
HAL Id: inria-00512134
https://inria.hal.science/inria-00512134

Submitted on 27 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tracking Design Smells: Lessons from a Study of God
Classes

Stéphane Vaucher, Foutse Khomh, Naouel Moha, Yann-Gaël Guéhéneuc

To cite this version:
Stéphane Vaucher, Foutse Khomh, Naouel Moha, Yann-Gaël Guéhéneuc. Tracking Design Smells:
Lessons from a Study of God Classes. 16th Working Conference on Reverse Engineering (WCRE
2009), IEEE Computer Society Press (WCRE’09), 2009, Lille, France, France. �inria-00512134�

https://inria.hal.science/inria-00512134
https://hal.archives-ouvertes.fr

Tracking Design Smells:

Lessons from a Study of God Classes

Stéphane Vaucher Foutse Khomh

GEODES / Ptidej Team

Dépt. d’Informatique

Université de Montréal

Montreal, Canada

Email: {vauchers,foutsekh}@iro.umontreal.ca

Naouel Moha

Triskell Team

IRISA / Université de Rennes 1

Rennes, France

Email: moha@irisa.fr

Yann-Gaël Guéhéneuc

Ptidej Team

Dépt. de Génie Informatique

École Polytechnique de Montréal

Montréal, Canada

Email: yann-gael.gueheneuc@polymtl.ca

Abstract—“God class” is a term used to describe a certain
type of large classes which “know too much or do too much”.
Often a God class (GC) is created by accident as functionalities
are incrementally added to a central class over the course
of its evolution. GCs are generally thought to be examples
of bad code that should be detected and removed to ensure
software quality. However, in some cases, a GC is created by
design as the best solution to a particular problem because,
for example, the problem is not easily decomposable or strong
requirements on efficiency exist. In this paper, we study in
two open-source systems the “life cycle” of GCs: how they
arise, how prevalent they are, and whether they remain or
they are removed as the systems evolve over time, through
a number of versions. We show how to detect the degree of
“godliness” of classes automatically. Then, we show that by
identifying the evolution of “godliness”, we can distinguish
between those classes that are so by design (good code) from
those that occurred by accident (bad code). This methodology
can guide software quality teams in their efforts to implement
prevention and correction mechanisms.

Keywords—Design smells; software evolution, empirical
study.

I. INTRODUCTION

Quality analysis (QA) teams are concerned with identi-

fying problematic pieces of code in the systems developed

by their colleagues. Usually, QA teams first focus on the

most important parts of a system (e.g., its kernel) because of

their limited resources in time and personnel; their remaining

efforts then focus on the more risky parts of the system,

using for example static code analysis to identify them.

Static code analysis can detect structural patterns in

systems that are signs of poor design decisions like code

and design smells [1], [2]. Code and design smells are poor

solutions to recurring implementation and design problems

[1]. An example of a typical and recurrent smell is the God

class (GC), also called Blob [3], which defines a class that

“knows too much or does too much” and centralises many

functionalities. More precisely, a GC corresponds to a large

controller class that depends on data stored in surrounding

data classes. GCs are considered in the literature to be a bad

programming practice [3], [4].

Although generally considered bad, there are cases where

GCs are the most reasonable solution to a problem. For

example, parsers are notoriously difficult to decompose,

resulting in very large and complex classes. To the best

of our knowledge, no previous work has studied the origin

of smells (and in particular GCs), how they have been

introduced, removed, and also how they evolve in systems.

Additionally, few studies have proposed methods/techniques

to prevent and correct these smells.

Guiding Metaphor: As in previous work [5], we cast

our empirical study as a problem analogous to research

in the field of epidemiology. Epidemiology is the study

of factors conditioning the appearance, frequency, way of

diffusion, and evolution of a disease to plan its prevention

and treatments. Following the metaphor of epidemiology, re-

searchers on software maintenance study the factors leading

to software problems (e.g., unstructured code).

This paper presents an exploratory analysis of the “life

cycle” of GCs: (1) we use a Bayesian approach to detect

the presence of GCs in systems and rank them; (2) we study

the evolution of these GCs in systems; specifically, we study

how GCs are introduced in and removed from the systems

and how they evolve. The result of this study allows us to

(3) discuss a predictive model to prevent their introduction:

given a change request, how likely will a class become a

GC. Finally, (4) we discuss how refactorings could be used

to treat classes identified as God classes.

Our study leverages our previous work in GC detection

[6], in which we developed a Bayesian-based smell detection

model and tested it on two open-source systems. This model

was shown to accurately detect all existing occurrences

while raising few false alarms. For the present work, this

model is used to evaluate different versions of two open-

source systems, Xerces and Eclipse JDT. We also exam-

ine the effect of different code changes on the likelihood

that classes become GCs. This study shows that a large

proportion of GCs seems to be introduced as a conscious

design decision by developers; and that specific maintenance

activities can eliminate GCs when they are accidents.

Organisation: Section II relates our study with previous

work. Section III presents our study along with the evolution

of GCs in systems and the techniques used in the study.

Section IV presents the process of building a model for

the prevention of GC and suggestions of corrections, while

Section V discusses the results of our study, along with

threats to their validity. Finally, Section VI concludes the

paper and outlines future work.

II. RELATED WORK

Many papers address various aspects of software evolution

but few deal specifically with the evolution of code and–or

design smells.

Smell Definition and Detection: Code and design

smells include low-level or local problems such as code

smells [1], which are usually symptoms of more global

design smells such as antipatterns [3]. Code smells are

indicators or symptoms of the possible presence of design

smells. Fowler [1] presented 22 code smells, structures in

the source code that suggest the possibility of refactorings.

Code smells such as duplicated code, long methods, large

classes, and long parameter lists are just a few symptoms of

design smells and opportunities for refactorings. Brown et

al. [3] described 40 antipatterns, including the well-known

Blob and Spaghetti Code. Riel [4] defined 61 heuristics

characterising good object-oriented programming to assess

and improve manually a system design and implementation;

alluding to bad programming practices, such as GCs.

Several approaches to specify and detect code smells and

antipatterns have been proposed. They range from manual

approaches, based on inspection techniques [7], to metric-

based heuristics [8], [9], where antipatterns are identified

according to sets of rules and thresholds defined on various

metrics. Rules may also be defined using fuzzy logic and

executed by means of a rule-inference engine [10]. Some

approaches for complex software analysis use visualisation

techniques [11], [12]. Such semi-automatic approaches are

an interesting compromise between fully automatic detection

techniques that can be efficient but lose track of the context

and manual inspections that are slow and subjective [13].

However, they require human expertise and are thus time-

consuming. Other approaches perform fully automatic detec-

tion and use visualisation techniques to present the detection

results [14], [15].

This previous work has contributed significantly to the

specification and automatic detection of code and design

smells. The approach used in this study, builds on these pre-

vious works, especially [6] and [2], and offers a probabilistic

method to study the evolution of smells in systems.

Smell Evolution: Recently, some work studied the

impact of code smells and of one design smell (God class)

on evolution-related phenomena. In a direction of research

related to the impact of smells on program comprehension,

Du Bois et al. [16] showed that the decomposition of GCs

into a number of collaborating classes using well-known

refactorings can facilitate comprehension. Independently,

Lozano et al.’s work [17] raised several research questions

related to the impact of smells on maintainability and

suggest different research directions. In a paper in the same

proceedings as this one, Khomh et al. [18] studied the impact

of classes with code smells on change-proneness and the

particular impact of certain code smells, using Azureus and

Eclipse. They showed that the risk that classes with code

smells change is very high, except in a few explainable cases.

This previous work raised the awareness of the community

towards the concrete impact of code smells and antipatterns.

In this study, we focus on one design smell to understand its

evolution and discuss its possible prevention and correction.

Software Evolution: In recent years, much work has

been done on problems related to the evolution of systems.

A dedicated workshop exists since 1998, the International

Workshop on Principles of Software Evolution. We sum-

marise some important lines of work on software evolution.

A direction of research studies the evolution of systems

to identify co-changing artifacts. Zimmermann et al. [19]

extended previous work [20], [21], [22], [23] to recover

co-changing fine-grain entities (classes, methods, fields. . .).

They suggest likely future changes by detecting causal

couplings between entities to prevent incomplete changes.

German [24] abstract co-changing files into modification

requests and analyses their interrelationships and authors.

Bouktif et al. [25] identify recurring patterns in the evolution

of co-changing files.

Another direction of research provides help to understand

system evolution through visualisation techniques. For ex-

ample, Eick et al. [26] developed tools to visualise the

evolution of software measures and change data, including

size and effort. Ratzinger et al. [27] proposed an approach

called EvoLens to explore evolution data across multiple

dimensions. It allows visualising important relationships

across module boundaries based on customisable views.

Xie et al. [28] presented several visualisation techniques

integrated in a tool called CVSViewer3D. This tool offers

system-, file-, function-, and line-level views. It allows, for

example, to highlight all changes made by one developer.

Yet another research direction investigates the evolution

of systems to infer information about these systems. Bakota

et al. [29] studied the evolution of clones across software

versions to track those occurrences of clones that could

become problematic in the future versions. They reuse

the clone detection technique available in COLUMBUS and

define a similarity measure to relate two code fragments in

two versions of a system. Then, they studied the evolution of

clones and defined four major categories of clones according

to their evolution pattern: vanished, occurring, moving, and

migrating clones. Demeyer et al. [30] defined four metric-

based heuristics to identify the refactorings applied between

two versions of a system.

Finally, in another research direction, researchers per-

formed evolution analyses trying to infer design and–or

architectural knowledge about a system. For example, Egyed

[31] proposed an approach to check the consistency of evolv-

ing UML diagrams. In a series of papers, Xing and Stroulia

[32] proposed an approach to analyse the evolution of the

logical designs of systems. They proposed three types of

longitudinal analyses: phasic, gamma, and optimal matching,

to recover distinct evolutionary phases and their styles, thus

helping in evolving the system consistently. Mens et al.

[33] performed a metrics-based study of the evolution of

Eclipse, the popular integrated development environment.

Their study consisted in evaluating Eclipse against three laws

of software evolution (law 1: Continuing Change, law 2:

Increasing Complexity, and law 6: Continuing Growth) using

size and complexity indicators (such as number of classes,

lines of code, number of defect reports). They found that

Eclipse changed and grew continuously, hence supporting

laws 1 and 6. However, the increase in complexity (law 2)

of Eclipse was only partially supported. Wermelinger et al.

[34] performed a quite similar case study as [33].

We get inspiration from this previous work to study the

evolution of smells that we consider to be diseases that

can infect healthy software systems. Our ultimate goal is

to prevent and cure such infections.

III. THE EVOLUTION OF GOD CLASSES

Following our metaphor, just as a disease can affect the

health of a person, smells can affect the “health” of a

system. Moreover, it is usually preferable to prevent an

infection than to cure it afterwards. However, prevention is

quite difficult without understanding how the disease can

be contracted. In particular, we must know its causes (e.g.,

smoking causes cancer) and–or its transmission mechanisms

(e.g., airborne infection in public places). There are limits

to what prevention can do and to treatments for curing a

disease are also needed.

Consequently, we study factors conditioning the appear-

ance, frequency, way of diffusion, and evolution of GCs—

a recurrent and potentially harmful “disease” in object-

oriented systems. Our ultimate goal is to find ways to

prevent the introduction of GCs and facilitate their removal.

We choose to study GCs because they occur frequently in

object-oriented systems and impact negatively the quality

and maintenance of systems.

As in epidemiological studies, we selected a population

that contains “infected” classes. The two open-source sys-

tems, Xerces and Eclipse JDT, serve as our population. We

identified GCs in the different versions of these systems

using a detection model. Then, we identified and classified

different evolution trends of GCs that indicate how the level

of “godliness” of these classes varies throughout the life

cycle of the systems. The identification of the evolution

trends was performed using a classification technique based

Figure 1. GC Detection Model

on dynamic time-warping (DTW). These trends are then

used to understand how these classes become GCs and could

be corrected. Prevention and correction mechanisms are then

discussed based on these evolution trends.

In the following, we provide a short description of the two

systems, our “population”. We also describe succinctly the

detection model and the DTW technique. Then, we present

the evolution trends of GCs. The mechanisms of prevention

and correction that could stem from the evolution trends are

described in the next section.

A. Population

The population of our study consists of two well-known,

industrial-strength, open-source systems: Xerces and the

Eclipse JDT sub-project. Xerces1 is a family of software

packages for parsing and manipulating XML. It implements

a number of APIs for XML parsing, including DOM and

SAX2. Implementations are available for C++ and Perl.

The Eclipse JDT sub-project2 is an Eclipse plug-in that

implements the infrastructure for the Java IDE of the Eclipse

platform. It provides a Java model and capabilities to parse,

manipulate, and rewrite Java programs. Eclipse has been

developed partly by a commercial company (IBM), which

makes it more likely to embody industrial practices. It has

also been used in related studies, e.g., [33], [34].

These systems were chosen because they are long-lived

and each contains several hundred to several thousand

of classes. Furthermore, they are from different problem

domains and follow different development processes, two

factors affecting design quality. We analysed 36 releases of

Xerces from 1999 to 2006 and 22 releases of Eclipse JDT

available from 2001 to 2008.

B. Detection Model

The identification of GCs in systems was performed with

the detection model presented in [6]. From a rule card

describing the detection rules, we built a Bayesian belief

network describing a probabilistic model of the rule card,

as shown in Figure 1.

1http://xerces.apache.org/
2http://eclipse.org

This model is based on metrics for characterising specific

classes and computes the probability that these specific

classes are GCs. The inputs used in the model include: (1)

the size of the class (its number of methods and attributes),

(2) its cohesion (using Henderson-Sellers’ LCOM5 [35]),

(3) the number of associated data classes, and (4) a lexical

analysis of the names of a class and its methods.

The model was calibrated by learning the conditional

probability tables from manually-validated data. These data

relate to Xerces v2.7.0, in which we asked two undergradu-

ate students and two graduate students to detect occurrences

of GCs in the two systems. The pair of undergraduate

students performed the task together [36]. In previous work

[6], we showed that building the model using a system and

applying on another gives consistent results, thus avoiding

the problem of over-fitting, i.e., of false positives.

The output of this model is a real value between 0 and 1:

the probability that the class exhibiting the symptoms (smell)

of a GC is truly a GC; we refer to this probability as the

“Godliness” of a class. The output probability enables us to

rank classes, which cannot be identified by traditional detec-

tion techniques. More exactly, we can track the evolution of

all classes throughout the existence of a system and identify

when and how they degenerate into GCs.

The model used was built and tested on Xerces v2.7.0.

We used the highest level probability (45%) detected as a

threshold to tag classes in Eclipse. In previous work [6], this

model was able to guide manual inspections in two systems

with a precision of 77% in top-ranked classes.

C. Global Evolution Trends of God Classes

The first step in the study consisted of evaluating the

number of GCs present in every version of a system to

identify possible global trends. Figure 2 presents the ratio of

GCs (right axis) from one version to the next as well as the

growth of the system (left axis, in number of classes). The

figure shows that the growth of both systems is relatively

linear. The different plateaux (both curves) correspond to

minor versions during which few new classes/GCs are

added. The proportion of GCs is relatively stable in Eclipse

(2%) but varies significantly in Xerces (10%–15%).

Table I
INTRODUCTION AND REMOVAL OF GOD CLASSES.

Xerces Eclipse JDT

Nb of GCs (%) 138 (18%) 144 (3%)

Nb of GCs from introduction (%) 97 (70%) 88 (61%)

Nb of GCs deleted (%) 41 (30%) 27 (19%)

Table I summarises descriptive statistics concerning the

introduction and removal of GCs. Globally, Xerces and

Eclipse JDT have 138 and 144 classes that were GCs at

some point in their existence. A large number of these GCs

were GCs from their introduction: 70% for Xerces and 61%

(b) Gradual Degradation(a) Constant

(f) Sharp Improvement

(d) Temporary Badness

S

d(g,S)
d(a,S)

d(b,S)

d(c,S)

d(d,S)d(e,S)

d(f,S)

(g) Gradual Improvement

(e) Temporary Relief

(c) Sharp Degradation

Figure 3. Evolution Trend Classification

for Eclipse JDT. Later in the life cycle of the systems, these

classes have been deleted in the proportion of 30% in Xerces

and 19% in Eclipse JDT.

D. Dynamic Time-Warping

The evolution of a class with respect to its level of “god-

liness” can be represented as a signal S = (s1, s2, s3, ..., sn)
where si, 1 ≤ i ≤ n is the probability that a class is a GC at

the version i. Version i represents a version in which a class

appears in the system and n is the total number of versions

in which the class exists and is analysed.

Our objective is to classify S according to meaningful

change stereotypes and thus guide our subsequent study of

the evolution of GCs. To reach this objective, we use a clas-

sification technique based on dynamic time-warping (DTW).

DTW was first presented by Kruskal and Lierberman [37] to

compute a time-independent comparison of pairs of signals.

This technique finds a “topological” distance between two

signals by modifying the time axis of each one. For example,

it can align two signals with peaks at different times. This

ability to modify time is important because changes in

classes tend to happen irregularly, often independently of

the system versions. A specific signal is classified according

to its proximity to the nearest stereotype.

E. Classification of the Evolution Trends

We present the results of the classification of the evolution

trends of GCs on Xerces and Eclipse JDT. Figure 3 presents

this classification (the seven surrounding plots, from a to g)

and illustrates it with an example: the evolution trend of class

org.apache.xerces.impl.XMLVersionDetector in the center. S
represents the signal to be classified, i.e., the probability that

class XMLVersionDetector is a GC, and d(x, S) corresponds

to the distance calculated by the DTW algorithm between

the signal S and a stereotype x.

0

100

200

300

400

500

600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Nb of Classes

Ratio God classes

(a) Number of GCs in Xerces from 1.0.1 to 2.9.0

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Nb of Classes

Ratio God Classes

(b) Number of GCs in Eclipse JDT from 1.0.0 to 3.4.0

Figure 2. God Class Ratios vs. Total Classes

The different stereotypes are defined by two or three

point configurations where every point can either have a

none, medium, or high value. Low and high correspond to

the lowest and highest godliness probabilities possible, and

medium is (low + high)/2. Only three points are needed

because the DTW can stretch the signal as much as needed.

S can have however different values. The seven stereotypes

describe different common evolution trends that have been

observed using the DTW-based clustering technique (de-

scribed in [25]) on the GCs in Xerces and Eclipse JDT.

The Constant stereotype corresponds to a stable signal

where the class is always tagged as a GC. Gradual improve-

ment corresponds to a class that starts with a high probability

of being a GC, probability which drops to a medium level

before becoming low. Sharp improvement is similar but the

transition is abrupt: the signal level drops from high to

low in a single version. Gradual degradation and Sharp

degradation show the same phenomenon except describing

design degradation. Finally, Temporary relief and Temporary

badness are stereotypes of classes that are only temporarily

GCs. To classify an evolution signal S, we compute the

distance with the different stereotypes. The DTW algorithm

finds d(x, S) as the minimal distance between x and S.

The distribution of different trends is presented in Figure

4. In Xerces, out of the 138 classes that were GCs at some

point in their existence, 91 (66%) showed no significant

variations and followed the constant stereotype. 16 GCs

(12% corresponding to improvement trends) were corrected

by developers. This is significantly fewer than the number of

GCs removed by developers (41, see Table I). 22 (16% cor-

responding to degradation trends) classes presented different

degradation symptoms.

Similarly, Eclipse JDT (containing 144 GCs) had a large

number of stable GCs, 96 (63%). In this system, almost as

many GCs were corrected, 21 (14% corresponding to im-

provement trends) as were deleted (27, see Table I). Finally,

27 (19%) classes saw their quality degrade. We consider that

the classes corresponding to Temporary badness and relief

are instances of both an improvement and a degradation.

This classification process highlights three main types of

evolution trends of interest: improved, degraded, and con-

stant GCs. Analysing each group can provide key insights

into the nature of these complex classes, why they still exist

or become more complex, and how they are improved. We

now analyse in greater detail each of these evolution trends.

Constant: By far, this group is the largest stereotype.

It contains a high number of GCs that are introduced at the

very beginning in systems and that remain GCs throughout

the existence of the systems. We investigated the motivation

of developers for creating and adding large classes with lots

of functionalities to a system. When asked, the primary

developer of Xerces mentioned that these classes were

as complex as the problems addressed. Independently, we

verified the use of design patterns [38] in these classes as it

could indicate a clear intention by developers to write clean

code; the structure of the classes is no accident. We found

that 82% of the classes from this group were playing roles

in at least one of the following design patterns: Abstract

Factory, Adapter, Observer, and Prototype.

Degradation: The GCs observed in this category have

two different reasons for their degradation: either they gained

new responsibilities (and grow in size) or they gained new

data classes. In EclipseJDT, for the most part, these GCs

are very large classes from their introduction. The main

reason why their observed quality degrades is due to the

addition of data classes. This can be explained by the

particular use of data classes in Eclipse: often, data classes

are used to communicate data between different application

layers. One typical case is org.eclipse.jface.text.Region, a

data class that describes a certain range in an indexed text

store. This data class is in fact a value object used to

transmit information from one system layer to another. One

large class that uses it is org.eclipse.jdt.internal.debug.ui.

snippeteditor.JavaSnippetEditor. Although there seems to be

a justification for such design, any large class that interacts

with a large number of these value objects, centralises

(a) Evolution Trends Distribution in Xerces (b) Evolution Trends Distribution in Eclipse JDT

Figure 4. Evolution Trends Distribution of God Classes

behaviour, a symptom of GCs.

For Xerces, 11 of 15 sharp degradations are due to a

similar situation: the quality of a class degrades because

it is already large and developers add new data classes.

Gradual changes, however, were all incurred by additional

code. Table II summarises the changes occurring in the

degraded classes. In this table, two different growth rates are

presented: the average relative size increases in instructions

and in methods. The number of versions indicates the du-

ration of the gradual degradation. Sharp degradations show

an average increase of 150% in instruction size and 86%

in method size between a pair of versions. In the case of

gradual degradations, the average change rates per version

is 65% for instructions and 41% for methods. Not presented

in the table, the total changes in gradual degradated classes

tend to be equivalent to that of the sharp degradations.

Other metrics were considered like cohesion but were not

significantly impacted.

Table II
DEGRADATION GROWTH RATES IN XERCES

Degradation Growth rate Growth rate Nb of

trend instructions/version methods/version versions

Sharp 363.64% 162.50% 1

Sharp 138.44% 283.33% 1

Sharp 214.98% 113.64% 1

Sharp 513.33% 100.00% 1

Gradual 40.99% 16.67% 2

Gradual 142.90% 6.67% 3

Gradual 9.46% 15.38% 5

Gradual 65.04% 6.25% 2

Gradual 34.28% 155.56% 3

Gradual 63.46% 42.86% 2

Gradual 103.33% 45.00% 4

The results presented in Table II seem to indicate that,

when performing a modification on a class, developers

should pay attention to the size of the changes made, as

they may induce a degradation of the quality of the class.

This will be discussed in greater detail in Section IV.

Improvement: Brown et al. [3] defined GCs as a large

complex class associated with many data classes. Fowler

[1] suggested refactorings to correct both large classes and

data classes. To correct large classes, possible refactorings

include Extract Class, Extract Subclass, and Extract Inter-

face. When correcting a data class, the main concern is to

limit access to its public attributes using the Encapsulate

Field refactoring and then to add functionalities using the

Move Method and Extract Method refactorings.

In our investigation of the improved GCs, we analysed

the different classes to identify if and what refactorings were

applied. The results are presented in Table III. The vast ma-

jority of refactorings found in Xerces were not refactorings

“by the book”. In fact, four times, developers of Xerces

extracted new super classes (indicated by ∗), a refactoring

not explicitly mentioned by Fowler as a solution to GCs.

Furthermore, in three cases out of five, the extracted classes

became new GCs. We observed thus that the correction of

GCs may induce the creation of new GCs.

Table III
REFACTORINGS IDENTIFIED IN XERCES FOR THE CORRECTION OF GOD

CLASSES

Improvement Refactoring Nb (%)

Sharp Move Method to data class 5 (31%)

Gradual Move Method from GC 2 (13%)

Sharp Extract Superclass* from GC 4 (25%)

Sharp Extract Class from GC 1 (6%)

In the following, we suggest prevention and correction

mechanisms that include a prediction model for preventing

the introduction of GCs. This mechanism is based on the

information gleaned from the evolution trends.

IV. PREVENTION AND CORRECTION OF GOD CLASSES

Our preliminary study indicated that there are factors that

can be used to both prevent the introduction and correct

GCs. We start by presenting a prediction model that, given

the size of a change, indicates how the godliness of a class

will evolve. Then, we present how refactorings can be used

to best correct a GC.

A. Preventing the Introduction of God Classes

When developers want to implement new functionality,

they should be able to offer an estimate of the work

involved. In our study, we identified two issues causing

quality degradation: the size of changes in methods and in

instructions. We therefore built upon this observation to build

a prediction model that, given a code change, predicts the

likelihood that it will cause a GC. Being able to estimate

the direct impact (small, medium, or large) of a change on a

class is important as changes can result in a degradation of

classes. A good assessment of the impact of changes could

help to prevent this decay in GCs: a developer informed of

the negative consequences of a change could anticipate and

implement an alternative change.

We used previously tested change metrics to quantify

these effects: three different instruction change metrics [39]

and two public interface change metrics. We calculated

the absolute and relative numbers of added, removed, and

modified instructions (in terms of bytecode instructions)

using a Levenshtein edit distance [40]. We also measured

the absolute and relative changes in the numbers of inter-

face methods (i.e., public declared or inherited methods)

as in [39]. The values were discretised into the following

levels: none, low, high. None indicates that there were no

changes. We used the third quartile (Q3) of observed values

as a threshold to separate the low from high values.

The predicted value is the variation on the level of

symptoms exhibited. After a change, the quality of a class

can degrade (its probability of being a GC increase), it can

be stable, or it can improve (GC decrease).

We built and executed the prediction model on Xerces us-

ing JRip, the implementation of the RIPPER rule-extraction

algorithm in Weka [41]. Tests were run using a 10-fold

cross-validation. Figure 5 provides the results of the rules.

RULE 1 of the model warns against modifications on

borderline classes (classes with already high symptoms of

GCs) because adding a large number of instructions to these

classes would cause them to decay into GCs. RULE 2

moreover states that any change that does not reduce the

complexity (measured in terms of size) of a class will likely

increase the risk that this class becomes a GC. Finally, any

other change would likely not affect the godliness of a class.

The prescriptive ability of this model is essential to

prevent the introduction of a GC in a system. Although

a developer cannot provide specific metrics to describe a

change, she should be able to describe it sufficiently for

the model to be useful. If a change is judged “bad”, the

developer can test alternate changes. The RIPPER algorithm

was not able to identify rules that predict change operations

decreasing the level of godliness. This problem could be

RULE_CARD : God Classes {

RULE 1: {

(Class status = Borderline) AND

(Ratio of instructions

added and/or deleted = high)

AND (Instruction Change Ratio = high)

=> Godliness = Increase (83 %)

};

RULE 2: {

(Class status = Healthy) AND

(Instructions Deleted = none)

=> Godliness = Increase (66 %)

};

RULE 3: {

(Default => Godliness = Stable (74 %)

};

}

Figure 5. Rules of the Prediction Model. (Classification rates.)

attributed to the simplicity of the metrics used. Future work

includes a detailed study of relevant metrics and building a

more powerful prediction model.

B. Proposing Remedies to God Classes

We discuss how to “cure” infected classes using refac-

torings. In our exploration of improvements in Xerces and

EclipseJDT, we found that developers use some refactorings

on GCs. In EclipseJDT, most corrections came from adding

behaviour to data classes, and in Xerces, we found that

developers would extract classes (often into super-classes).

We therefore present a process that could suggest the most

appropriate refactorings to cure a specific GC.

There are three structural issues that describe a GC: its

size, its cohesion, and its reliance on data class. Different

refactorings can address a different set of these issues.

The suggestion process could allow a developer to describe

visible characteristics of a GC using metrics. For example,

she might notice that a class C implements too much

functionality, which is measurable using the NMD (number

of methods) metric. She would like to know what is the

best refactoring to apply. We present different symptoms and

suitable refactorings to solve them. All of these refactorings

were observed in our study of Xerces.

Too Many Data Classes: A data class is loosely defined

as a data holder without behaviour. Any corrections of this

symptom consists of adding behaviour to the data class.

First, a developer encapsulates the fields and then moves

behaviour into the data class. The measurable effect of these

refactorings on the structure of the observed classes are

defined in Table IV. In the table, NPF and NPFr are the

number of public fields declared and removed. NMD is the

number of declared methods (excluding accessors), where

NMDa and NMDm are respectively the number added

and moved from a GC. Finally, DC is the number of data

classes. Both the number of data classes and the number of

methods declared are explicitly used in the detection model.

In our study of Xerces and EclipseJDT, this refactoring was

found to be commonly used to correct GCs.

Table IV
CORRECTING DATA CLASSES

Refactoring Data class GC

1) Encapsulate #NPF − NPFr

2) Move method #NMD + NMDa #NMDm − NMDm

3) Result #DC - 1

Table V
CLASS EXTRACTION

Refactoring GC

1) New class/sub/superclass #Assoc./NOC + 1/DIT + 1

2) Move methods out #NMD − NMDm

3) Move attributes out #NAD − NADm

Results Cohesion is better, Size is smaller

Too Much Behaviour in the God Class: When a class

implements too much behaviour, it can be advisable to

Move Method out. The effect is that the number of methods

declared (NMD) in the GC decreases.

Too Much State: When there are too many attributes,

a hidden class looms that must be extracted using, for

example, Extract Class. Fowler suggests for this class to

be a new associated class or a subclass. We have however

also observed that a superclass seems to be an alternative in

three cases in Xerces.

The result on metrics (in Table V) is that the size of

the class should decrease (as measured by the number of

attributes and methods declared). Depending on the choice

of attributes and methods moved out, the cohesion should

also increase. If the extracted class is a super/subclass, then

the position of the class in the inheritance tree should change

as measured by the metrics Number Of Children (NOC) or

Depth of the Inheritance Tree (DIT). We are aware of the

risk of transmission: the new class may be a GC or a data

class.

The suggestion process consists of evaluating the main

issue with the GC. The detection model can be used to

assess the influence of the different symptoms. If a class is

associated to too many data classes, then methods should be

moved there. If it is large and non-cohesive, then a developer

should extract a new class. Finally, if the class has too much

behaviour, methods should be extracted. While we discussed

only these three types of suggestions, more could be consid-

ered and included in an automated suggestion system [42]. In

future work, we plan on guiding the selection of refactorings

using optimisation techniques to find a balance between the

metric values characterising design and code smells.

V. DISCUSSIONS

Following an epidemiological metaphor, we conducted an

exploration of how GCs are introduced and removed from

software systems. While the results are observed on two dif-

ferent systems; the methodology, using a time-independent

classification, could be reused in further research to support

our findings.

GCs were identified using a detection model that was

shown in previous work to identify GCs with a precision

up to 77% and a recall of 100% for the top ranked classes.

Thus, the accuracy of the model is an issue in this type

of study. To minimise this threat to validity, we manually

validated the GCs that were discussed in the paper.

Both the prevention and correction mechanisms proposed

are simplistic, but their purpose was to illustrate the useful-

ness of the exploration of the life-cycle of GCs. We believe

that better prevention and correction mechanisms should be

explored in future work.

A general problem to guide preventive maintenance was

the lack of a taxonomy of changes that have a negative

impact on software quality. We therefore used quantitative

data (change metrics) instead of semantically meaningful

transformations (like refactorings).

All data is available online3 for future replications.

VI. CONCLUSION

In this paper, following an epidemiological metaphor, we

reported a study of the life cycle of GCs in two open-source

systems, Xerces and Eclipse JDT, to determine how they

came to be introduced, removed, and how they evolve. We

noted that GCs are sometimes introduced by design as the

best solution to a particular problem. Although they are not

“good” code, these classes cannot be improved and remain

relatively untouched from version to version. We found that

changes, such as adding new responsibilities, can result in

the degradation of GCs. The correction of a GC may also

move the problem to a different class.

From this study, we showed how to develop prevention

mechanisms, filters to determine whether projected changes

are likely to transform a class into a GC and decrease its

quality. We also formalised refactorings with their theoretical

effects on GCs to suggest the most appropriate changes.

The generalisation of our study to other smells is briefly

discussed and will be developed in future work. Future work

will also include assessing more systems and discussing

the proposed refactorings with their developers who apply

them. We also plan to identify other kinds of good design

practices, for example design patterns or Riel’s heuristics

[4], to explain the existence of “good” GCs.

ACKNOWLEDGMENT

We gratefully thank Jean Vaucher for our many fruitful

discussions and his valuable remarks. This work has been

partly funded by the Natural Sciences and Engineering

Research Council of Canada (NSERC), and the Canada Re-

search Chair on Software Patterns and Patterns of Software.

3http://www.ptidej.net/downloads/experiments/WCRE09b/

REFERENCES

[1] M. Fowler, Refactoring – Improving the Design of Existing
Code, 1

st ed. Addison-Wesley, June 1999.

[2] L. D. Naouel Moha, Yann-Gaël Guéhéneuc and A.-F. L.
Meur, “DECOR: A method for the specification and detection
of code and design smells,” IEEE Transactions on Software
Engineering, vol. To appear.

[3] W. J. Brown, R. C. Malveau, W. H. Brown, H. W.
McCormick III, and T. J. Mowbray, Anti Patterns:
Refactoring Software, Architectures, and Projects in Crisis,
1

st ed. John Wiley and Sons, March 1998. [Online]. Avail-
able: www.amazon.com/exec/obidos/tg/detail/-/0471197130/
ref=ase\ theantipatterngr/103-4749445-6141457

[4] A. J. Riel, Object-Oriented Design Heuristics. Addison-
Wesley, 1996.

[5] G. Antoniol and Y.-G. Guéhéneuc, “Feature identification:
An epidemiological metaphor,” Transactions on Software
Engineering (TSE), vol. 32, no. 9, pp. 627–641, September
2006, 15 pages. [Online]. Available: http://www-etud.iro.
umontreal.ca/∼ptidej/Publications/Documents/TSE06.doc.pdf

[6] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui,
“A Bayesian Approach for the Detection of Code and Design
Smells,” in Proceedings of the 9

th International Conference
on Quality Software, D.-H. Bae and B. Choi, Eds. IEEE
Computer Society Press, August 2009.

[7] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili,
“Detecting defects in object-oriented designs: using reading
techniques to increase software quality,” in Proceedings of the
14

th Conference on Object-Oriented Programming, Systems,
Languages, and Applications. ACM Press, 1999, pp. 47–56.

[8] R. Marinescu, “Detection strategies: Metrics-based rules for
detecting design flaws,” in Proceedings of the 20

th Interna-
tional Conference on Software Maintenance. IEEE Computer
Society Press, 2004, pp. 350–359.

[9] M. J. Munro, “Product metrics for automatic identification
of “bad smell” design problems in java source-code,”
in Proceedings of the 11

th International Software
Metrics Symposium, F. Lanubile and C. Seaman,
Eds. IEEE Computer Society Press, September 2005.
[Online]. Available: http://doi.ieeecomputersociety.org/10.
1109/METRICS.2005.38

[10] E. H. Alikacem and H. Sahraoui, “Generic metric extrac-
tion framework,” in Proceedings of the 16

th International
Workshop on Software Measurement and Metrik Kongress
(IWSM/MetriKon), 2006, pp. 383–390.

[11] K. Dhambri, H. Sahraoui, and P. Poulin, “Visual detection
of design anomalies.” in Proceedings of the 12

th European
Conference on Software Maintenance and Reengineering,
Tampere, Finland. IEEE Computer Society, April 2008, pp.
279–283.

[12] F. Simon, F. Steinbrückner, and C. Lewerentz, “Metrics based
refactoring,” in Proceedings of the Fifth European Conference
on Software Maintenance and Reengineering (CSMR’01).
Washington, DC, USA: IEEE Computer Society, 2001, p. 30.

[13] G. Langelier, H. A. Sahraoui, and P. Poulin, “Visualization-
based analysis of quality for large-scale software systems,”
in Proceedings of the 20

th International Conference on
Automated Software Engineering, T. Ellman and A. Zisma,
Eds. ACM Press, November 2005. [Online]. Avail-
able: http://www.iro.umontreal.ca/labs/infographie/papers/
Langelier-2005-VAQ/langelier-ase2005.pdf

[14] M. Lanza and R. Marinescu, Object-Oriented Metrics
in Practice. Springer-Verlag, 2006. [Online]. Available:
http://www.springer.com/alert/urltracking.do?id=5907042

[15] E. van Emden and L. Moonen, “Java quality assurance by
detecting code smells,” in Proceedings of the 9th Working
Conference on Reverse Engineering (WCRE’02). IEEE
Computer Society Press, Oct. 2002. [Online]. Available:
citeseer.ist.psu.edu/vanemden02java.html

[16] B. D. Bois, S. Demeyer, J. Verelst, T. Mens, and M. Tem-
merman, “Does god class decomposition affect comprehen-
sibility?” in Proceedings of the 10

th IASTED International
Conference on Software Engineering. Acta Press, 2006, pp.
346–355, 10 pages.

[17] A. Lozano, M. Wermelinger, and B. Nuseibeh, “Assessing
the impact of bad smells using historical information,” in
Proceedings of the 9

th International Workshop on Principles
of Software Evolution, M. D. Penta and M. Lanza, Eds.
ACM Press, September 2007, pp. 31–34. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1294948.1294957

[18] F. Khomh, M. D. Penta, and Y.-G. Guéhéneuc, “An
exploratory study of the impact of code smells on
software change-proneness,” in Proceedings of the 16

th

Working Conference on Reverse Engineering (WCRE),
G. Antoniol and A. Zaidman, Eds. IEEE Computer
Society Press, October 2009, 10 pages. [Online]. Avail-
able: http://www-etud.iro.umontreal.ca/∼ptidej/Publications/
Documents/WCRE09a.doc.pdf

[19] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller,
“Mining version histories to guide software changes.” in
Proceedings of the International Conference on Software
Engineering, 2004, pp. 563–572.

[20] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical
coupling based on product release history.” in Proceedings
of IEEE International Conference on Software Maintenance,
1998, pp. 190–197.

[21] H. Gall, M. Jazayeri, R. Klosch, and G. Trausmuth, “Software
evolution observations based on product release history.” in
Proceedings of IEEE International Conference on Software
Maintenance, 1997, pp. 160–.

[22] H. Gall, M. Jazayeri, and J. Krajewski, “Cvs release history
data for detecting logical couplings,” in IWPSE. Washington
DC USA: IEEE Computer Society, 2003, pp. 13–23.

[23] A. T. T. Ying, “Predicting source code changes by min-
ing revision history,” Master’s thesis, University of British
Columbia, October 2003.

[24] D. M. German, “An empirical study of fine-grained software
modifications,” Journal of Empirical Software Engineering,
2005.

[25] S. Bouktif, Y.-G. Guéhéneuc, and G. Antoniol, “Extracting
change-patterns from CVS repositories,” in Proceedings
of the 13

th Working Conference on Reverse Engineering
(WCRE), S. E. Sim and M. Di Penta, Eds. IEEE
Computer Society Press, October 2006, pp. 221–230, 10
pages. [Online]. Available: http://www-etud.iro.umontreal.ca/
∼ptidej/Publications/Documents/WCRE06.doc.pdf

[26] S. Eick, T. Graves, A. Karr, A. Mockus, and P. Schuster,
“Visualizing software changes,” Transactions on Software
Engineering, vol. 28, no. 4, pp. 396–412, April 2002.
[Online]. Available: http://csdl2.computer.org/persagen/
DLAbsToc.jsp?resourcePath=/dl/trans/ts/&toc=comp/trans/ts/
2002/04/e4toc.xml&DOI=10.1109/TSE.2002.995435

[27] J. Ratzinger, M. Fischer, and H. Gall, “EvoLens: Lens-view
visualizations of evolution data,” in Proceedings of the 8

th

International Workshop on Principles of Software Evolution,
G. Canfora and S. Yamamoto, Eds. IEEE Computer Society
Press, September 2005, pp. 103–112. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1572314

[28] X. Xie, D. Poshyvanyk, and A. Marcus, “Visualization of
CVS repository information,” in Proceedings of the 13

th

Working Conference on Reverse Engineering, S. E. Sim and
M. D. Penta, Eds. IEEE Computer Society Press, Octobre
2006.

[29] T. Bakota, R. Ferenc, and T. Gyimóthy, “Clone smells in
software evolution,” in Proceedings of the 23

rd International
Conference on Software Maintenance, L. Tahvildari and
G. Canfora, Eds. IEEE Computer Society Press, October
2007. [Online]. Available: http://icsm07.ai.univ-paris8.fr/
RPaccepted.htm

[30] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding
refactorings via change metrics,” in Proceedings of the
15

th conference on Object-oriented Programming, Systems,
Languages, and Applications, D. Lea, Ed. ACM Press,
October 2000, pp. 166–177. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=353183

[31] A. Egyed, “Scalable consistency checking between
diagrams—the VIEWINTEGRA approach,” in Proceedings
of the 16

th international conference on Automated
Software Engineering. IEEE Computer Society Press,
November 2001, pp. 387–390. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=989835

[32] Z. Xing and E. Stroulia, “Analyzing the evolutionary
history of the logical design of object-oriented software,”
Transactions on Software Engineering, vol. 31, no. 10,
pp. 850–868, October 2005. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1542067

[33] T. Mens, J. Fernandez-Ramil, and S. Degrandsart, “The
evolution of Eclipse,” in Proceedings of the 24

th Interna-
tional Conference on Software Maintance (ICSM’08). IEEE
Computer Society Press, 2008, pp. 386–395.

[34] M. Wermelinger, Y. Yu, and A. Lozano, “Design principles
in architectural evolution: A case study,” in Proceedings of
the 24

th International Conference on Software Maintance
(ICSM’08). IEEE Computer Society Press, 2008, pp. 396–
405.

[35] B. Henderson-Sellers, Object-Oriented Metrics: Measures of
Complexity. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1996.

[36] F. Ricca, M. D. Penta, M. Torchiano, P. Tonella, M. Ceccato,
and C. A. Visaggio, “Are fit tables really talking?: a series of
experiments to understand whether fit tables are useful during
evolution tasks,” in Proceedings of the 30

th international
conference on Software engineering, M. D. Wilhelm Schäfer
and V. Gruhn, Eds. IEEE Computer Society Press, 2008,
pp. 361–370.

[37] J. B. Kruskal and M. Liberman, “The symmetric time-
warping problem: From continuous to discrete,” in Time
Warps, String Edits, and Macromolecules: The Theory and
Practice of Sequence Copmparison, D. Sankoff and J. B.
Kruskal, Eds. Addison-Wesley, 1983.

[38] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns – Elements of Reusable Object-Oriented Software,
1

st ed. Addison-Wesley, 1994.

[39] S. Vaucher, H. Sahraoui, and J. Vaucher, “Discovering New
Change Patterns in Object-Oriented Systems,” in Reverse
Engineering, 2008. WCRE ’08. 15th Working Conference on,
Oct. 2008, pp. 37–41.

[40] V. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Journal of Soviet Physics - Dok-
lady, vol. 10, no. 8, pp. 707–710, feb 1966.

[41] I. H. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations,
1

st ed. Morgan Kaufmann, October 1999.

[42] H. A. Sahraoui, R. Godin, and T. Miceli, “Can metrics
help to bridge the gap between the improvement of oo
design quality and its automation?” in ICSM ’00: Proceedings
of the International Conference on Software Maintenance
(ICSM’00). Washington, DC, USA: IEEE Computer Society,
2000, p. 154.

