Example. Table 2 gives the tabular representation of the interordinally scaled
formal context built from Table 1. Object g1 owns the IS-item m1 ≤ 5 (denoted
by a cross ×) but not m1 ≤ 4 since m1(g1) = 5.

4.3 Interval Patterns and IS-Itemsets

It is possible to apply classical mining algorithms to process the binary table for
extracting itemsets composed of IS-items. These itemsets are called IS-itemsets
in the following, and are linked with interval patterns as follows [15].

An IS-itemset as an interval pattern. An IS-itemset P is composed of
IS-items of the forms mi ≤ w and mi ≥ w for some w ∈Wmi

. It is represented
by the interval pattern d = 〈[ai, bi]〉i∈{1,...,|M|}, where

• ai is the maximum of the values w in IS-items mi ≥ w, and min(Wmi
) if

mi ≥ w 6∈ P .

• bi is the minimum of the values w in IS-items mi ≤ w, and max(Wmi
) if

mi ≤ w 6∈ P .

For example, {m1 ≤ 5,m1 ≤ 6,m1 ≥ 4,m2 ≤ 9,m2 ≥ 7} corresponds to
〈[4, 5], [7, 9], [4, 8]〉, i.e. the smallest interval pattern w.r.t. ⊑ with same image.

An interval pattern as an IS-itemset. Let d = 〈[ai, bi]〉i∈{1,...,|M|} be
an interval pattern. An IS-itemset representing d is a set of IS-attributes, ∀i ∈
[1, |M |].

• mi ≤ bi if ai = min(Wmi
)

• mi ≥ ai if bi = max(Wmi
)

• mi ≥ ai and mi ≤ bi otherwise.

For example, the IS-itemset corresponding to 〈[4, 5][7, 9][4, 8]〉 is {m1 ≤ 5}, i.e.
the smallest set of IS-items with same image.

We detail in the following some problem when mining IS-itemsets. First, we
show that closed IS-itemsets involve a local redundancy making them hard to
mine. Secondly, we show that IS-itemsets generators do not behave in the same
way, but involve another kind of redundancy that alter their mining.

Local redundancy of IS-itemsets. Extracting all IS-itemsets in our ex-
ample returns 31, 487 IS-itemsets. This is surprising since there are only 360
possible interval patterns. In fact, a lot of IS-itemsets are locally redundant.
For example, {m1 ≤ 5} and {m1 ≤ 5,m1 ≤ 6} both correspond to the interval
pattern 〈[4, 5], [7, 9], [4, 8]〉. Indeed, the constraintm1 ≤ 6 is weaker than m1 ≤ 5
on the set of values Wm1

.

Definition 4.3 Given two IS-items n1, n2 ∈ N , with same sign ≤ or ≥ and
numerical attribute, n1 characterizes a weaker constraint than n2 if n′

2 ⊆ n′
1.

n1 is a redundant condition with respect to n2.

Proposition 4.1 An arbitrary IS-itemset N1 ⊆ N is locally redundant iff it
contains two IS-items such as one is a redundant condition with respect to the
other one.
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Example. {m1 ≤ 5,m1 ≤ 6} and {m1 ≤ 4,m1 ≤ 5,m1 ≤ 6} are both locally
redundant while {m1 ≤ 5} and {m1 ≤ 5,m3 ≥ 5} are not. Intuitively, in
{m1 ≤ 5,m1 ≤ 6} the item m1 ≤ 6 brings no new information on the description
of the itemset image.

Proposition 4.2 Except G′, any closed IS-itemset P ⊆ N is locally redundant
and |P | > 2|M |.

Proof. By definition of interordinal scaling, we haveG′ = {mi ≤ max(Wmi
),mi ≥

min(Wmi
)}∀mi∈M , hence |G′| = 2|M |. Any other closed itemset P is such that

G′ ⊂ P : it is locally redundant.

Proposition 4.3 If P ⊆ N is an IS-itemset generator, then |P | ≤ 2|M |, and
P is not locally redundant.

Proof. Suppose that P is a generator with |P | > 2|M |. Since IS-items are of
the form, either “m ≤ w” or “m ≥ w” for m ∈ M and w ∈ Wm, P contains at
least two itemsets of one of these form. Therefore, one characterizes a redun-
dant condition and removing it from P does not change its image, leading to
a contradiction. Moreover, if P1 is redundant, P1 ⊂ P2 implies that P2 is also
redundant.

Global redundancy of IS-itemsets generators. Due to local redun-
dancy, we showed in [15] that closed IS-itemsets are hard to mine with classical
closed itemset mining algorithms. It seems that IS-itemset generators have a
good property to be mined, since not affected by local redundancy. But we
remark here another kind of redundancy, called global redundancy: it happens
that two different and incomparable IS-itemsets generators correspond to two
different interval pattern generators, but one subsuming the other, i.e. one
is not an interval pattern generator according to the semantic in R. For ex-
ample, taking the binary table 2, both IS-itemsets N1 = {m1 ≤ 4,m3 ≤ 5}
and N2 = {m1 ≤ 4,m3 ≤ 6}, with same image {g3} are generators, i.e.
there does not exist a subset of these itemsets with same image. However,
their corresponding interval pattern are respectively c = 〈[4, 4], [7, 9], [4, 5]〉 and
d = 〈[4, 4], [7, 9], [4, 6]〉 and we have d ⊑ c, while c� = d�, hence c is not an inter-
val pattern generator. This is due to the fact m3 ≤ 6 is a redundant condition
with respect to m3 ≤ 5, the only IS-items that differ from N2 to N1.

Interval patterns with null support. The fact that the closed interval
pattern of null support does not exists can be seen in the IS-context: consider
the empty set of objects ∅, one has ∅′ = N , hence no intervals, e.g. it contains
items {m1 ≤ 4} ∈ N and {m1 ≥ 5} ∈ N that do not characterize an interval
for m1, since intervals are convex subsets of R.

Moreover, IS-itemset generators cannot be found in the IS-scaled context.
By definition, the IS-itemset generator of null support is unique and is given by
∅. Now, consider c = 〈[6, 6], [5, 8]〉: it does not exist a pattern d ⊑ c with same
image, hence c is a generator. However, its corresponding itemset is N1 ⊂ N ,
N1 = {m1 ≥ 6,m2 ≥ 5}. Since ∅ ⊂ N1 and ∅′ = N ′

1 = ∅, N1 is not a generator
in the binary table.

For these three reasons (local and global redundancy, and problem of null
support), it should be not only more efficient to directly explore the search-space
of interval patterns but also provide correctness. This is the aim of the next
section.
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5 Algorithms

In this section, we first detail a depth-first enumeration of interval patterns,
starting with the most frequent one. Based on this enumeration, we design
the algorithm MinIntChange for extracting frequent closed interval patterns
(FCIP). This algorithm needs slight modifications to compute frequent interval
pattern generators (FIPG), giving the algorithm MinIntChangeG.

5.1 Greedy enumeration

Consider firstly one numerical attribute of the example, say m1. Its semi-
lattice of intervals (Dm1

,⊓) is composed of all possible intervals with bor-
ders in Wm1

and is ordered by the subsumption relation given in Section 3.
The unique smallest element w.r.t. ⊑ is the interval with maximal size, i.e.
[4, 6] = [min(Wm1

),max(Wm1
)] and maximal frequency (here 5). The basic

idea of pattern generation lies in minimal changes for generating the direct sub-
sumers of a given pattern. For example, two minimal changes can be applied
to [4, 6]. The first consists in replacing the right border with the value of Wm1

immediately lower that 6, i.e. 5, for generating the interval [4, 5]. The second
consists in repeating the same operation for the left border, generating the in-
terval [5, 6]. Repeating these two operations allows to enumerate all elements
of (Dm1

,⊓). A right minimal change is defined formally as, given a, b, v ∈ Wm,
a 6= b,

minChangeR([a, b]) = [a, v] | v < b, ∄w ∈ Wm s.t. v < w < b

while a left minimal change minChangeL([a, b]) is formally defined similarly.
Minimal changes give direct next subsumers and implies a monotonicity prop-
erty of frequency, i.e. support of [a, v] is less or equal than support of [a, b].

The generalization to several attributes is straightforward: for each pattern
there are 2.|M | minimal changes for modifying the left and the right border for
each attribute.

5.2 Non redundant enumeration

The greedy enumeration is based on minimal changes but does not prevent re-
dundancy since a pattern can be generated several times. For example, consider-
ing the attribute m1, interval [5, 5] is generated two times: from [4, 6] applying a
right then a left minimal change, or applying a left then a right minimal change
(indeed, we can see in Figure 2 that [5, 5] subsumes two different patterns having
a common subsumee [4, 6]).

To avoid redundancy, a lectic order on changes, or equivalently on patterns,
is defined: after a right change, one can apply either a right or left change; after
a left change one can apply only a left change. Figure 3 shows the depth-first
traversal (numbered arrows) of diagram of (Dm1

,⊓). Backtracks occur when
an interval of the form [w,w] is reached (w ∈ Wm1

), or no more change can be
applied. Therefore, generated elements form a tree traversed depth first.

This pattern generation can be seen as a classical enumeration used by
depth-first algorithms in data-mining. Indeed, each minimal change is the in-
terpretation of an IS-item. Recall that IS-items are of the form “m ≤ w” or
“m ≥ w”. Applying a change minChangeR([a, b]) = [a, v] to a interval pattern
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is equivalent to add the IS-item “m ≤ v” in a corresponding IS-itemset. Dually,
minChangeL([a, b]) = [v, b] consists in the IS-item “m ≥ v”. These IS-items
characterizing minimal changes are drawn on Figure 3. This figure accordingly
represents a prefix-tree, factoring out the effort to process common prefixes or
minimal changes.

Therefore, the lectic order can be also expressed in terms of IS-items. Any
IS-item containing the symbol ≤ precedes any IS-item containing ≥. Secondly,
if both IS-items contains ≤, the one with the largest value w precedes the other
one. Dually, if both IS-items contains ≥, the one with the smallest value w

precedes the other one. Notice that IS-items having the form “m ≤ max(Wm)”
or “m1 ≥ min(Wm)” are not considered since they do not characterize minimal
changes.

[4,4] [5,5] [6,6]

[4,5] [5,6]

[4,6]

m1 ≤ 4 3

2 5

4 m1 ≥ 5

9

8 m1 ≥ 6

1

m1 ≤ 5 6

10

7 m1 ≥ 5

Figure 3: Depth-first traversal of (Dm1
,⊓).

The generalization to several attribute is again straightforward. A lectic
order is classically defined on numerical attributes as a lexicographic order, e.g.
m1 < m2 < m3. Then changes are applied as explained above for all attributes
respecting this order. For example, after applying a change to attribute m2,
one cannot apply a change to attribute m1 since m1 < m2. On the example
of Table 1, considering that 〈[4, 5], [8, 9], [5, 8]〉 was previously generated from
a left minimal change of a pattern for attribute m2, only three patterns can
be generated in the next step, namely, 〈[4, 5], [9, 9], [5, 8]〉 (change on m2 left),
〈[4, 5], [8, 9], [5, 6]〉 (change on m3 right) and 〈[4, 5], [8, 9], [6, 8]〉 (change on m3

left).

5.3 Extracting frequent closed interval patterns

The pattern enumeration starts with the minimal pattern w.r.t ⊑ and generates
its direct subsumers with lower or equal support. The next problem now is
that minimal changes do not necessarily generate patterns with strictly smaller
support. Therefore, we should apply changes until a pattern with different
support is generated to identify a closed interval pattern (FCIP) but this would
not be efficient.

However, applying a minimal change does not mandatory implies that re-
sulting pattern has strictly smaller support. Therefore, we should apply changes
until the support changes to flag a FCIP. This would be not efficient as it re-
quired to generate the whole set of frequent interval patterns. We adopt the
idea of the algorithm CloseByOne [18]: before applying a minimal change, the
closure operator (.)�� is applied to the current pattern, allowing to skip all
equivalent patterns. Indeed, the minimal pattern d w.r.t. ⊑ is closed as it is
given by d = G�. Applying a minimal change returns a pattern c with strictly
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smaller support, since d ⊑ c and d is closed. If c is frequent, we can continue, ap-
ply the closure operator and next changes in lectic order, allowing to completely
enumerate all FCIP.

Example. We start from the minimal pattern c = 〈[4, 6], [7, 9], [4, 8]〉. The
first minimal change in lectic order is a right change on attribute m1. We
obtain pattern d = 〈[4, 5], [7, 9], [4, 8]〉, and obviously c ⊑ d. However, d�� =
〈[4, 5], [7, 9], [5, 8]〉, hence d is not closed. Next change will be applied to d��.

Since a FCIP may have several different associated generators, it can be
generated several times. Still following the idea of CloseByOne, a canonicity
test can be defined according to lectic order minimal changes: if a pattern d has
been generated by a change at attribute mj ∈M , it is canonically generated iff
d and d�� do not differ for any attribute mh ∈M such as mh < mj . This test
avoids lookup in memory (e.g. using an hashtable of FCIP).

Example. Given the minimal pattern 〈[4, 6], [7, 9], [4, 8]〉 and the pattern ob-
tained by minimal change on left border for attributem3, i.e. d = 〈[4, 6], [7, 9], [5, 8]〉.
We have d�� = 〈[4, 5], [7, 9], [5, 8]〉. We observe that d and d�� present a dif-
ference for attribute m1, but d has been generated from a change on m3. Since
m1 < m3, d

�� is not canonical and has already been generated (see previous
example): it is no more necessary to apply minimal changes to d��. Since
this FCIP has already been generated, the algorithm backtracks, indicated by
d�� <D d in the algorithm given below.

MinIntChange. The algorithm is initialized as follow. G is the set of
objects. G� is the most frequent pattern and minimal w.r.t ⊑. Two integers
are used to indicate the current minimal change (attribute and border). A
minimal frequency minsupp is also given.

Alg. 1 MinIntChange()

1: FCIP = ∅; // the FCIP set
2: process(G�,0,0,G,G�);

Given a generated closed pattern d, the main procedure firstly checks whether
d is frequent and tests canonicity. If one of these test fails, the algorithm
backtracks. Otherwise the current pattern d is stored as being a FCIP not
previously generated. Then, the algorithm applies minimal changes to d fol-
lowing the lectic order (from attribute n and border p), computes closure and
the procedure is called again. The procedure backtracks when no more mini-
mal changes to current FCIP can be applied. The notation δn,l(d) returns the
left border of the interval describing attribute n in d while δn,r(d) returns its
right border. The peusdo code of the procedures minChangeRight(d, n) and
minChangeLeft(d, n) is not given for sake of simplicity. It consists in applying
the minimal change as previously defined (see minChangeR([a,b])) but for a
given attribute, namely n. Accordingly, 18 FCIP are extracted from Table 1
with minsupp = 1. Note that the CIP of null support cannot be extracted if
the user specifies minsupp = 0. The algorithm operates a bounded number of
2|M | × |FCIP | minimal changes. Complexity of minimal change procedure is
log(Wm), i.e. getting the next value in a previously sorted set. For each change,
closure is computed. First operator (.)� returns the image of d and requires
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Alg. 2 process(c, n, p, A, d), c was generated at previous step with a minimal
change on attribute m and border p (p=0 means right, p=1 means left), A = c�

and d = c��

if (|A| ≤ minsup or d <D c) then
2: return;

end if
4: FCIP ← FCIP ∪ d

for i = n to |M | step 1 do
6: if δi,l(d) = δi,r(d)) then

continue;
8: end if

if (i = att and p = 1) = false then
10: patR← minChangeRight(d, i)

process(patR, i, 0, patR�, patR��);
12: end if

patL← minChangeLeft(d, i);
14: process(patL, i, 1, patL�, patL��);

end for

to scan objects in G and test if their description subsumes d. Actually, it its
not needed to scan the whole set of objects, but only those in the image of the
previously generated closed pattern. The second operator (.)� applies to a set
of objects, and returns the convex hull of their description in R|M|, requiring
only computations of minima and maxima on each dimension separately.

5.4 Mining interval patterns generators

We now adapt MinIntChange to extract FIPG. Indeed, applying the closure
operator to a generated pattern is still important: for any FCIP d, a minimal
change implies that the support of the resulting pattern c is strictly smaller than
the support of d. Therefore, c is a good generator candidate of the next FCIP.
However, when applying the closure to this candidate, “equivalent changes can
be added” and are not necessary to store for the next generator. This is made
clearer with an example.

Example. Consider the pattern 〈[4, 5], [7, 9], [4, 8]〉 obtained with a right minimal
change on the smallest pattern w.r.t ⊑, and characterized by the IS-items “m1 ≤
5”. Now consider its closure, i.e. 〈[4, 5], [7, 9], [4, 8]〉�� = 〈[4, 5], [7, 9], [5, 8]〉.
The closure adds one change, namely “m3 ≥ 5”. Actually, it can be shown that
the changes “m1 ≤ 5” and “m3 ≥ 5” are equivalent as they characterizing the
same image.

Since a generator is characterized by a smallest set of minimal changes as
possible (having largest intervals in its equivalence class), we should not con-
sider the changes “added” by the closure. This can also be understood with
Propositions 4.2 and 4.3.

At each step of the depth-first enumeration is generated a FGIP candidate.
We know that it has no subsumers in its branch with same support. However,
it could exist a branch with another FGIP with same image and resulting from
less changes. Regarding to the lectic order on minimal changes, and already
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suggested in the binary case in [7], we should use a reverse traversal of the tree,
see Figure 4. Therefore, if such pattern exists, i.e. the current candidate is not
a generator, it has already been generated with few minimal changes. In this
case, the algorithm backtracks: these two patterns have the same closure, hence
the same minimal change will be used to build next candidate.

[4,4] [5,5] [6,6]

[4,5] [5,6]

[4,6]

m1 ≤ 4 9

8 7

6 m1 ≥ 5

3

2 m1 ≥ 6

5

m1 ≤ 5 10

4

1 m1 ≥ 5

Figure 4: Reverse pre-order traversal of (Dm1
,⊓).

MinIntChangeG. At the initialization step, we start from the minimal
pattern d. This pattern d is both closed and generator, i.e. d = G� while any
change would also change its support. d is stored as FCIP and FGIP. At a
given step, if the generator candidate is actually a generator (see details after)
and is frequent, the FCIP is used to characterize the next change. This change
is applied to the FGIP to obtain the new candidate, the closure operator is
applied to obtain its closure. Next step is called with resulting FCIP and the
new FGIP. This means that a FGIP is characterized by a minimal set of changes
(branches in the tree), while the FCIP is characterized by the maximal set
of changes (branches plus changes added by successive closures). Notice that
the canonicity test cannot be used anymore, since a FCIP may have several
generators, characterized by different minimal sets of changes.

Alg. 3 MinIntChangeG

FIPG = ∅;
processGen(0,0,G,G�,G�);

Fast subsumption checking with hastable. To test whether a candidate
is a generator, we use the same technique as in the algorithm Charm [27].
MinIntChange hashes the FIPG upon their image. In the testing of a candidate
d, the entire list corresponding to its hash value h(d) is retrieved. If there is
a FGIP c in the list with same support and such that c ⊑ d, d is discarded,
otherwise d is declared a FIPG and hashed.

Fast subsumption checking with a trie. A second possibility uses the
trie structure (see e.g. [6] for more details). Each word of the trie is the image
of a FCIP, and a list of its generators its attached. When testing whether a
candidate is a generator or not, we look in the trie for its corresponding image
(word) and only test the generators associated to this word. If one of them is
subsumed by the candidate, the candidate is discarded, otherwise added to the
list. Whereas this solution may be more efficient, it requires more storage space.
Most importantly, it allows to associate any FIPG to its closure, answering to
the problem 3.
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Alg. 4 processGen(n, p, A, d, cand): cand is the current candidate, cand� = A,
A� = d

if |A| ≤ minsup or addCandidate(gen) = false then
2: return;

end if
4: FIPG = FIPG ∪ cand;

for i=|M | to n step - 1 do
6: if δo,l(d) = δo,r(d) then

continue;
8: end if

clone← gen

10: δi,l(clone)← δi,l(minChangeLeft(d, i));
process(i, 1, clone�, clone��,clone);

12: if (i = att and p = 1) = false then
clone← cand

14: δi,r(clone)← δi,r(minChangeRight(d, i));
process(i, 0, clone�, clone��,clone);

16: end if
end for

Finally, notice that this algorithm is not able to extract generators with null
support. Indeed, next changes are obtained from the previous FCIP. Since the
FCIP with null support does not exist, we cannot find its generators. A basic
solution, not investigated in this paper, is to use the non-redundant enumeration
style when a generator of support one is produced.

6 Experiments

We evaluate here the performance of the algorithms designed in the previous
section, namely MinIntChange, MinIntChangeG-h with auxiliary hashtable and
MinIntChangeG-t with auxiliary trie. We also compare the performance with
the itemset-mining algorithm Charm [27] for extracting closed IS-itemsets, and
TalkyG [26] for extracting IS-itemsets generators. Indeed, TalkyG also considers
a depth-first reverse traversal of the prefix tree of binary attributes, while also
using a hashtable for fast subsumption checking. In the latter case, we also study
the global redundancy effect. The three algorithms designed in this paper are
implemented in Java. We used the Coron System [1] to experiment both Charm
and TalkyG. Experiments are conducted on a 2.50Ghz machine with 16GB RAM
running under Linux 2.6.18-92.e15.

Characteristics of the datasets used are given in Table 3 [11]. As the number
of patterns depends on the number of unique attribute values in the dataset, we
choose datasets with increasing size and number of attribute values in average,
the worst case being when each attribute has a different value for each object
(AP). The first experiments compare the algorithm MinIntChange for extract-
ing FCIP and Charm for extracting equivalent frequent closed IS-itemsets in
corresponding interordinally scaled context. Each execution time is the mean
of five runs and is given in milliseconds in Table 4, for different datasets and
minimum support. We do not compare memory usage here: MinIntChange uses
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Dataset Objects Attributes avg. |Wm|
Bolts (BL) 40 8 17

Basketball (BK) 96 5 62
Airport (AP) 135 5 135

Table 3: Datasets [11].

a canonicity test for pruning, while Charm uses an auxiliary hashtable. Note
that the number of FCIP explodes when the support is low with dataset AP
(worst case). The Table 4 shows that MinIntChange outperforms Charm. The
table entry NA means that the computation was intractable.

minSupp MinIntChange Charm |FCIP |
BL
90% < 50 < 50 112
80% < 50 < 50 1,130
50% 252 658 32,107
25% 1,215 10,517 171,192
2% 1,905 42,679 272,223
AP
90% 222 190 12,419
80% 4,595 24,309 346,741
50% 145,939 33,410,268 16,214,345
20% 448,934 NA 66,879,365

Table 4: Execution time for extracting FCIP (in ms).

We now extract frequent interval pattern generators (FIPG) withMinIntChange-
h and MinIntChange-t . We also extract frequent itemsets generators (FISG) in
corresponding binary data after interordinal scaling with the algorithm TalkyG.
Table 5 gives the execution time (mean of five runs) for each algorithm, and
the proportion of globally non-redundant FISG. Since MinIntChange-t provides
each generator with its closure, the table accordingly gives the number of gener-
ators per closed interval pattern (last column). We first remark that the global
redundancy effect discards the use of binary data, e.g. only 11% of the FISG are
actually FIPG in dataset BL with a minimum support of 25%. This worsens the
different execution times of TalkyG. Secondly, the algorithm MinIntChangeG-t
outperforms MinIntchangeG-h. However, it uses more memory (not detailed
here) since it stores each closed set of objects as a word in the trie, and to each
word the list of FIPG associated to this closed set. Meanwhile, MinIntChangeG-
h requires less memory since storing the FIPG only in an hashtable. Finally,
we remark that the less frequent a FCIP is, the more its equivalence class has
minimal elements (FIPG).

7 Discussion and conclusion

We presented a study on the characterization and the extraction of frequent
closed interval patterns and their associated generators from numerical data.
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For this task, we designed the algorithms MinIntChange and MinIntChangeG,
our main contribution. These algorithms are reusable for other kind of data,
for which a closure operator is defined (e.g. graphs in pattern structure [8])
and a minimal change operation is defined (e.g. adding an edge to a graph
pattern). The main drawback of the algorithms lies in their poor scalability
when the number of different attribute values is large compared to the number
of objects. However, as stated in [15] for unfrequent closed interval pattern
extraction, one can easily embed monotone constraints on the lattice structure of
these patterns (e.g. minimal/maximal size of one or several intervals). Indeed,
intervals with too large size tend to be frequent but not interesting, whereas
small intervals may have too small support [25]. We dedicated this problem
in [14], in the field of information fusion, by introducing a similarity relation
between interval patterns. A second solution explored in [15] with effective
results in gene expression data analysis, is to reduce the number of different
attribute values before the mining task, e.g. rounding values. For example, the
last attribute of the basket ball dataset (BK) describes the points per minutes
of a player: a double value with four digits after the comma, e.g. 0.5885. One
can round this value to two digits after the coma considering that this loss of
information is not significant, making the mining possible with large datasets.

We also showed that mining equivalent binary data (encoding all possible
intervals) is not efficient since these data suffers of redundancy. Indeed, classical
itemset mining algorithms generally do not consider a semantic associated to
binary attribute labels. That was also a contribution to show that pattern struc-
tures and associated closure operator provide a simple and elegant framework
to consider numerical data.

Taking into account missing values is a perspective of research, while fault-
tolerant interval patterns should be studied, possibly strongly reducing their
number (see e.g. [5] for the binary case). Two applications in which interval
pattern generators may be useful are proposed.

Generators are preferable to closed patterns. According to the version
of minimum description length principle (MDL) of [10], the best hypothesis to
explain a dataset is the one minimizing the sum of (i) the length in bit of the
description of the hypothesis, and (ii) the length of the data description when
encoded with the help of the hypothesis. The authors of [20] recalled how the
MDL principle favors generators. Consider an equivalence class of itemset in
binary data. The maximal element, i.e. closed itemset, has higher cardinality,
while generators have smallest cardinality. Therefore, the generators with min-
imal cardinality are best hypothesis to describe the same set of objects. The
same holds for interval patterns, modulo the notion of minimality: best patterns
are those minimal w.r.t. the subsumption relation on patterns, i.e. patterns
with largest interval describing a same set of objects. According to [20], inter-
val pattern generators provide better hypothesis, and seem useful for numerical
classification problems, i.e. explaining the resulting cluster description, since
usually, the bounding box of object descriptions (a closed interval pattern), is
considered.

Interval patterns for k-anonymity. To preserve privacy in a dataset, object
identifiers can be removed, e.g. names. However, some combinations of at-
tributes such as birth date and ZIP code possibly allow to identify a unique
individual. An important method for de-identification is the method of k-
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anonymity [2]. A basic idea is to reduce the granularity of data descriptions
in such a way that a unique individual cannot be distinguished among at least
(k − 1) individuals. For numerical attributes, a solution is to “generalize” the
attribute values to a range, reducing the granularity, e.g. replacing the age 23
by an interval [21, 24], see e.g. [23]. Now consider an individual g ∈ G in a nu-
merical dataset as described in the present paper. The description δ(g) ∈ (D,⊑)
is composed of degenerate intervals, and is closed. The information brought by
one of its generators (with larger intervals) is as follows: this generalization is
not sufficient enough to not uniquely identify the individual. One should there-
fore consider a smaller generator w.r.t. ⊑ depending on the cardinality of its
image, and can replace the individual description this generator. This operation
is a projection of the pattern searchspace.

Reproducible Results Statement:

For the interest of the community, algorithm source codes and datasets can be
found at http://www.loria.fr/∼kaytouem/SDM11.
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