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Abstract: Dealing with ambiguous data is a challenge in Science in general and geometry processing in
particular. One route of choice to extract information from such data consists of replacing the ambiguous input
by a continuum, typically a one-parameter family, so as to mine stable geometric and topological features within
this family. This work follows this spirit and introduces a novel framework to handle 3D ambiguous geometric
data which are naturally modeled by balls.

First, we introduce toleranced balls to model ambiguous geometric objects. A toleranced ball consists of two
concentric balls, and interpolating between their radii provides a way to explore a range of possible geometries.
We propose to model an ambiguous shape by a collection of toleranced balls, and show that the aforementioned
radius interpolation is tantamount to the growth process associated with an additively-multiplicatively weighted
Voronoi diagram (also called compoundly weighted or CW). Second and third, we investigate properties of the
CW diagram and the associated CW α-complex, which provides a filtration called the λ-complex. Fourth, we
propose a naive algorithm to compute the CW VD. Finally, we use the λ-complex to assess the quality of models
of large protein assemblies, as these models inherently feature ambiguities.
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Modélisation Multi-echelle de Formes Ambiguës avec des Boules
Tolérancées et les α-shapes à Pondération Composée

Résumé : La manipulation de données ambiguës est un challenge tout à fait général, qui est particulièrement
exacerbé en géométrie. Une façon intéressante d’extraire de l’information de telles données consiste à rem-
placer celles-ci par un continuum, typiquement une famille à un paramètre, de façon à chercher des structures
géométriques et topologiques stables au sein de cette famille. Ce travail s’inscrit dans cette veine, et propose
un nouveau canevas pour manipuler des données 3D ambiguës.

Tout d’abord, nous introduisons les boules tolerancées. Un telle boule est constituée de deux boules con-
centriques, et interpoler entre leurs rayons permet d’explorer un ensemble de géométries possibles. Nous pro-
posons de modéliser une forme ambiguë par un ensemble de boules tolerancées, et montrons que le proces-
sus d’interpolation évoqué ci-dessus conduit à un diagramme de Voronoi additif-multiplicatif (aussi appelé à
pondération composée, ou CW). Ensuite, nous nous intéressons aux propriétés du diagramme CW et à l’α-shape
associée, qui représente une filtration que nous nommons le λ-complexe. Nous poursuivons par un algorithme
näıf de calcul du diagramme de Voronoi CW. Enfin, nous montrons comment utiliser le λ-complexe pour étudier
la qualité de modèles de gros assemblages macro-moléculaires, ces modèles présentant de façon intrinsèque des
ambigüıtés.

Mots-clés : Union de boules, diagrammes de Voronoi, α-shapes, stabilité, persistence topologique, protéines,
complexes macro-moléculaires, interfaces, biologie structurale.
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1 Introduction

1.1 Voronoi Diagrams and Applications

The Voronoi diagram of a finite collection of sites equipped with a generalized distance is the cell decomposition
of the ambient space into equivalence classes of points having the same nearest sites for this distance. Voronoi
diagrams are central constructions in science and engineering [OC00], and their versatility actually comes from
two sources. First, the great variability of sites and distances is a first source of diversity. While the most
classical construction is the Euclidean distance diagram for points, the mere class of circles and weighted points
yields as diverse diagrams as power, Apollonius and Möbius diagrams–see [BWY06] and Fig. 1. Second, the
information encoded in a Voronoi diagram actually goes beyond the aforementioned cell decomposition. One
can indeed consider the bisectors bounding the cells as the realization of a growth process defined by the
distance, in the sense that the level sets of this distance intersect on the bisectors. This viewpoint motivated
the development of α-complexes and α-shapes [Ede92], a beautiful construction providing a filtration of the
Delaunay triangulation dual of the Voronoi diagram, later complemented by the flow complex [GJ03]. From
a mathematical standpoint, these developments are concerned with the topological changes undergone by the
sub-level sets of the distance, which is the heart of Morse theory [Mil63]. Ideas in this realm also motivated
the development of topological persistence [ELZ02, CSEH05], a subject concerned with the assessment of the
stability of topological features associated with the sub-level sets of a function defined on a topological space.

The success of α-shapes relies on two cornerstones. First, the aforementioned growth process gives access to
a multi-scale analysis of the input sites. For example, the problem of reconstructing a shape from sample points
can be tackled by considering the space-filling diagram consisting of balls grown around the sample points. Alas,
a provably good reconstruction using this strategy requires a uniform sampling, which motivated the definition
of more local growth processes. One may cite conformal α-shapes [CGPZ06], where the growth process depends
on the distance of the samples to the medial axis, and the scale-axis transform [GMPW09] which provides a
hierarchy of skeletal shapes based on a dilation (and retraction) of medial balls. Second, α-shapes inherently
model objects represented by collections of balls—in particular molecules, and encode remarkable geometric
and topological properties [Ede95]. For the particular case of proteins and small macro-molecular complexes,
they have been instrumental to compute molecular surfaces [AE96] and model interfaces [BGNC09, LC10].

Our developments are precisely motivated by the requirement to perform multi-scale analysis in computa-
tional structural biology.

1.2 Contributions

Structural proteomics studies are concerned by the identification and the modeling of molecular machines
operating within the cell [GAG+06], and a major endeavour consists of modeling assemblies involving from tens
[LTSW09] to hundreds [ADV+07] of polypeptide chains. This modeling requires integrating data coming from
several experimental sources, these data being typically noisy and incomplete [AFK+08]. In this context, the
premises just discussed on α-shapes certainly hold: on the one hand, balls are the primitive of choice since we
deal with atoms and molecules; on the other hand, multi-scale analysis are in order since we deal with ambiguous
data and need to accommodate uncertainties on the shapes and positions of proteins within an assembly. In
this context, we make the following contributions.

First, we introduce toleranced balls to model ambiguous geometric shapes. A toleranced ball consists of two
concentric balls—the inner and outer balls, and interpolating between them allows one to replace an arbitrary
ball by one-parameter family of balls. As illustrated on Fig. 2, the inner (outer) ball of a toleranced ball
is meant to accommodate high (low) confidence regions. We note in passing that our approach bears some
similarities with modeling with toleranced parts in engineering, where tolerances are generally accommodated
thanks to Minkowski sums [LWC97]. Second, we show that the growth process associated with this interpolation
is associated with a so-called additively-multiplicatively-weighted Voronoi diagram, also called compoundly
weighted Voronoi diagram—CW VD for short. Third, we investigate properties of this CW diagram and its
dual. Fourth, we present the filtration, called the λ-complex, induced on the dual by the growth process, and
encoding all possible topologies associated with this growth process. For any value of λ, the λ-complex identifies
a list of simplices of the dual complex, together with a label for each of them. This label precisely encodes
the contribution of the simplex to the boundary of the union of the balls grown thanks to the additively-
multiplicatively model. Our analysis generalizes the so-called β-shapes [SCC+06], i.e. the α-shape associated
to an Apollonius diagram [BD05, BWY06, EK06]. Fifth, we present an algorithm to compute the CW VD.
Finally, we present experimental results on toleranced protein models.

RR n➦ 7306



4 Cazals and Dreyfus

Figure 1: Curved Voronoi diagrams of 7 circles / weighted points. (Left) Power diagram d(Si(ci, ri), p) =
‖p − ci‖

2 − r2
i . (Middle) Apollonius diagram : d(Si(ci, ri), p) = ‖p − ci‖ − ri (Right) Möbius diagram :

d(Si(ci, ai, ri), p) = ai‖p − ci‖
2 − r2

i .

Figure 2: A fictitious molecule of three atoms undergoing conformational changes.(a) The two extreme confor-
mations, together with the probability density map D in background. The map D displays the probability for
a given point to be covered by a random conformation. (b) Three toleranced balls used to cover the portion of
the map D involving probabilities beyond a given threshold. Dashed lines represent the inner and outer balls
of the toleranced balls. Note that higher the confidence / probability, the smaller the region between the inner
and outer balls.

2 Toleranced Models and Compoundly Weighted Voronoi Diagram

2.1 Compoundly Weighted Distance and Toleranced Balls

Toleranced balls. Given a weighted point Si(ci;µi, αi), with center ci and parameters (real numbers) µi > 0
and αi, we define the additively-multiplicatively distance as follows:

λ(Si, p) = µi || cip || −αi. (1)

This distance is associated with so-called compoundly-weighted Voronoi diagrams or CW VD for short [OC00].
Geometrically speaking, this distance is best understood using the following growth process. Let a toleranced
ball Si(ci; r

−
i , r+

i ) be a pair of concentric balls of radii r−i < r+
i , centered at ci. These balls are called the inner

and outer balls. Given a toleranced ball Si and a real parameter λ, consider the grown ball Si[λ] centered at ci

and whose radius is defined by:
ri(λ) = r−i + λ(r+

i − r−i ). (2)

Denoting δi = r+
i − r−i , a point p is reached by this growth process once ri(λ) =|| cip ||, that is

λ(Si, p) =
|| cip ||

δi

−
r−i
δi

. (3)

INRIA



Modeling with toleranced balls 5

In other words, a toleranced ball Si(ci; r
−
i , r+

i ) is tantamount to a weighted point Si(ci;µi = 1/δi, αi = r−i /δi);
and reciprocally, a weighted point Si(ci;µi, αi) is tantamount to a toleranced ball Si(ci; r

−
i = αi/µi, r

+
i =

(1 + αi)/µi). In the sequel, we shall use both terminologies and exchangeable refer to weighted point Si or
toleranced ball Si.

2.2 On Concomitant Interpolation Processes

Consider two toleranced balls Si and Sj . We term the linear interpolation of Eq. (2) concomitant since at
λ = 0 (resp. λ = 1) the grown balls Si[λ] and Sj [λ] respectively match their inner (outer) balls. In the
context of toleranced models, concomitance is important since, for a collection of toleranced balls, we aim
at exploring the region sandwiched between the inner and outer balls coherently. Interestingly, concomitance
requires multiplicatively weighted Voronoi diagram — CW or Möbius.

Non concomitant interpolations. For the power diagram, the growth process consists of modifying the
squared radius as follows:

r2
i (α) =|| cip ||2= r2

i + α. (4)

Let a toleranced weighted point be a pair of concentric balls of weights r2
i = (r−i )2 and (r+

i )2. The value
αi required to interpolate from the inner to the outer ball is αi = (r+

i )2 − (r−i )2. The interpolation is not
concomitant since for two toleranced weighted points, one generically has αi 6= αj .

The same observation holds for the growth process associated with an Apollonius diagram, which is not
concomitant unless the discrepancy r+

i − r−i of all toleranced balls is equal to some constant.

Concomitant interpolations. To see that Möbius diagrams share the concomitance property with CW
diagrams, recall that the generalized Möbius distance to a weighted point Si(ci, µi, αi) is defined by:

d(Si, p) = µi || cip ||2 +αi. (5)

Equivalently,

|| cip ||2=
1

µi

(d + αi). (6)

To make the connexion between the distance of Eq. (5) and a toleranced ball, we use d = 0 and d = 1, which
yields

(r−i )2 =
αi

µi

, and (r+
i )2 =

1 + αi

µi

. (7)

Equivalently, one has:

µi =
1

(r+
i )2 − (r−i )2

and αi =
(r−i )2

(r+
i )2 − (r−i )2

. (8)

A comparison of the CW and Möbius growth models, that is ri(λ) =|| cip || versus ri(d) =
√

|| cip ||2, is
provided on Fig. 3. Compared to the CW linear growth model and as shown by the variation of the derivative
of ∂ri(d)/∂d, a large difference (r+

i )2 − (r−i )2 biases the Möbius interpolation towards small values.

2.3 Toleranced Tangency and Generalization of the Empty Ball Property

For affine (Apollonius) Voronoi diagrams, it is well known that for each point centered on a Voronoi face, there
exists a unique ball orthogonal (tangent) to the balls associated with the vertices of the dual simplex, and
conflict free with all the other balls 1. To derive the analogue in the CW-case, consider a point p and two
toleranced balls Si and Sj such that λ(Si, p) = λ < λ(Sj , p). For the pair Si and p, one gets with Eq. (1):

|| pci || −
αi

µi

−
λ

µi

= 0 ⇔ || pci || −r−i − λδi = 0. (9)

1Consider e.g. the power case, and pick a point p on the Voronoi face dual of a simplex involving a ball Si(ci, wi). Assume that
point p lies on the sphere bounding the ball Si(ci, wi + α). One has π(p, Si) =|| cip ||2 −wi − α = 0, or equivalently, the balls Si

and X(p, α) are orthogonal.

RR n➦ 7306



6 Cazals and Dreyfus

Figure 3: Comparing the variation of the radius for the CW model (green curve) and the Möbius model (red
curve). On this example, r−i = 0 and r+

i = 10.

Similarly, for the pair Sj and point p:

|| pcj || −
αj

µj

−
λ

µj

> 0 ⇔ || pcj || −r−j − λδj > 0. (10)

We summarize with the following definition, illustrated on Fig.4:

Definition. 1. A ball B(p, λ) which satisfies the condition of Eq. (9) w.r.t. a toleranced ball Si is called
toleranced tangent (TT for short) to Si. A toleranced ball Sj and a ball B(p, λ) which satisfy the condition of
Eq. (10) are called conflict free.

Remark. 1. Equation (9) states that the inner ball B(ci, r
−
i ) and the ball B(p, λδi)—which is the ball B(p, λ)

scaled by δi, are tangent. Similarly, condition (10) states that B(cj , r
−
j ) and B(p, λδj) do not intersect. We

shall use this property to illustrate TT balls, see e.g. Fig. 4.

Remark. 2. Let S be a collection of toleranced balls. Consider a ball B(p, λ) which is TT to a subset of balls
T ⊂ S, and conflict free with the toleranced balls in S\T. The center p of this ball is found at the intersection
of the spheres bounding the grown balls Si[λ] with Si ∈ T, and is located outside the grown balls Sj [λ] with
Sj ∈ S\T.

S1 S2

S3

p

Figure 4: Toleranced tangent (TT) balls and conflict free balls. In dashed lines, toleranced balls
S1(0, 0; 1, 5), S2(0, 10; 2, 8), S3(4,−9; 1, 3). The three dotted circles represent S1[3/4], S2[3/4], S3[3/4]. The three
circles centered at p are the scaled versions of ball B(p, 3/4); following remark 1, ball B(p, 3/4) is TT to S1 and
S2, and conflict free with S3.

Remark. 3. In Eq. (9) and (10), the radius of the toleranced ball B(p, λδi) depends on the parameter δi from
toleranced ball Si. Denoting δ+ the additively weighted distance between two weighted points, Eq. (9) and Eq.

INRIA



Modeling with toleranced balls 7

(10) may be rewritten as follow:

δ+(B(p, λ), B(pi,
r−i
δi

)) =
δi − 1

δi

|| ppi ||, (11)

and

δ+(B(p, λ), B(pi,
r−i
δi

)) >
δi − 1

δi

|| ppi || . (12)

The left-hand side involves B(p, λ), a ball whose radius does not depend on parameters from toleranced balls of
S, as for the power and Apollonius cases. But the right-hand-side is parametrized. In the sequel, we use Eq.
(9) and Eq. (10) for a simpler geometric interpretation of toleranced tangency and conflict-ness. A generic ball
not belonging to S will be denoted B(p, λ).

3 The Compoundly Weighted Voronoi Diagram

Consider a collection S of n toleranced balls. The Compoundly Weighted Voronoi diagram is the partition of
the space according to the nearest neighbor relationship, for the CW distance, that is:

V or(Si) = {p ∈ R3 | λ(Si, p) ≤ λ(Sj , p)∀j 6= i}. (13)

More generally, denoting Tk+1 a tuple of k+1 toleranced balls, we are interested in V or(Tk+1) = ∩Si∈Tk+1
V or(Si).

Naturally, we are also interested in the dual complex generalizing the Delaunay triangulation.

3.1 Bisectors in the CW Case

The bisector of a tuple of toleranced balls Tk+1 is the loci of points having the same CW distance w.r.t. every
toleranced ball. We denote this bisector ζ(Tk+1), and examine in turn the case for pairs, triples, and quadruples.
Our analysis assumes that the δi are not equal, as this is the Apollonius case [BWY06].

3.1.1 Bisector of two toleranced balls

Analysis. Let Si and Sj be two toleranced balls. The following property describes the existence of the bisector
ζ(i, j) of Si and Sj :

Proposition. 1. Si is trivial w.r.t. toleranced ball Sj iff δi ≤ δj and the following condition, which states that
ci belongs to the interior of the Voronoi region of Sj, holds:

λ(Sj , ci) < −
r−i
δi

. (14)

Proof. If the Voronoi region Vi of Si is empty, one has in particular, ci 6∈ Vi, which is exactly Eq. (14). The
second implication also trivial holds. For the converse, applying the definition of λ(Si, p) to any point p, we get:

λ(Si, p) =
|| pci || −r−i

δi

>
|| pci ||

δi

+
|| cicj || −r−j

δj

(15)

≥
|| pci || + || cicj || −r−j

δj

(16)

>
|| pcj || −r−j

δj

= λ(Sj , p). (17)

The three derivations respectively stem from Eq. (14), from δi ≤ δj , and from the triangle inequality.

Assuming that ζ(i, j) exists, its geometry depends on the relative values of δi and δj . Assuming w.l.o.g.
that δi < δj , Sj grows faster than Si so that for a large enough value of λ, the grown ball Si[λ] is contained in
its counterpart Sj [λ], so that the bisector is a closed surface, with ci in the bounded region delimited by ζ(i, j).
Matching the generalized distances shows that this surface is a degree-four algebraic surface. See Fig. 5 for a
2D illustration.

RR n➦ 7306



8 Cazals and Dreyfus

Figure 5: Two toleranced balls and their bisector which is a degree four algebraic curve –green curve. Dashed
circles corresponding to the inner and outer balls. Dotted circles correspond to the solutions of a degree four
equation : blue ones are toleranced tangent circles, red ones are algebraic artifacts.

Extremal TT balls. If the bisector exists, it makes sense to track the TT balls such that the corresponding
λ value is a local extremum. By radial symmetry w.r.t. the line joining the centers of the balls, such balls are
necessarily centered at the intersection between the bisector and the line joining the centers. Assume w.l.o.g.
that δi < δj . The minimal such ball, denoted M i,j(mi,j , ρi,j

) is such that Si[ρi,j
] and Sj [ρi,j

] are tangent at

mi,j . The maximal ball M i,j(mi,j , ρi,j) is such that Si[ρi,j ] is interior-tangent to Sj [ρi,j ] at mi,j .

Remark. 4. As illustrated on Fig. 6, Sj [ρi,j
] may be exterior or interior to Si[ρi,j

]; Ball Sj [ρi,j
] is interior

to Si[ρi,j
] iff Si is closer to cj than Sj for the CW distance i.e. λ(Si, cj) < λ(Sj , cj). In the limit case

λ(Si, cj) = λ(Sj , cj), cj = mi,j and Sj [ρi,j
] may be considered as exterior to Si[ρi,j

].

cjcimi,j

mi,j

mi,j

mi,j
cjci

Figure 6: Relative position of mininal and maximal TT balls of two balls (Left) Sj [ρi,j
] and Si[ρi,j

] are exterior

tangent (Right) Sj [ρi,j
] is interior tangent to Si[ρi,j

].

The parameters of these extremal TT balls are computed as follows:

Proposition. 2. The two extremal TT balls B(p, λ) of two toleranced balls are characterized by

λ =
|| cicj || −(αr−i + βr−j )

αδi + βδj

, (18)

INRIA



Modeling with toleranced balls 9

and

~cip = α
λδi + r−i
|| cicj ||

~cicj , (19)

where α = ±1 and β = ±1 depend on the ball processed (minimal or maximal) and the relative positions of Si

and Sj (case analysis in the proof).

Proof. Denote ~up,p′ the unit vector between two points p and p′. The extremal TT ball M i,j = (p, λ) or

M i,j = (p, λ) of Si and Sj being centered on the line joining the centers ci and cj , we can express the weight λ
as follows:

~cip + ~pcj = ~cicj (20)

⇔|| cip || ~ucip+ || pcj || ~upcj
=|| cicj || ~ucicj

(21)

⇔|| cip || ~ucip.~ucicj
+ || pcj || ~upcj

.~ucicj
=|| cicj || (22)

α(λδi + r−i ) + β(λδj + r−j ) =|| cicj ||, (23)

where α = ~ucip.~ucicj
= ±1 and β = ~upcj

.~ucicj
= ±1. Equation (18) follows easily. We note in passing

that following remark 4, the signs of the dot products α and β are obtained from the sign of the expression
λ(Si, cj) − λ(Sj , cj).

The weight of the extremal TT balls being determined, the center is computed as follows:

α~ucip = ~ucicj
(24)

⇔ α
~cip

|| cip ||
=

~cicj

|| cicj ||
(25)

⇔ ~cip = α
|| cip ||

|| cicj ||
~cicj (26)

⇔ ~cip = α
λδi + r−i
|| cicj ||

~cicj . (27)

3.1.2 Bisector of three toleranced balls

Analysis. Consider three toleranced balls Si0 , Si1 , Si2 such that the bisector of each pair exists. To avoid
the Apollonius case, we suppose without loss of generality that δi0 ≤ δi1 ≤ δi2 with δi0 < δi2 . If there is no
intersection between ζ(i0, i1) and ζ(i0, i2), ζ(i0, i1, i2) does not exist, and reciprocally. Assume that ζ(i0, i1, i2)
exists. Since at least one δi differs from the other two, there is at most one Apollonius bisector. The geometry
of ζ(i0, i1, i2) depends on δi0 , δi1 and δi2 , and the following cases are illustrated on Fig. 7.

⊲ CWB.III.1 If there is no Apollonius bisector, ζ(i0, i1, i2) is a bounded curve resulting from the intersection
of two CW bisectors.
⊲ CWB.III.2 If the Apollonius bisector is not a half straight line, ζ(i0, i1, i2) is a bounded curve resulting from
the intersection of one CW bisector, and one sheet of a hyperboloid (possibly degenerated to a hyperplane).
⊲ CWB.III.3 If the Apollonius bisector is a half straight line, ζ(i0, i1, i2) is reduced to at most two intersection
points. Note that if there are two intersection points, δi1 = δi2 and Si1 is included in and tangent to Si2 .

RR n➦ 7306



10 Cazals and Dreyfus

Figure 7: Bisectors of three toleranced balls. The red dots are the centers of the toleranced balls and the
pink/green/blue surfaces respectively represent the bisectors ζ(0, 1) / ζ(0, 2) / ζ(1, 2). (Left) CWB.III.1

No Apollonius bisector (Middle) CWB.III.2 One Apollonius bisector (Right) CWB.III.3 One degenerate
Apollonius bisector.

Extremal TT balls. In any case, there are two (possibly identical) extremal TT balls. If one bisector is a
half straight line, these balls are found by intersecting this line with one of the other two bisectors.
In the general case, identifying these two balls involves four equations in four unknowns—the coordinates of
the center and the weight λ. Denote π the plane defined by the centers of the three balls. The growth of the
balls being symmetric with respect to this plane, the fourth equation consists of constraining the center of an
extremal TT ball to plane π. The calculation is covered by the following proposition for k = 2:

Proposition. 3. Let Tk+1 = {Sij
}j=0,...,k be a triple or quadruple of toleranced balls, i.e. k = 2 or k = 3.

Computing the two extremal TT balls of the tuple Tk+1 requires solving a degree four equation. A value solution
λ of this equation is valid provided that λδij

+ r−ij
≥ 0, ∀j = 0, . . . , k.

Proof. of Prop. 3 for Tk+1 = {Si0 , Si1 , Si2}.
The ball sought has to be TT to each of the three toleranced balls, as specified by Eq. (9). Assume that the

plane containing the centers of the three balls has equation axx+ayy +azz = aC . Squaring the three equations
of toleranced tangency yields the system:















(p − ci0)
2 = (λδi0 + r−i0)

2

(p − ci1)
2 = (λδi1 + r−i1)

2

(p − ci2)
2 = (λδi2 + r−i2)

2

axx + ayy + azz = aC

(28)

Subtracting the first squared equation from the two subsequent ones yields:















(p − ci0)
2 = (λδi0 + r−i0)

2

2p(ci1 − ci0) = (λδi0 + r−i0)
2 − (λδi1 + r−i1)

2 − (c2
i0
− c2

i1
)

2p(ci2 − ci0) = (λδi0 + r−i0)
2 − (λδi2 + r−i2)

2 − (c2
i0
− c2

i2
)

axx + ayy + azz = aC

(29)

Using Gaussian elimination on the last three equations, one obtains three linear equations for the coordinates of
p, parametrized by λ2. Injecting these quantities into the first equation yields the quartic equation in λ. Note
that a solution is valid iff λδij

+ r−ij
≥ 0, and sorting the valid values yields the extreme TT balls. Also note

that the coordinates of point p are rational fractions in λ2.

Remark. 5. Geometrically, three intersecting spheres generically intersect into two points. The extreme TT
balls correspond to the situations where these two points coalesce.
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3.1.3 Bisector of four toleranced balls

Analysis. Consider four toleranced balls Si0 , Si1 , Si2 , Si3 such that the bisector of each pair exists. To avoid
the Apollonius case, we suppose w.l.o.g. that δi0 ≤ δi1 ≤ δi2 ≤ δi3 with δi0 < δi3 . If the intersection of ζ(i0, i1),
ζ(i0, i2) and ζ(i0, i3) is empty, the intersection of all bisectors of pairs is empty and ζ(i0, i1, i2, i3) does not exist,
and reciprocally. If ζ(i0, i1, i2, i3) exists, we have ζ(i0, i1, i2, i3) = ζ(i0, i3)∩ζ(i1, i2, i3), from which the following
analysis follows.

⊲ CWB.IV.1 The bisectors ζ(i0, i3) and ζ(i1, i2, i3) being a surface and a curve, their generic intersection, if
any, consists of a finite set of points. As we shall see below, there are at most four such points.
⊲ CWB.IV.2 As a degenerate case, when ζ(i1, i2, i3) is a bounded curve, the intersection of ζ(i1, i2, i3) and
ζ(i0, i3) may be ζ(i1, i2, i3). In this case, ζ(i0, i1, i2, i3) has the geometry of the bisector ζ(i1, i2, i3) of three
toleranced balls.

Extremal TT balls. We distinguish two cases. If ζ(i0, i1, i2, i3) has the geometry of a bisector of three
toleranced balls, we refer to the analysis carried out in section 3.1.2. Otherwise, ζ(i0, i1, i2, i3) is reduced to at
most four points, as shown by the following constructive proof of proposition 3:

Proof. of Prop. 3 for Tk+1 = {Si0 , Si1 , Si2 , Si3}.
The ball sought has to be TT to each of the four toleranced balls, that is || pcij

||= λδij
+ r−ij

for j = 0, 1, 2, 3.
Squaring the four equations of toleranced tangency yields the system















(p − ci0)
2 = (λδi0 + r−i0)

2

(p − ci1)
2 = (λδi1 + r−i1)

2

(p − ci2)
2 = (λδi2 + r−i2)

2

(p − ci3)
2 = (λδi3 + r−i3)

2

(30)

As for the case of three toleranced balls, we use Gaussian eliminations on system (30) to get three equations
linear to the coordinates of p and parametrized by λ2, and one quartic equation on λ. Checking that || pcij

||≥ 0
provides the valid solutions, and sorting these provides the extremal solutions.

Remark. 6. As illustrated on Fig. 8, the system (30) may have four distinct solutions λi such that λiδj +r−i ≥
0.
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12 Cazals and Dreyfus

Before intersection: λ = λi − ǫ After intersection: λ = λi + ǫ

Figure 8: Upon growing, four toleranced balls may intersect into four distinct points. Denoting ǫ an arbitrarily
small number, we display the toleranced balls Si[λj ± ǫ]. The λj have been sorted by increasing value from Top

to Bottom.

3.2 Voronoi Diagram and its Dual Complex

Empty Voronoi regions. A toleranced ball whose region is empty is called trivial. Proposition 1 gives a
condition of triviality for two toleranced balls. But triviality of a toleranced ball amidst a collection of balls
is more complex since a toleranced ball might not be trivial w.r.t. any other one, yet, it might be trivial with
respect to their union. To see why, observe that Eq. (13) tells us that a point in space is attributed to the
Voronoi region of a toleranced ball provided that this toleranced ball reaches this point first in the growth
process. Thus, a growing ball which is always contained in the union of a collection of growing balls is trivial,
although it might not be trivial with any of them. Denoting T a collection of toleranced balls, and for any value
of λ, the following condition, illustrated on Fig. 10, must hold for Si to be trivial:

Si[λ] ⊂
⋃

Sj∈T

Sj [λ]. (31)

INRIA
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Remark. 7. The triviality condition is more complex than in the Apollonius case, where a ball is hidden if and
only if it is included within another ball.

Figure 9: Dual complex of the four balls of Fig.
8—bottom and top rows respectively represent 0-
simplices and 3-simplices.

c0

c1 c2

Figure 10: Hidden toleranced ball. S0 =
(0, 1/2; 1, 3) (red), S1 = (0, 0; 3, 4) (green) and
S2 = (5, 0; 3, 7) (blue). Ball S0 is neither trivial
w.r.t. S1 nor S2, but is trivial with respect to
both.

Dual Complex. The Voronoi region V or(Tk+1) of a tuple Tk+1 may have several connected components,
each being termed a face. Each such face corresponds to the intersection of k + 1 Voronoi regions, so that we
associate an abstract simplex or simplex for short in the dual complex. That is, if V or(Tk+1) consists of m faces,
on finds ∆j(Tk+1), j ∈ 1, . . . ,m simplices in the dual complex. (The multiplicity is omitted if the tuple Tk+1

yields a single simplex.) The dual of a simplex ∆(T ) is denoted ∆(T )
∗
. Assuming that the input toleranced

balls are numbered from 1 to n, a simplex is identified by a list of integers, and inclusion between such lists
defines a partial order on simplices. We therefore represent the dual complex by a Hasse diagram DS with one
node per simplex. The nodes of DS corresponding to k-simplices are denoted DS(k). Note that we may also
(arbitrarily) embed a simplex within the union of Voronoi faces it is associated with. See Figs. 11, 12 and 13
for a 2D illustration.

Topological complications. A Voronoi region gets sandwiched between two neighbors when the correspond-
ing toleranced ball defines a lens between the Voronoi region of two neighboring toleranced balls, a case also
found in the Apollonius diagram. In the dual complex, the vertex of this toleranced balls has exactly two
neighbors and the triangle corresponding to these three toleranced balls does not have any coface.

A Voronoi region might not be connected, and this may happen for tuples of size one to four. We illustrate
this in 2D with Fig. 11. For a toleranced ball, consider S4 whose Voronoi region is split into two faces, associated
with the vertices (zero-dimensional simplices) ∆1(4) and ∆2(4) in the Hasse diagram. For two toleranced balls,
note that the Voronoi region V or(S1, S2) consists of two faces—open line segments in this case, yielding the
simplices ∆1(1, 2) and ∆2(1, 2) in the Hasse diagram. For three toleranced balls, note that the triple (S1, S2, S4)
corresponds to two triangles.

A Voronoi region may not be simply connected. When one toleranced ball punches a hole into a face, the
corresponding one-simplex does not have any coface. See e.g. toleranced ball S7 and the simplex ∆(2, 7) on
Fig. 11. When two toleranced balls punch a hole into a Voronoi region, the two-simplex they define does not
have any coface either. Finally when three toleranced balls punch a hole into a Voronoi region, two tetrahedra
of the dual complex share the same vertices, the same edges and same triangles. This latter case is illustrated
in 2D, where a hole punched by two toleranced balls in a Voronoi region results in two triangles with the same
vertices and the same edges. See ∆1(2, 5, 6) and ∆2(2, 5, 6) on Fig. 11.

Bounded and Unbounded Voronoi regions. A toleranced ball Si ∈ S is called maximal w.r.t. to S if
δi ≥ δj ,∀j 6= i. A toleranced ball which is not maximal has a bounded Voronoi region in the CW VD of S, and
the subset of maximal toleranced balls is denoted Smax. The CW VD diagram of toleranced balls in Smax is
an Apollonius diagram since all δi are equal, and a subset of balls in Smax have an unbounded Voronoi region.
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14 Cazals and Dreyfus

∆(1) ∆(2) ∆1(4) ∆2(4)∆(3) ∆(5)

∆1(1, 2) ∆2(1, 2)

∆(1, 3)

∆1(1, 4)

∆2(1, 4)

∆(2, 3)

∆1(2, 4)

∆2(2, 4)

∆2(3, 4)

∆1(3, 4)∆(2, 5)

∆(6)

∆(5, 6)

∆(2, 6)

∆1(1, 2, 4)∆2(1, 2, 4)∆1(1, 3, 4)∆2(1, 3, 4) ∆1(2, 3, 4) ∆2(2, 3, 4) ∆1(2, 5, 6)∆2(2, 5, 6)

∆(7)

∆(2, 7)

Figure 13: Hasse diagram of simplices of the dual complex of the Voronoi diagram of Fig. 11. The three
lines respectively corresponding to 0-simplices, 1-simplices, and 2-simplices. Grey boxes correspond to Gabriel
simplices, and boxes with a red boundary mark dominated simplices. See text for details.

Mimicking the affine case, a simplex is said to lie on the convex hull CH(S) of the dual complex if its dual
Voronoi face is unbounded. The vertices of such simplices belong to Smax.

V or(S7)

V or(S5)

V or(S6)

V or(S2)
V or(S4)

V or(S3)

V or(S1)

c1

c3

c4

c2

c6

c5

c7

Figure 11: The CW VD of 7 toleranced balls in
2D: S1 = (−5,−5; 3, 7), S2 = (5, 5; 3, 7), S3 =
(−1, 0; 4, 5), S4 = (0, 0; 2, 5), S5 = (8, 7; 2, 3),
S6 = (8, 5; 3, 4), S7 = (1, 10; 1, 2). V or(S3) and
V or(S1, S2) are not connected. V or(S2) is not
simply connected. δ1 and δ2 are maximal and
S1, S2 have unbounded Voronoi regions.

∆1(2, 3, 4)

∆2(2, 3, 4)

∆1(2, 5, 6)

∆2(2, 5, 6)

∆2(4)

∆1(4)

∆(1)

∆(5)

∆(3)

∆(6)

∆(7)

∆1(1, 3, 4)

∆1(1, 2, 4)

∆2(1, 2, 4)
∆2(1, 3, 4)

∆(2)

Figure 12: Dual complex for the CW VD of Fig.
11 : 0-simplices: black dots; one-simplices: blue
curves; two simplices: red dots. Note that S4

is represented by two vertices ∆1(4) and ∆2(4).
∆1(2, 5, 6) and ∆2(2, 5, 6) share the three same
edges. ∆(2, 7) does not bound any triangle.

4 Space-filling diagram and λ-complex

In this section, we investigate the domain Fλ = ∪Si[λ] defined by the union of growing balls. We present the
λ-complex filtration of the dual complex. The reader is referred to [Ede92] for the affine weighted α-complex.

4.1 Gabriel, Dominant and Dominated simplices

In the affine case, changes in the α-complex are associated with Gabriel simplices: a Gabriel simplex ∆(T)
is a simplex such that its minimal orthogonal ball MT is conflict free, and the simplex enters the α-complex
when λ ≥ ρ

T
, with ρ

T
the weight of MT . The generalization to the CW setting is not straightforward since
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Modeling with toleranced balls 15

Voronoi regions might not be connected, and since a tuple T generally has two extremal TT balls, respectively
denoted MT(mT , ρ

T
) and MT(mT , ρT). We now examine these two balls and refer the reader to Fig. 14 for an

illustration. (To examine this figure, recall that a TT ball M(p, λ) is conflict free with a toleranced ball Si iff
the scaled version of M by δi i.e. M(p, δiλ) does not intersect the inner ball of Si.)

Minimal TT balls and Gabriel simplices. If the center mT of the minimal TT ball MT belongs to the
relative interior of a Voronoi face of the tuple, or equivalently the ball is conflict free, the simplex is called
Gabriel.

Remark. 8. The minimal TT ball MT is unique, so that a single Voronoi face dual of the tuple T can witness
a Gabriel simplex. In particular, for any other Voronoi face of the tuple, the minimal TT ball associated with
that face involves at least another toleranced ball. For example, the Voronoi region of S4 in Fig. 11 is split into
two Voronoi faces. The center of the minimal TT ball of S4 being located within the Voronoi region of S3, the
dual of each Voronoi face of S4 is not Gabriel. The minimal TT balls of these two faces are in fact associated
to the same triple, namely S2, S3 and S4.

Maximal TT balls and domination of simplices. For a simplex ∆(T), consider the intersection of the
spheres bounding the grown balls, i.e.

IT [λ] = ∩Si∈T∂Si[λ]. (32)

In 3D, if T is a k + 1 tuple, IT [λ] is generically a 2 − k-sphere. Consider now a tuple such that the δi of its
balls are not all equal, and assume that T = A ∪ B, with A the balls realizing the maximum δi in the tuple.
The corresponding bisector is bounded and has a unique maximal TT ball MT . If this ball is conflict free, the
spheres bounding the grown balls in T intersect until IT [λ] reduces to the point mT . Beyond that point, the
intersection of the spheres bounding grown balls in B is contained in the union of the grown balls in A. To
formalize this behavior, we define—recall that an ancestor of a node in the Hasse diagram is any node found
on a path joining this node to that associated with a zero-dimensional simplex:

Definition. 2. A simplex ∆(T) whose dual Voronoi face contains the center mT of the maximal TT ball is
called dominant.

A simplex ∆(U) which is an ancestor of the dominant simplex ∆(T) in the Hasse diagram, with B ⊂ U ( T,
is called dominated.

As opposed to the Euclidean setting, a dominant simplex ∆(T) does not catch a coface when point mT is
reached by the growing balls. Similarly, a dominated simplex does not catch any coface either when point mT

is reached. To identify the moment in time where simplex ∆(U) gets dominated, we introduce

γ∆(U) = ρ∆(T). (33)

The condition B ⊂ U ( T actually yields 2 cases, namely (i) U = B, or (ii) B ( U ( T. In three dimensions,
enumerating these possibilities yields the following cases:

⊲ Dom.1 T = {S1, S2} with δ1 > δ2: case (i) that is U = {S2}.

⊲ Dom.2 T = {S1, S2, S3} with δ1 > δ2 ≥ δ3: case (i) that is U = {S2, S3}.

⊲ Dom.3 T = {S1, S2, S3} with δ1 = δ2 > δ3: case (i) that is U = {S3}, and case (ii) that is U = {S1, S3} or
U = {S2, S3}.

By convention and since a 4-tuple yields a discrete set of at most four tetrahedra, we say that a 3-simplex
cannot be dominant—which prevents a 2-simplex from being dominated. Also, a 0-simplex cannot be dominant.
Dominant and dominated simplices are important to describe the evolution of the boundary ∂Fλ: upon getting
dominated, a simplex does not contribute to ∂Fλ anymore.

Remark. 9. A dominant simplex may have cofaces.
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c3

c1

c2

M∆2,3

scaled by δ1

c3

c1

c2

M∆(1,2)

scaled by δ3
p13

p12

Figure 14: Gabriel, dominant and dominated simplices illustrated with the CW VD of 3 toleranced balls
(dashed lines): S1 = (5, 4; 1, 4) (black), S2 = (7, 7; 2, 3.5) (blue), S3 = (4, 5; 2, 3) (red). (Left) The minimal TT
ball M∆(2,3) is conflict free (witnessed by the black dashed-dotted circle): ∆(2, 3) is Gabriel. Simplices ∆(2),

∆(3) and ∆(1, 3) are Gabriel too. (Right) The max TT ball M∆(1,3) is conflict free (witnessed by the blue
dashed-dotted circle): ∆(1, 3) is dominant and ∆(3) is dominated. ∆(1, 2) is dominant and ∆(2) is dominated
too.

4.2 The λ-complex Filtration

The filtration. Equipped with Gabriel simplices, the following mimics the Euclidean setting:

Definition. 3. The λ-complex Kλ is a subset of the dual complex defined as follows: a simplex ∆(T) belongs
to Kλ iff (i) ∆(T) is Gabriel and λ ≥ ρ

∆(T)
, or (ii) ∆(T) is a face of ∆(U) with ∆(U) ∈ Kλ.

Increasing λ results in a nested sequence of (abstract) simplicial complexes, which eventually coincide with
the dual complex, so that the collection of λ-complexes forms a filtration. At the far left of the spectrum, the
first non empty simplicial complex (generically) consists of a dual vertex which appears at λ = Λmin defined by:

Λmin = min
Si∈S

(−
r−i
δi

). (34)

For a large enough λ, the λ-complex matches the dual complex. Since there may be no new Gabriel simplex in
the last λ-complex, this holds for λ ≥ Λmax with

Λmax = max{ max
∆ Gabriel

(ρ
∆

), max
∆ dominant

(ρ∆)}. (35)

Remark. 10. Consider Eq. (35). If the last event in the λ-complex does not correspond to the addition of a
Gabriel simplex, it actually corresponds to a status change, namely a dominant simplex becomes Interior. See
Table 1.

Status of simplices. The status of a simplex in the affine setting is described from the topology of its link. In
the CW case, the presence of simplices without any coface as described in section 3.2 requires devising different
classification criteria. For a simplex ∆(T), consider the intersection IT [λ] of Eq. (32). Upon increasing λ, this
intersection sweeps the Voronoi region of the tuple. We base our classification on the portion of the Voronoi
region swept by IT [λ] up to time λ. That is, a k-simplex of Kλ is classified as follows:
– Singular: the region swept by IT [λ] up to time λ is contained in the relative interior of the dual of the simplex.
– Interior: the region swept by IT [λ] up to time λ contains the dual of the simplex in its interior.
– Regular: neither singular nor interior.
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∆1(2, 3, 4)

∆2(2, 3, 4)

∆1(2, 5, 6)

∆2(2, 5, 6)

∆2(4)

∆1(4)

∆(1)

∆(2)

∆(5)

∆(3)

∆(6)

∆(7)

Figure 15: Restricted Voronoi regions for the CW VD of Fig. 11 for λ = 1, and classification of edges in the
λ-complex. Classification of the 8 dual vertices—black dots: ∆(5) and ∆(6) are interior and all other dual
vertices are regular. Classification of the 10 dual edges—blue edges: ∆(1, 3) and ∆(2, 7) are singular; ∆(2, 3),
∆(2, 5), ∆(2, 6), ∆(5, 6) are interior; the remaining edges are regular. The 4 dual triangles in the λ-complex are
represented by red dots vertices.

4.3 Classification of Simplices

Our classification of simplices follows the framework of the affine case [Ede92]. For simplices which are neither
dominant nor dominated, in addition to the weight ρ

∆(T)
of the minimal TT ball, we denote µ

∆(T)
and µ∆(T)

the λ-values such that the simplex becomes regular and interior. For dominant simplices, we also use the weight
of the maximal TT ball ρ∆(T)

, and the quantity γ∆(U) introduced in Eq. (33).

For the affine α-complex, the classification of a simplex as singular, regular, or interior requires considering
the four cases { Gabriel, not Gabriel } × { on the convex hull, not on the convex hull }. For simplices which
are neither dominant nor dominated, these four possibilities are also found in the CW case—lines 1-4 of Table
1.

On the other hand, dominant and dominated simplices are not found on the convex hull—each such simplex
involves at least one non-maximal ball, and always end up interior since the maximal TT ball of the tuple of a
dominant simplex is conflict free. For dominant simplices, the two additional cases to be considered are Gabriel
and non Gabriel—lines 5-6 in Table 1. Such a simplex becomes interior as soon as λ ≥ ρ∆(T).
Similarly for dominated simplices, the two additional cases to be considered are Gabriel and non Gabriel—lines
7-8 in Table 1. Recall that a dominated simplex is always associated to a dominant simplex. Using the weight
γ∆(T) of the maximal TT ball of the tuple of the dominant simplex associated to the dominated simplex, see
Eq. (33), the dominated simplex becomes interior as soon as λ ≥ γ∆(T).

These notions are illustrated on Fig. 15, which features the restricted Voronoi diagram, i.e. the grown
balls restricted to their Voronoi regions. Note in particular that the status of simplices reads from the relative
position of the restriction w.r.t. the associated Voronoi face, as specified in section 4.2.
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singular regular interior

(1) ∆(T) ∈ CH(S),Gabriel, non dominated/dominant (ρ
∆(T)

, µ
∆(T)

] (µ
∆(T)

, +∞]

(2) ∆(T) ∈ CH(S),non Gabriel, non dominated/dominant (µ
∆(T)

, +∞]

(3) ∆(T) 6∈ CH(S) Gabriel, non dominated/dominant (ρ
∆(T)

, µ
∆(T)

] (µ
∆(T)

, µ∆(T)] (µ∆(T), +∞]

(4) ∆(T) 6∈ CH(S),non Gabriel, non dominated/dominant (µ
∆(T)

, µ∆(T)] (µ∆(T), +∞]

(5) ∆(T) 6∈ CH(S) Gabriel, dominant (ρ
∆(T)

, µ
∆(T)

] (µ
∆(T)

, ρ∆(T)] (ρ∆(T), +∞]

(6) ∆(T) 6∈ CH(S),non Gabriel, dominant (µ
∆(T)

, ρ∆(T)] (ρ∆(T), +∞]

(7) ∆(T) 6∈ CH(S) Gabriel, dominated (ρ
∆(T)

, µ
∆(T)

] (µ
∆(T)

, γ∆(T)] (γ∆(T), +∞]

(8) ∆(T) 6∈ CH(S),non Gabriel, dominated (µ
∆(T)

, γ∆(T)] (γ∆(T), +∞]

Table 1: Classification of simplices in the λ-complex. (Top rows) Common classification with α-complex.
(Bottom rows) λ-complex specific cases.

4.4 Tracking Topological Events

Consider the space-filling diagram Fλ. Selected values of λ featured in Table 1 correspond to topological events
underwent by Fλ—in terms of homology groups. Of particular interest for the application sketched in section 6.2
are those events triggering a decrease of the number of connected components of Fλ. Such events are associated
with selected one-dimensional simplices of the dual complex, and the connected components can be maintained
by a Union-Find algorithm upon sorting the λ values featured in Table 1. Following classical terminology, the
lifetime of a c.c. is called its topological persistence [ELZ02, CSEH05].
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5 Algorithms

In this section, we present an output sensitive algorithm to compute the dual complex, together with the
accompanying algorithms to compute the λ-complex and a variant which we call the reduced λ-complex.

5.1 Using a Sentinel Ball

To ease the implementation, denoting T the input balls and T max the maximal balls of T , we define a new ball
Smax which is the only maximal ball in S = T ∪ Smax, and we compute the CW diagram of S. Note that the
neighbors of Smax in the CW diagram of S are the toleranced balls of T bounding the CW convex hull of T .
To define Smax, we successively set its extremal radii and its center cSmax

.

First, the extremal radii are chosen such that Smax is maximal. We arbitrarily set r−
Smax

= 0, and set r+

Smax

so that Smax is maximal, that is:
r+

Smax
= 1 + max

Si∈T max

(δi). (36)

To set the center, we first compute the radius λ′ of the largest extremal TT ball to all tuples (pairs, triples,
quadruples) of toleranced balls in T . (Because of domination, we need to process not only quadruples but also
pairs and triples.) Consider now a toleranced ball Si ∈ T . Center cSmax

is chosen such that the radius of the

smallest TT ball of the pair (Si, Smax) is larger than λ′,∀i. (It is in fact sufficient to process toleranced balls
which are maximal in T .) From Eq. (18) with α = 1 and β = 1, this condition reads as:

|| ci − cSmax
||≥ λ′(δi + δSmax

) + (r−
Smax

+ r−i ). (37)

Without loss of generality, we choose cSmax
on the z-axis. Since λ′δi + r−i ≥ 0 for any toleranced ball Si ∈ T ,

squaring Eq. (37) yields the following equivalent degree two condition:

f(zmax) =|| ci − (0, 0, zmax) ||2 −(λ(δi + δSmax
) + (r−

Smax
+ r−i ))2 ≥ 0 (38)

Function f(zmax) is always positive, or is so for two intervals (−∞, z−i ) and (z+
i ,+∞) with z−i ≤ z+

i . It is
therefore sufficient to set zmax > z+

i ,∀i.

5.2 Hasse Diagrams of Tuples and Simplices

Tuples. A tuple reduces to the list of indices of the toleranced balls it contains, and the inclusion between
these indices defines a partial order. We shall use it to store selected tuples called candidate tuples into a Hasse
diagram denoted DT , see next section.

Simplices. We represent the dual complex by the Hasse diagram DS introduced in section 3.2. The level
DS(k) features the simplices of dimension k, and the predecessors and successors of a node in DS respectively
represent the faces and cofaces of the corresponding simplex. A node with no successor is called terminal. For
two consecutive levels DS(k) and DS(k + 1), the slice graph DSl

S (k, k + 1) defined as follows : the nodes of
DSl

S (k, k + 1) are those of DS(k); two such nodes are incident if they share a coface of DS(k + 1).

Hasse diagram DS and related operations. We endow DS with two operations to be used for the con-
struction of the dual complex. Consider a tuple Tk. This tuple is said to identify a (k − 1)-face if the vertices
defining this (k−1)-face correspond to the toleranced balls of the tuple. Finally, consider the graph DSl

S (k, k+1),
together with a k-simplex ∆(Tk+1) having a (k−1)-face identified by Tk, that is Tk+1 = Tk∪{Sj} for Sj ∈ S\Tk.
A restrained connected component (restrained c.c.) of DSl

S (k, k + 1) anchored at ∆(Tk+1) is a c.c. such that all
its nodes are identified by the tuple Tk. Consider now the largest c.c. of DSl

S (k, k + 1) containing the simplex
∆(Tk+1). Restricting this c.c. to nodes and edges identified by Tk yields one or more c.c. called unrestrained
c.c. These notions are illustrated on Fig. 17.

Mapping tuples to simplices. As seen in section 3.2, a tuple T possibly yields several simplices. Denoting
m the multiplicity of a tuple Tk, we shall use a map MTS mapping T to the corresponding simplices ∆j(T ), j ∈
1, . . . ,m. The correspondence between the levels of DS and DT is illustrated on Fig. 16. Abusing terminology,
we define:
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Definition. 4. A simplex of the dual complex is said to be identified by a tuple T if the toleranced balls found
in T form a subset of the vertices of the simplex.

The cofaces of the tuple T are the simplices of the dual complex which are identified by T .

Map MTS is used to retrieve the cofaces of a tuple T as follows: first, the successors of T in the Hasse
diagram DT are collected; second, the simplices associated to each successor are accessed thanks to map MTS .

DT (2)

DT (1)

DT (4)

DT (3)

DS(1)

DS(0)

DS(3)

DS(2)

Layers of Hasse diagrams

k + 1-tuples k-simplices

map MTS

Figure 16: Correspondence between the layers in the Hasse diagram of tuples DT and the Hasse diagram of
simplices of the dual complex DS .

5.3 Computing Candidate Tuples

A number of practical settings are concerned with growth processes up to a maximum value λmax < Λmax of
λ—in the absence of restriction we shall use λmax = +∞. We now define so-called candidate tuples, which will
be used in section 5.4.

Definition. 5. A k-tuple with k ≤ 2 is termed a candidate tuple if its minimal TT ball has a radius less than
λmax. Similarly, a 4-tuple is called candidate if at least one radius of its TT balls is less than λmax.

We report candidate tuples, from singletons to quadruples. The strategy consists of building the Hasse
diagram DT in a bottom-up fashion, the last two layers being constructed from the layers below. More precisely:
⊲ A toleranced ball is a candidate singleton provided that −r−i /δi > λmax. If so, we store in into L1.
⊲ Consider a pair (Si, Sj) out of the

(

n
2

)

possibly pairs. The pair is a candidate provided that Si[λmax] ∩

Sj [λmax] 6= ∅. If so, we store in into L2 and set the links to L1.
⊲ For triples and quadruples, we exploit the recursive structure of tuples encoded in the Hasse diagram DT .
Denote Lk the list of candidate k-tuples. We wish to compute Lk+1 from the lists Li, i = 0, . . . , k and DT .
Let a be a node from Lk−1. For two nodes c and d which are successors of a in the Hasse diagram, one has
| a∪ b |= k +1. That is, all candidate (k +1)-tuples can be formed by examining all pairs of successors of nodes
in Lk−1. We also set the diagram DT along the way.

Using this strategy yields the following:

Observation. 1. Denote n the number of toleranced balls and τ ′ the number of candidates tuples. Computing
all candidate tuples has output sensitive complexity O(n2 + τ ′). Moreover, checking that the associated extremal
TT balls are conflict free has complexity O(n(n2 + τ ′)).

Proof. The quadratic term comes from the possible
(

n
2

)

pairs. For triples and quadruples, it is sufficient to
observe that a k-tuple associated to a (k−1)-simplex is discovered a number of times equal to the number of its
(k − 3)-faces, that is, a triple is discovered three times and a quadruple six times. Whence the output sensitive
complexity for triples and quadruples.

For the second part of the claim, observe that for each candidate tuple, one needs to run one (four) iterations
on all remaining balls for singletons/pairs/triples (quadruples).
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5.4 Top-down Construction of the Dual Complex

To build the dual complex, assume that the pre-processing described in section 5.3 has been carried out, with
λmax = +∞. The algorithm builds the CW VD from cells to vertices. Three data structures are manipulated.
First, the Hasse diagram DT is used and updated, since some candidate simplices which do not yield simplices
are removed. Second, the Hasse diagram DS is constructed. Finally, the map MTS mapping tuples to simplices
is set and used.

5.4.1 Computing DS(3) or equivalently the 0-skeleton of the CW VD

We examine each candidate 4-tuple, and create one simplex in DS(3) for each conflict free solution of system
(30). Map MTS is set accordingly.

5.4.2 Computing DS(2) or equivalently the 1-skeleton of the CW VD

Case analysis. This step consists of computing Voronoi edges corresponding to DS(2) and connecting them
to Voronoi vertices associated with DS(3). We consider the candidate 3-tuples. Each such tuple possibly
contributes one or more Voronoi edges, and we face three cases. Assume that the cofaces of the tuple have been
collected thanks to map MTS .

⊲ Vor-1a If the tuple does not have any coface in DS(3) and its maximal TT ball has a conflict, the simplex
does not exist in the dual.
⊲ Vor-1b If the tuple does not have any coface in DS(3) and has a conflict free maximal TT ball, the simplex
is dominant and contributes its full bisector as a Voronoi edge.
⊲ Vor-1c If the simplex has cofaces in DS(3), assuming that Smax contains a single ball, it contributes Voronoi
edges bounded by Voronoi vertices. This number of vertices is even, and the construction of Voronoi edges is
a two-stage process. First we sort the vertices along the bisector. To do so, we process separately the vertices
found in the two half-spaces delimited by the plane containing the centers of the toleranced balls. Sorting
either set of Voronoi vertices along the bisector is tantamount to sorting the weights of the TT balls associated
with these Voronoi vertices. Second, we form the curved Voronoi edges. If the smallest TT ball of the tuple
is conflict free, there is a Voronoi edge between the two first Voronoi vertices of each half-space, and this edge
determines the remaining Voronoi edges in each half-space. Otherwise, there is a Voronoi edge between the first
two Voronoi vertices on each side of the plane – if any.

Algorithms. We examine the cases in turn.
⊲ Vor-1a The sterile tuple is removed from DT .
⊲ Vor-1b The simplex is created, and the data structures DS and MTS are updated accordingly.
⊲ Vor-1c Sorting Voronoi vertices along a bisector requires two predicates: the Orientation predicate to locate
the vertices in the two half-spaces; a comparison of roots of degree four polynomials to compare the radii of
extremal TT balls.

In terms of data structures, every simplex created triggers an update of DS and MTS .

5.4.3 Computing DS(1) or equivalently the 2-skeleton of the CW VD

Case analysis. This step consists of computing Voronoi 2-faces corresponding to DS(1) and connecting them
to Voronoi edges associated with DS(2). Building a Voronoi 2-face requires identifying all the bounding Voronoi
vertices i.e. Voronoi 0-faces, which are glued together by Voronoi 1-faces. As illustrated on Fig. 17, this is
a non trivial task since the Voronoi region of a pair might not be connected, and a face might not be simply
connected. Let the support of a non simply connected face be the simply connected region which contains it.
We consider all the candidate pairs, and for each of them analyze the cofaces collected thanks to map MTS .
We face three cases.

⊲ Vor-2a and Vor-2b These two cases are similar to those found for triples : a pair which does not have any
coface is either dominant or is not present in the dual complex.
⊲ Vor-2c The third case is the complex one. Using the 1-skeleton of the CW-VD, we identify those cycles
bounding the supports, and those bounding holes. To do so, we search the restrained and unrestrained c.c. of
DSl

S (2, 3,). There are three sub-cases:
– Vor-2c-1. The Voronoi region of the 2-tuple is simply connected : there is one restrained and one unrestrained
c.c. which are identical.
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– Vor-2c-2. The Voronoi region is not connected (the topology of the faces are arbitrary): restrained and
unrestrained c.c. differ. An unrestrained c.c. consists of the union of one or more restrained c.c.. If there is only
one restrained c.c. in an unrestrained c.c., the cycle is one hole. If not, the cycles bound faces. As an example,
consider Fig. 17. Each cycle C1, C2, C3 is a restrained c.c.. There are two unrestrained c.c.: one includes cycles
C1 and C3 which are connected in the 1-skeleton of the CW VD, the other one is C2 which is not connected to
C1 and C3 in the 1-skeleton of the CW VD.
– Vor-2c-3. The Voronoi region is connected but not simply connected. The two searches yield several c.c.
which are the same for the restrained and unrestrained case.

Algorithms. We focus on the complex case.
⊲ Vor-2c From an algorithmic standpoint, the computation of restrained and unrestrained c.c. is a two-sage
process. To describe it, we denote T = (Si, Sj) the two toleranced balls processed. First, the (plain) c.c. of
graph DSl

S (2, 3) are computed. Any c.c. containing nodes identified by the pair T is an unrestrained c.c.. For
example, on Fig. 17, the process yields two such c.c., namely the c.c. defined by C2, and that involving C1, C3

and the blue edges.
Second, we run a union-find algorithm on each such c.c.. More precisely, consider the subset DS(3 | T ), that

is the nodes of DS(3) which are identified by the pair T . These nodes correspond to Voronoi vertices involving
the two balls. Similarly, consider the subset DS(2 | T ) of nodes of DS(2) which are identified by the pair T .
These nodes of DS correspond to Voronoi edges involving the two balls. We run a union-find process with node
set DS(3 | T ) and edge set DS(2 | T ). As illustrated on Fig. 17, this process yields the restrained c.c..

In terms of data structures, the creation of a simplex triggers an update of DS and MTS .

Remark. 11. For case Vor-2c-2, we do not know which faces of the Voronoi region bound cycles defining
holes. However, this information is irrelevant if we only focus on the neighborhood relationship between Voronoi
regions.

Remark. 12. For case Vor-2c-3, one can further identify the cycle bounding the support. Let Si and Sj be the
toleranced balls of the pair. Consider a cycle C, and let δC be the maximum δ of the toleranced balls involved in
Voronoi edges and vertices along C—and different from Si and Sj. If δC < min{δi, δj}, then cycle C bounds a
hole, and reciprocally. To see why, consider the bisector of the toleranced balls associated to δC and min{δi, δj}:
it bounds the Voronoi region of the toleranced ball associated to δC iff δC < min{δi, δj}.

5.4.4 Computing DS(0) or equivalently the 3-skeleton of the CW VD

Case analysis. This step consists of computing Voronoi 3-faces corresponding to DS(0) and connecting them
to Voronoi 2-faces associated with DS(1). Building a Voronoi cell requires identifying all the bounding Voronoi
edges i.e. Voronoi 1-faces, which are glued together by Voronoi 2-faces. To do so, the difficulties are identical
to those faced to compute the 2-skeleton since the topological complications are the same—non connectedness
and non-simply connectedness. Analyzing the cofaces found for each toleranced ball yields the following two
cases.
⊲ Vor-3a If a toleranced ball has no coface, its Voronoi region is empty.
⊲ Vor-3b If a toleranced ball has at least one coface, we use the algorithm computing DS(1) using DSl

S (1, 2)
instead of DSl

S (2, 3). Note that if two dual triangles have a common bounded dual tetrahedron, they share at
least one dual edge.

Algorithms. Tuple T consisting of a single ball, to glue Voronoi 1-faces thanks to Voronoi 2-faces, union-find
is run on the node set DS(2 | T ) and edge set DS(1 | T ).

5.4.5 Complexity analysis

Denote Sorting(A) the cost of sorting set A, and Union-find(A, B) the cost of running a union-find algorithm
on node set A using the edge set B.

The following observations, which directly stem from the description of algorithms, show that the algorithm
constructing the dual complex has output sensitive complexity:

❼ Computing the 1-skeleton has complexity
∑

T∈GT (3|T ) Sorting(DS(3 | T ))

❼ Computing the 2-skeleton has complexity
∑

T∈GT (2|T ) Union-find(DS(3 | T ), DS(2 | T ))
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❼ Computing the 3-skeleton has complexity
∑

T∈GT (1|T ) Union-find(DS(2 | T ), DS(1 | T ))

Analyzing these complexities is directly related to the complexity of the CW diagram, an open problem to
the best of our knowledge.

It should be noticed, though, that the cubic pre-processing might be optimal in the worst-case. Indeed,
the worst-case complexity of the diagram is clearly at least quadratic. And since a Voronoi region can be
disconnected, incremental algorithms aiming at finding conflicts may have to exhaustively probe the whole
diagram.

C1C3

C2

∆∗
1(i1, i2)

∆∗
2(i1, i2)

∆∗(j1, j2)

Figure 17: Computing Voronoi faces. Example of
two toleranced balls Si1 and Si2 whose Voronoi
region consists of Voronoi faces ∆1(i1, i2)

∗
and

∆2(i1, i2)
∗

respectively bounded by two and one
cycle (C1, C2 and C3) that are restrained con-
nected components (c.c.). Color codes for Voronoi
edges and vertices : red: restrained c.c; blue and
red: unrestrained c.c.

DS(1)

DS(2)

DS(3)
C2 C1 C3

∆2(i1, i2)∆1(i1, i2) ∆(j1, j2)

Figure 18: Computing dual simplices. Hasse dia-
gram representation of dual complex of example of
Fig. 17. Color of simplices are the same that color
of their dual in Fig. 17. Links between simplices
whose duals bound the Voronoi faces of the pair
(Si1 , Si2) are represented in solid lines.

5.5 Computing the (reduced) λ-complex

5.5.1 Representation

In the λ-complex, a simplex ∆ is attached three tags stating whether (i) it is Gabriel or not, (ii) it contributes
to the convex hull CH(S) or not, and (iii) it is dominant, dominated, or neither one nor the other. Moreover,
∆ is endowed with three values delimiting the intervals of a row in Table 1.

5.5.2 Computation

The classical way to compute interval for simplices in the affine α-complex consists of visiting simplices in a
top-down fashion, namely from tetrahedra to vertices [Ede92]. In doing so, the status and intervals of a simplex
are inferred from those of its cofaces. We apply this strategy for terminal nodes in the Hasse diagram, which
are either tetrahedra in DS(3) or selected dominant nodes of DS(2) and DS(1).

5.6 Computation of the reduced λ-complex

Consider the case where one wishes to explore the growth process of the toleranced balls up to a maximum
value λmax < Λmax of λ. We call the collection of simplices that appear in the λ-complex for λ ≤ λmax the
reduced λ-complex. Computing the reduced λ-complex requires processing a subset of all tuples involved in the
entire λ-complex.

Having computed the candidate tuples as indicated in section 5.3, the computation of the reduced λ-complex
is identical to that of the entire λ-complex.

6 Implementation and Experiments

6.1 Implementation

Sketch. The implementation follows the CGAL spirit, see http://www.cgal.org, and we sketch it in terms
of concepts (a set of requirements) and models (a particular implementation). The class CW_dual representing
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the dual complex is templated by a combinatorial class providing the Hasse diagram representation, and by a
geometric concept class CWGeometricKernal providing the predicates and constructions required. The corre-
sponding generic model CW_geometric_kernel is itself templated by a concept class AlgebraicKernel providing
the operations needed to deal with the extremal TT balls. As specified by propositions 2 and 3, computing these
TT balls requires solving linear systems or a degree four algebraic equation, while the conflict free test requires
evaluating the conflict free predicate of Eq. (10). We implemented a model of the AlgebraicKernel named
CW_algebraic_kernel_double which uses CGAL’s Algebraic_kernel_d_1—the latter provides efficient oper-
ations on univariate polynomials. The number type being double, this kernel does not provide exact predicates.
Finally, the class CW_alpha_shape inherits from CW_dual and provides the tags and intervals detailed in Table 1.

Sanity check. To probe the implementation, given a collection of toleranced balls with identical parameters,
we checked its ability to compute the Delaunay triangulation of the centers.

Performances. To scale the implementation, we ran it on random collections up to 1000 toleranced balls on
a DELL computer with Intel Xeon processor at 3.2 GHz with 2048 Mo of RAM. Balls were generated as follows:
the set C of centers is uniformly generated at random in a cube; for each center ci, radius r−i is set to the length
of the shortest edge between ci and a neighbor of his in the periodic Delaunay triangulation of C, while r+

i is
set to the mean between r−i and the length of the longest edge between ci and a neighbor of his in the periodic
Delaunay triangulation of C [CT09].

Statistics for the reduced Dual Complex computation up to λ = 1 are reported on Fig. 19. We note in
particular that the number of candidate tuples increases linearly with the number of toleranced balls, as a linear
regression gives a slope of 515 with R-squared value of 0.99. So does the running time, which is about 251
minutes for 1000 toleranced balls.

An example calculation for the whole dual complex of 200 random toleranced balls is illustrated on Fig.
20, with the distribution of λ values associated to Gabriel simplices and tetrahedra.(Note that in the affine
case, all tetrahedra are Gabriel, a property which does not hold in our case since four balls may contribute
four tetrahedra — one of them may be Gabriel.) The whole calculation took about 69 hours for 38, 515, 103
candidate tuples and 5004 simplices. There are 1971 Gabriel simplices and 1148 tetrahedra. Note that 88, 8%
of Gabriel simplices and tetrahedra appear in the λ-complex for λ ≤ 1.
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Figure 19: Statistics for the reduced λ-complex up to λ = 1.
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Figure 20: Distribution of λ values associated with Gabriel simplices and tetrahedra for 200 random toleranced
balls.

6.2 Application to Molecular Models

Reconstructing Large Assemblies. Understanding the behaviour of living cells requires describing the
structure and behaviour of a number of macro-molecular assemblies. While atomic models of small complexes
can be obtained from X ray crystallography and/or NMR, the reconstruction of large assemblies such as molecu-
lar motors (cell locomotion), branched actin filaments (muscle contraction), chaperonin cavities (protein folding)
or nuclear pore complexes (nucleo-cytoplasmic regulation) is more challenging. A recent trend in this context
consists of performing the reconstruction from diverse experimental data [AFK+08]. For example, cryo electron
microscopy (EM) maps allows the reconstruction of envelopes of assemblies, typically at intermediate resolu-
tion (10-15 Å). Immuno-labelling combined with EM can be used to locate protein instances, but positioning
uncertainties are faced due to the resolution of microscopes. Proteomics methods such as Tandem Affinity
Purification provide lists of interacting proteins, but these are inherently ambiguous. The reconstruction of a
model from such noisy and ambiguous data is clearly a challenge, and typical reconstruction procedures perform
simulating annealing in the space of parameters describing the model, so as to maximize the agreement between
this model and the experimental data available. We now examine the largest protein assembly known to date
in eukaryotic cells, namely the Nuclear Pore Complex (NPC).

Application to The Nuclear Pore Complex. The NPC is a radially symmetric protein assembly regulating
exchanges between the nucleus and the cytoplasm of eukaryotic cells, thanks to the lumen located in its center.
The NPC involves 456 protein instances of 30 different protein types, and we term each connected subset of
instances a complex in the sequel. The stoichiometry of a protein type is the number of its instances—a number
in the range 8-16 for the NPC. Two remarkable papers reported putative models of the NPC, reconstructed from
the integration of various experimental data [ADV+07, AFK+08]. A model of the NPC is a collection of balls.
The reconstruction resorts to simulated annealing to define the balls (centers and radii) so as to maximize the
agreement with experimental data. The whole procedure is very complex—the supplemental of the two Nature
papers runs on 107 pages, and different levels of detail are actually used along the optimization procedure. At
the finest level, which corresponds to the output, a given protein is represented by a number of balls in the range
1–12, depending on the protein type. The functional optimized being non convex, a total of 1000 models were
selected. These models were further averaged to produce one density map per protein type, i.e. a 3D matrix
where each pixel is endowed with the probability of being covered by an instance of that type. Refer to Fig.
2 for a 2D example. The maps being quite noisy, contouring a map does not in general allow one to precisely
locate the instances of that type. Also, superimposing the 30 maps do not allow one to investigate the relative
positions of the instances of all types. We use λ-shapes to make a collective assessment of these maps.
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Applications of λ-shapes. As a pre-processing, we build a toleranced model for each map, based on its
stoichiometry. The high confidence regions are defined as (clusters of) local maxima of the density. Starting
from these anchors, a region growing algorithm is run until a region with prescribed volume is reached. Each
connected component is then covered with one toleranced ball. Merging the toleranced models of the 30 types
yields a toleranced model of the NPC consisting of 456 toleranced balls. The resulting reduced λ-complex for
λmax = 1, computed in 11 minutes on an x86 64 bits architecture at 3.2HGz, is used for two purposes.

First, the topological persistence of connected components provides an assessment of the stability of com-
plexes in the assembly. Our particular interest are the stable complexes, whose composition in terms of protein
types can be discussed w.r.t. the aforementioned Tandem Affinity Purification data. Such a discussion will be
reported elsewhere.

Second, we investigate the packing properties of instances : upon increasing λ, the number of connected
components (#c.c.) of Fλ decreases, and its volume V olλ increases. The volume of a protein instance being
estimated from its sequence of amino-acids, let V olref the sum of the volumes of all instances, and denote
rλ = V olλ/V olref . Tracking the evolution of the number #c.c. thanks to a Union-Find algorithm applied to
the simplices of the dual complex, we investigate the correlations between the three parameters (#c.c., λ, rλ).
This curve is presented on Fig. 21 for the 32 protein instances of a half-spoke, i.e. one of the 16 sub-units of the
NPC. For a perfectly accurate model, one would expect one connected component for a value of rλ = 1, but we
observe 10 of them in our case. Also, the last two consecutive values of λ triggering a drop of the number of c.c.
are as follows: for λ = 0.62, there are two c.c. and r0.62 = 3.46; for λ = 1.25, there is one c.c. and r1.25 = 7.20.
The corresponding grown balls are illustrated on Fig. 22. On this example, the fact that a 7-fold increase of
volume occupancy is required to connect the instances hints at an imprecise positioning of selected proteins. In
particular, the significant increase of rλ in-between #c.c. = 2 and #c.c. = 1 hints at a poor positioning of two
instances located far away from the 30 remaining ones.

This type of analysis is being used to provide a thorough evaluation of putative pseudo-atomic NPC models,
based on (i) the stability of complexes measured by topological persistence, (ii) a coherence analysis of the
models w.r.t. Tandem Affinity Purification data, and (iii) quantitative statistics based on volume and surface
calculations. These analysis will complement the qualitative discussions and hypothesis developed in [ADV+07].

Figure 21: Half-spoke of the NPC : polyline connecting the points (#c.c., λ, rλ); the λ values are those triggering
a decrease of one unit of the number of connected components.
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(a) (b)

Figure 22: Half-spoke of the NPC : growing the balls so as to end up with a single connected component. The
volume of the right domain incurs a 7.2 fold ratio w.r.t. the volume of the isolated protein instances.

7 Conclusion and outlook

Handling ambiguous geometric shapes is non trivial, and the spirit of this work is to integrate modeling un-
certainties in the geometric model, as opposed to making arbitrary decisions. As demonstrated, the problem
of modeling with toleranced balls is tantamount to using a compoundly weighted Voronoi diagram, and the
fact that a toleranced ball (or equivalently a weighted point) has two parameters provides additional modeling
flexibility. Yet, a number of further developments are called for.

On the algorithmic side, designing an efficient algorithm to build the dual complex of the CW VD is an
open question. While our algorithm fits our needs in molecular modeling, an efficient algorithm is a must for
the framework to be used say in geometry processing. From a combinatorial perspective, the task is difficult
though, in particular because Voronoi regions are not connected. From a numerical perspective, designing
efficient predicates based on degree-four algebraic numbers is also challenging. Finally, the design of toleranced
models also raises interesting questions falling in the realm of geometric optimization.

On the application side, toleranced models should have a clear leveraging power in computational structural
biology. A major trend there is the reconstruction of large molecular machines from the integration of various
experimental data. The models designed so far are not precise enough to be used for mechanistical simulations.
We believe that toleranced models have the potential to allow for a precise assessment of such models with
respect to biological data, and will help to establish atomic-resolution models.

More classical geometric applications should also benefit from toleranced models, in particular the repre-
sentation of shapes based on skeletal representations and the medial axis transform, in the spirit of recent
contributions such as conformal α-shapes and scale-axis transforms.
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