
HAL Id: inria-00493768
https://inria.hal.science/inria-00493768

Submitted on 21 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Server Performance on Multi-Cores via
Selective Off-loading of OS Functionality

David Nellans, Kshitij Sudan, Erik Brunvand, Rajeev Balasubramonian

To cite this version:
David Nellans, Kshitij Sudan, Erik Brunvand, Rajeev Balasubramonian. Improving Server Perfor-
mance on Multi-Cores via Selective Off-loading of OS Functionality. WIOSCA 2010 - Sixth Annual
Workshorp on the Interaction between Operating Systems and Computer Architecture, Jun 2010,
Saint Malo, France. �inria-00493768�

https://inria.hal.science/inria-00493768
https://hal.archives-ouvertes.fr


Improving Server Performance on Multi-Cores via
Selective Off-loading of OS Functionality

David Nellans, Kshitij Sudan, Erik Brunvand, Rajeev Balasubramonian,
School of Computing, University of Utah

Salt Lake City, Utah 84112
{dnellans, kshitij, elb, rajeev}@cs.utah.edu

Abstract—Modern and future server-class processors will in-
corporate many cores. Some studies have suggested that it may
be worthwhile to dedicate some of the many cores for specific
tasks such as operating system execution. OS off-loading has
two main benefits: improved performance due to better cache
utilization and improved power efficiency due to smarter use
of heterogeneous cores. However, OS off-loading is a complex
process that involves balancing the overheads of off-loading
against the potential benefit, which is unknown while making
the off-loading decision. In prior work, OS off-loading has been
implemented by first profiling system call behavior and then
manually instrumenting some OS routines (out of hundreds) to
support off-loading. We propose a hardware-based mechanism to
help automate the off-load decision-making process, and provide
high quality dynamic decisions via performance feedback. Our
mechanism dynamically estimates the off-load requirements of
the application and relies on a run-length predictor for the
upcoming OS system call invocation. The resulting hardware
based off-loading policy yields a throughput improvement of up
to 18% over a baseline without off-loading, 13% over a static
software based policy, and 23% over a dynamic software based
policy.

I. I NTRODUCTION

In the era of plentiful transistor budgets, it is expected that
processors will accommodate tens to hundreds of processing
cores. Given the abundance of cores, it may be beneficial to
allocate some chip area for special-purpose cores that are cus-
tomized to execute common code patterns. One such common
code is the operating system (OS). Some prior studies [10],
[17], [19] have advocated that selected OS system calls be off-
loaded to a specialized OS core. This can yield performance
improvements because (i) user threads need not compete with
the OS for cache/CPU/branch predictor resources, and (ii) OS
invocations from different threads interact constructively at the
shared OS core to yield better cache and branch predictor
hit rates. Further, in a heterogeneous chip multiprocessor, the
OS core could be customized for energy-efficient operation
because several modern features (such as deep speculation)
have been shown to not benefit OS execution [17], [19].

Hardware customization for OS execution has high poten-
tial because the OS can constitute a dominant portion of
many important workloads such as webservers, databases,
and middleware systems [10], [19], [21]. These workloads
are also expected to be dominant in future datacenters and
cloud computing infrastructure, and it is evident that such
computing platforms account for a large fraction of modern-
day energy use [23]. In these platforms, many different virtual

machines (VMs) and tasks will likely be consolidated on
simpler, many-core processors [6], [23]. Not only will the
applications often be similar to existing applications that have
heavy OS interaction, the use of VMs and the need for resource
allocation among VMs will inevitably require more operating
system (or privileged) execution.

The OS off-load approach has only recently come under
scrutiny and more work is required to fully exploit its poten-
tial, including a good understanding of server/OS workloads
in datacenters, evaluating the impact of co-scheduled VMs,
technologies for efficient process migration, technologies for
efficient cache placement and cache-to-cache transfers, etc.
The work by Brown and Tullsen [9], for example, attempts to
design a low-latency process migration mechanism that is an
important technology for OS off-load. Similarly, in this paper
we assume that OS off-load is a promising approach and we
attempt to resolve another component of OS off-load that may
be essential for its eventual success, viz, the decision-making
process that determines which operations should be off-loaded.
While OS off-load has a significant energy advantage [17], this
paper primarily focuses on the performance aspect. We expect
that our proposed design will also be useful in an off-loading
implementation that optimizes for energy efficiency.

Past work has demonstrated the potential of OS off-load
within multi-cores for higher performance [10] and energy
efficiency [17]. In these works, the fundamental mechanism
for OS isolation,off-loading, remains the same. Off-loading
implementations have been proposed that range from using
the OS’ internal process migration methods [17], to layering
a lightweight virtual machine under the OS to transparently
migrate processes [10]. In these studies, the decision process
of which OS sequences to off-load has been made in software,
utilizing either static offline profiling or developer intuition.
This process is both cumbersome and inaccurate. Firstly,
there are many hundreds of system calls, as seen in Table I,
and it will be extremely time-consuming to manually select
and instrument candidate system calls for each possible OS/
hardware configuration. Secondly, OS utilization varies greatly
across applications and off-loading decisions based on profiled
averages will be highly sub-optimal for many applications.

This paper attempts to address exactly this problem. We
only focus on performance optimization with OS off-loading
on a homogeneous CMP. We contribute to the existing body
of work by proposing a novel hardware mechanism that can
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TABLE I
NUMBER OF DISTINCT SYSTEM CALLS IN VARIOUS OPERATING SYSTEMS.

Benchmark # Syscalls Benchmark # Syscalls
Linux 2.6.30 344 Linux 2.2 190
Linux 2.6.16 310 Linux 1.0 143
Linux 2.4.29 259 Linux 0.01 67

FreeBSDCurrent 513 Windows Vista 360
FreeBSD5.3 444 Windows XP 288
FreeBSD2.2 254 Windows 2000 247
OpenSolaris 255 Windows NT 211

beemployed on nearly any OS/hardware combination. At run-
time, we dynamically estimate the level of off-loading that will
be most beneficial for the application. Off-loading involves
non-trivial interactions: reduced cache/branch predictor inter-
ference for the user thread, more cache coherence misses for
the OS and user, overhead for off-load, queuing delay at the
OS core, etc. We must therefore first estimate how aggressive
the off-loading mechanism needs to be and then estimate if
each OS invocation should be off-loaded. At the heart of
our proposed scheme is a predictor that accurately estimates
the length of upcoming OS sequences. We show that such
a hardware-based scheme enables significant benefits from
off-loading, out-performing static software instrumentation as
well as a similar dynamic instrumentation in software. It also
greatly simplifies the task of the OS developer, while incurring
only a minor hardware storage overhead of about 2 KB.

A related alternative to off-loading is the dynamic adap-
tation of a single processor’s resources when executing OS
sequences [15], [20]. While the dynamic adaptation schemes
do not rely on off-loading, the decision making process on
when to adapt resources is very similar to that of making off-
loading decisions. We therefore expect the proposed prediction
mechanisms to be useful for other forms of OS optimization
as well, although this is not evaluated in the paper.

II. BACKGROUND AND MOTIVATION

Historical Perspective.Off-loading execution from a tradi-
tional general purpose microprocessor is not a new idea. For
instance, in the 1980’s floating point hardware often existed as
a co-processor that could be plugged into an additional socket
on many motherboards. This essentially amounted to off-
loading floating-point execution. Until recently, the memory
controller for the DRAM sub-system was implemented in the
north-bridge, but recent CPUs now have an integrated memory
controller. Graphics rendering can be done entirely within
software on the CPU, or it can be sent to a dedicated video
card that can render polygons more efficiently due to a (vastly)
different microarchitecture. Given the abundance in transistors
today, off-loading within a multi-core can be attempted as a
design optimization for common code patterns such as the
operating system.

Benchmarks. For this work we examine a broad variety
of workloads to examine the effect that OS interference has
on cache performance. We look at a subset of benchmarks
from the PARSEC (blackscholes, canneal) [8] , BioBench
(fasta protein, mummer) [3], and SPEC-CPU-2006 (mcf,
hmmr) [12] suites as representative of HPC compute bound

applications. Apache 2.2.6 serving a variety of static webpages
selected at random by a serverside CGI script, SPECjbb2005
(a middleware-type system), and Derby (a database workload
from the SPECjvm2008 suite) comprise our server oriented
workloads. Our server benchmarks map two threads per core
except Apache which self tunes thread counts to optimize
throughput. This 2:1 mapping allows workloads that might
stall on I/O operations to continue making progress, if possi-
ble.

All benchmarks were warmed up for 50 million instructions
prior to being run to completion within the region of inter-
est, using throughput as the performance metric. For single
threaded applications, throughput is equivalent to IPC. In
many experiments, the group of compute bound applications
displays extremely similar behavior. For the sake of brevity,
we represent these applications as a single group in our graphs,
and note any outlier behavior.

Off-loading Decisions and Instrumentation Cost. We
view the work by Chakraborty et al. [10] and Mogul et al. [17]
as the state-of-the-art in OS off-loading. In both of these
works, off-line profiling and developer intuition is used as
a guide to identify what are typically long-running system
calls. These system calls are then manually instrumented
so that their invocation results in a process migration from
the application’s core to a dedicated OS core. The reverse
migration is performed when the system call completes.

Previous proposals [10] have involved a VMM to trap OS
execution and follow a static off-loading policy based on off-
line profiling. Manual instrumentation of the code can allow
the decision-making process to be smarter as the length of that
specific system call invocation can be estimated based on input
arguments [14], [17]. For example, the duration of theread
system call is a function of the number of bytes to be fetched
from a file descriptor offset and thus can vary across invoca-
tions. Even such instrumentation has several short-comings. In
some cases, the read syscall may return prematurely if end-of-
file is encountered (for other syscalls too, the input arguments
may not always be good predictors of run length). In yet other
cases, the system call may be preempted by an additional
long OS sequence initiated by a external device interrupt. The
above effects cannot be accurately captured by instrumentation
alone. Therefore, even sophisticated instrumentation can often
be inaccurate. A history based predictor of OS run-length has
the potential to overcome these short-comings.

We frequently see one or both of the following patterns:
(a) an application that invokes many short OS routines, (b)
an application that invokes few, but long running, routines.
Depending on the application, reduced cache interference may
be observed by off-loading one or both classes of OS routines.
As we show later in the Section V, contrary to what intuition
might indicate, it is often beneficial to off-load short system
calls, even those with shorter duration than the off-loading mi-
gration overhead. When short system calls are also considered
as candidates for off-loading, the overhead of instrumentation
greatly increases. The latency cost of instrumentation code
can range from just tens of cycles in basic implementations to
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Fig. 1. Runtime overhead of dynamic software instrumentation for all
possible OS off-loading points

hundreds of cycles in complex implementations. This overhead
is incurred even when instrumentation concludes that a specific
OS invocation should not be off-loaded. As an example,
we instrumented the simplegetpid syscall implementation
in OpenSolaris. We found that adding a single off-loading
branch that invokes off-loading functionality based on a static
threshold, increases the assembly instruction count from 17 to
33 for this trivial instrumentation. Examining multiple register
values, or accessing internal data structures can easily bloat
this overhead to hundreds of cycles which quickly penalizes
performance. Figure 1 shows the significant performance im-
pact of instrumenting all OS entry points for the server and
compute bound workloads.

The above arguments highlight that profile-based manual
instrumentation is not only burdensome, it also significantly
limits the potential of the off-loading approach. The upcom-
ing sections show how hardware-based single-cycle decision
making can out-perform a couple of reasonable static instru-
mentation policies.

Migration Implementations. The latency and operations
required for off-loading are significantly impacted by the
migration implementation, which depends on both hardware
and software capabilities. There are other alternatives to
process migration, however, such as remote procedure calls,
and message passing interfaces within the operating system.
These alternate designs have the potential to lower inter-core
communication cost substantially and are an interesting design
point though we do not consider them in this study. For some
research operating systems [7], [13], the notion of off-loading
is not even valid, as sub-systems are already pinned to specific
processors within a CMP system. However, no mainstream
OS has chosen to implement such features yet and by far, the
majority of server applications are run on traditional Unix-
based systems. In this study, we attempt to be agnostic to
the mechanism by which off-loading is performed and show
results for a variety of possible off-loading overheads.

While our study evaluates several design points for off-
loading overheads, we focus most of our conclusions on the
conservative and aggressive design points. The conservative
scheme is based on the thread migration time of approximately
5,000 cycles for an unmodified Linux 2.6.18 kernel. Proposals
exist that could improve this delay to below just below 3,000
cycles on our target machine [22]. Reliable thread migration
entails interrupting program control flow on the user processor

and writing architected register state to memory. The OS core
must then be interrupted, save its own state if it was executing
something else, read the architected state of the user core from
memory, and resume execution. If there is data in cache on
the user processor that must be accessed by the OS core, it
must be transferred to the OS core (automatically handled by
the coherence mechanism). The aggressive scheme is based
on a technique proposed by Brown and Tullsen [9] and is
assumed to incur a 100 cycle migration latency. They advocate
hardware support for book-keeping and thread scheduling
utilizing an in hardware state machine, (a process normally
done in software by an OS or virtual machine).

III. H ARDWARE-BASED DECISION-MAKING

Instead of a software instrumentation process based on pro-
filed analysis, we propose a hardware-based mechanism that
simplifies the task of the OS developer and makes high quality
decisions about the benefits of off-loading OS execution. Off-
loading leads to several complex interactions. First, it isolates
the working sets of the application and the OS by placing
most of the application’s data in its own cache and most of
the OS’ data in the OS core’s cache. This reduces cache and
branch predictor interference at the user core. It also increases
the likelihood that an OS system call will find its data in
cache because a similar function was recently executed (not
necessarily by the invoking application). Second, the number
of coherence misses may increase because the OS system
call may have to access application data (that resides in the
application core’s cache) and conversely, the application may
have to access data recently fetched by the OS syscall (that
resides in the OS core’s cache). These interactions are a strong
function of system call length and frequency. Performance is
also impacted by the overheads for migration and because
of queuing delays at the OS core (since a single OS core
could handle requests from multiple application cores). Many
of the above effects are not easily captured with performance
counters, and even if they were, it may be difficult to construct
models that relate these parameters to an eventual decision
regarding the benefits of off-loading the system call being
currently invoked. We therefore adopt a simplified but effective
approach that is based on the following two sub-components.

We adopt the simple strategy that a system call will be
off-loaded if it is expected to last longer than a specified
threshold, N cycles. The first sub-component employs a
hardware predictor to estimate the length of a system call. At
any point, we also need to determine best best value forN .
This may vary depending on how closely the application and
OS interact and on whether coherence effects dominate over
other cache interference effects. The second sub-component of
the proposed scheme determines theN value which provides
best performance by sampling various candidate values.

A. Hardware Prediction of OS Syscall Length

We believe that system call run-length is the best indicator
of whether off-loading will be beneficial. This is simply
because the overhead of migration is amortized better if the
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system call is longer. The length of the syscall is often a
function of the input arguments and processor architected state.
We therefore propose a new hardware predictor of OS invoca-
tion length that XOR hashes the values of various architected
registers. After evaluating many register combinations, the
following registers were chosen for the SPARC architecture:
PSTATE (contains information about privilege state, masked
exceptions, FP enable, etc.), g0 and g1 (global registers),
and i0 and i1 (input argument registers). The XOR of these
registers yields a 64-bit value (that we refer to asAState) that
encodes pertinent information about the type of OS invocation,
input values, and the execution environment. Every time there
is a switch to privileged execution mode, the AState value
is used to index into a predictor table that keeps track of
the invocation length the last time such an AState index was
observed, as shown in Figure 2.

Each entry in the table also maintains a prediction con-
fidence value, a 2-bit saturating counter that is incremented
on a prediction within±5% of the actual, and decremented
otherwise. If the confidence value is 0, we find that it is more
reliable to make a “global” prediction,i.e., we simply take
the average run length of the last three observed invocations
(regardless of their AStates). This works well because we
observe that OS invocation lengths tend to be clustered and a
global prediction can be better than a low-confidence “local”
prediction. For our workloads, we observed that a fully-
associative predictor table with 200 entries yields close to
optimal (infinite history) performance and requires only 2 KB
storage space. The 200-entry table is organized as a CAM
with the 64-bit AState value and prediction stored per entry. A
direct-mapped RAM structure with 1500 entries also provides
similar accuracy and has a storage requirement of 3.3 KB. This
table is tag-less and the least significant bits of the AState are
used as the index.

Averaged across all benchmarks, this simple predictor is
able to precisely predict the run length of 73.6% of all
privileged instruction invocations, and predict within±5%
the actual run length an additional 24.8% of the time. Large
prediction errors most often occur when the processor is
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Fig. 3. Binary Prediction Hit Rate for Core-Migration Trigger Thresholds

executing in privileged mode, but interrupts have not been
disabled. In this case, it is possible for privileged mode
operation to be interrupted by one or more additional routines
before the original routine is completed. Our predictor does
not capture these events well because they are typically caused
by external devices which are not part of the processor state at
prediction time. These prediction inaccuracies are part of non-
deterministic execution and can not be foreseen by software or
other run length prediction implementations. Fortunately, these
interrupts typically extend the duration of OS invocations,
almost never decreasing it. As a result, our mispredictions tend
to underestimate OS run-lengths, resulting in some OS off-
loading possibly not occurring, based on a threshold decision.

While the hardware predictor provides a discrete prediction
of OS run-length, the off-load decision must distill this into
a binary prediction indicating if the run length exceedsN
instructions and if core migration should occur. Figure 3 shows
the accuracy of binary predictions for various values ofN . For
example, if off-loading should occur only on OS invocation
run lengths greater than 500 instructions, then our predictor
makes the correct off-loading decision 94.8%, 93.4%, 96.8%,
and 99.6% of the time for Apache, SPECjbb2005, Derby and
the average of all compute benchmarks, respectively. While
more space-efficient prediction algorithms possibly exist, we
observe little room for improvement in terms of predictor
accuracy.

B. Dynamic Estimation ofN

The second component of a hardware assisted off-loading
policy is the estimation ofN that yields optimal behavior in
terms of say, performance or energy-delay product (EDP). This
portion of the mechanism occurs within the operating system
at the software level so that it can utilize a variety of feedback
information gleaned from hardware performance counters.
Execution of this feedback occurs on a coarse granularity
however, typically every 25-100 million cycles. As a result,
the overhead is minimal compared to software instrumentation
of system calls which can be invoked as often as every few
thousand cycles in OS intensive applications.

For this estimation ofN , we rely on algorithms described
in past work to select an optimal hardware configuration [5].
If the hardware system must select one of a few possibleN
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TABLE II
SIMULATOR PARAMETERS.

CPU Parameters Memory System Parameters
ISA UltraSPARC III ISA L1 I-cache 32 KB/2-way, 1-cycle
CoreFrequency 3.5 GHz @ 32nm L1 D-cache 32 KB/2-way, 1-cycle
ProcessorPipeline In-Order L2 Cache 1 MB/16-way, dual banked, 12-cycle
TLB 128 Entry Fully Associative L1 and L2 Cache Line Size 64 Bytes
CoherenceProtocol Directory Based MESI Main Memory 350 Cycle Uniform Latency

thresholdsat run-time, it is easiest to sample behavior with
each of these configurations at the start of every program phase
and employ the optimal configuration until the next program
phase change is detected. The mechanism is epoch-based,i.e.,
statistics are monitored everyepoch (an interval of a fixed
number of cycles).

For our implementation, where performance is our metric
of interest, we use the L2 cache hit rate of both the OS
and user processors, averaged together, as our performance
feedback metric. Our initial sampling starts with an epoch
of 25 million instructions, and an off-loading threshold of
N = 1, 000 if the application is executing more than 10%
of its instructions in privileged mode, otherwise the threshold
is set toN = 10, 000. We also sample values for two alternate
N , above and below the initialN . If either of theseN results
in an average L2 hit-rate that is 1% better than our initial
N , we set this new value as our threshold. Having chosen
an initial threshold value, we then allow the program to run
uninterrupted for 100 M instructions. We then again perform
a 25 M instruction sampling of two alternate values ofN .
If our threshold appears to still be optimal we then double
the execution length (to 200 M) instructions before sampling
again to help reduce sampling overhead. If at any point our
currentN is found to be non-optimal, the execution duration
is reduced back to 100 M instructions.

Such a mechanism can work poorly if phase changes are
frequent. If this is the case, the epoch length can be gradually
increased until stable behavior is observed over many epochs.
Such a strategy was not invoked for most of our benchmark
programs as few phase changes were encountered for epochs
larger than 100 million instructions. For our experiments, we
use very coarse-grained values ofN (as later reported in
Figure 4). Increasing the resolution at whichN can vary will
increase the performance of the system, but it comes at the
expense of increased sampling overhead.

IV. EXPERIMENTAL METHODOLOGY

To examine the design space of OS off-loading we use
cycle accurate, execution driven simulation to model full OS
execution during workload execution. Our simulation infras-
tructure is based on Simics 3.0 [16] and we model in-order
UltraSPARC cores. By modeling in-order cores, we are able
to simulate large executions in a reasonable amount of time,
thus capturing representative OS behavior. It also appears that
many OS-intensive server workloads are best handled by in-
order cores with multi-threading [21] (for example, the Sun
Niagara and Rock designs and the recent Intel Atom design).

On the SPARC platform, the PSTATE register [1] holds
the current state of the processor and contains information

(in bit fields) such as floating-point enable, execution mode
(user or privilege), memory model, interrupt enable, etc. Our
proposed techniques use the execution mode bit in this register
to determine which code sequences are executing within the
boundaries of the OS. Based on this definition, system calls
which occur in privileged mode but within the user address
space are captured as part of our OS behavior in addition
to functionality that occurs within the kernel address space.
Thus, compared to prior work, we are considering a broader
spectrum of OS behavior as a candidate for off-loading. Previ-
ous work examined only system calls, or a subset of them; we
show that optimal performance can be obtained by off-loading
OS sequences that are much shorter than intuition might
indicate. Therefore, a general-purpose solution for capturing
all OS execution is required.

The SPARC ISA has several unique features which cause
many short duration (<25 instructions) OS invocations. These
invocations are exclusively due to the fill and spill operations
of the rotating register file the SPARC ISA implements when
the register file becomes overloaded. Other architectures, like
x86, perform stack push and pop operations in user space.
We analyzed our results both including and excluding these
invocations for SPARC ISA, and have chosen to omit these
invocations from our graphs where they skew results substan-
tially from what would be seen on an alternative architecture.

For all our simulations, Table II shows the baseline memory
system parameters. Our timing parameters were obtained from
CACTI 6.0 [18] targeting a frequency of 3.5 GHz. A memory
latency of 350 cycles is used in all experiments (based on real
machine timings from Brown and Tullsen [9]). In the case
of off-loading, we simulate two such cores with private L2s
which are kept coherent via a directory based protocol and a
simple point-to-point interconnect fabric (while this is overkill
for a 2-core system, we expect that the simulated model is part
of a larger multi-core system). Our system models directory
lookup, cache-to-cache transfers, and coherence invalidation
overheads independently. We parameterize themigration im-
plementationso that we can examine the effects of varied
latency implementations on the off-loading decision policy.

V. RESULTS

A. Impact of Design Parameters

We next evaluate the off-loading performance achievable
with our predictor-directed decision making policy. On every
transition to privileged mode, the run-length predictor is
looked up and off-loading occurs if the run-length is predicted
to exceedN (we show results for various static values of
N ). Figure 4 shows the IPC performance through off-loading,
relative to a baseline that executes the program on a single
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Fig. 4. Normalized IPC relative to uni-processor baseline when varying the off-loading overhead and the switch trigger threshold.

core. All results use our hardware based predictor and have just
a single cycle instrumentation cost. A different graph is shown
for Apache, SPECjbb2005, Derby, and compute-intensive pro-
grams. Each graph shows a static off-loading thresholdN
on the X-axis and a different curve for various one-way off-
loading latencies. Evaluating multiple off-loading latencies is
important because they are highly implementation dependent
and can range from 5,000 cycles in current operating system
implementations, down to just a few hundred cycles in some
recent research proposals [22]. Figure 4 helps identify 3 major
trends about OS off-loading.

Off-loading latency is the dominant factor in realizing
performance gains.Performance is clearly maximized with
the lowest off-loading overhead possible. If the core migration
implementation is not efficient, it is possible that off-loading
may never be beneficial (see SPECjbb).

For any given off-loading latency, choosing the appropri-
ate switch trigger threshold N is critical. When finding the
optimal off-loading thresholdN , two factors come into play,
OS/User cache interference and cache coherence overheads.
When the OS and user application execute on a single core,
as has traditionally occurred, the working set of each is forced
to compete for space in the cache. Off-loading has the potential
to improve performance because we are effectively removing
the accesses to OS working set from the cache. Thus, user
cache hit-rates are maximized atN = 0.

The OS and application do not have completely independent
working sets – much of their memory footprint is shared. This
sharing occurs because the OS often performs operations such
as I/O on behalf of the application and places the resulting
data into the application address space. As a result, shared

data that is written, can generate substantial coherence traffic
between OS and User cores. As we move to low values forN ,
coherence traffic is also maximized because OS/User shared
data is no longer in just a single cache.

For example, Figure 4 shows that even with a zero overhead
off-loading latency, moving fromN = 100 to N = 0
substantially reduces performance. This is because the cost
of additional coherence invalidates and transfers overshadows
any improvements in cache hit-rate. Because the relationship
between coherence and cache interference can vary from ap-
plication to application, it is not possible to globally determine
the pointN at which off-loading performance is maximized. A
dynamically adjusting system utilizing performance feedback
is required.

Off-loading short OS sequences is required.We are
somewhat surprised to see that maximum performance occurs
when off-loading OS invocations as short as 100 instructions
long. This indicates that though long duration invocations
dominate the total OS instruction count, short frequent in-
vocations also have a large impact on cache interference
for some benchmarks. This implies that any software-based
decision policy that relies on OS code instrumentation must
not only consider long-running system calls, but also short-
running ones. This supports our belief that all OS entry points
must be instrumented for off-loading, and in turn, that low-
cost instrumentation, such as the hardware predictor presented
here, is necessary for OS off-loading to be successful.

B. Comparing Instrumentation and Hardware Prediction

Having studied the behavior of the hardware predictor, we
now compare our eventual hardware-based scheme against
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Fig. 5. Normalized throughput (relative to a single-core baseline) for off-
loading with static manual instrumentation and off-loading with the hardware
predictor.

existing techniques that have relied on manual software in-
strumentation. Figure 5 provides a concise view of what we
consider to be state of the art in OS off-loading. We present
normalized throughput results for an off-loading latency of
5,000 cycles (Conservative), that is currently available, as
well as 100 cycles (Aggressive) that has been proposed in
research. Static instrumentation (SI) models a low overhead
software instrumentation that uses off-line profiling to identify
and statically instrument only those OS routines that are
determined to have a run-length that is twice the off-loading
(migration) latency. SI is very similar to the technique used by
Chakraborty et al. [10]. Dynamic instrumentation (DI) models
a more complex software instrumentation of all possible OS
entry points and allows run-time decisions about the value
of off-loading. DI is very similar to the technique used by
Mogul et al. [17], but differs in that all OS entry points are
instrumented, as opposed to just those which are expected
to have a long average run length. DI is the functional
equivalent of the hardware prediction engine proposed in this
paper, but implemented entirely in software. Finally, hardware
instrumentation (HI) is the new hardware predictor based
approach described in this work.

Figure 5 indicates that previous OS off-loading proposals
were leaving substantial performance on the table by (i)
not considering short OS sequences as candidates for off-
loading, and (ii) utilizing high overhead software instrumen-
tation to make off-loading decisions. At currently achievable
off-loading latencies, our hardware based off-loading decision
policy can yield as much as 18% throughput improvement
over a baseline without off-loading, and 13% improvement
over previous software-based implementations. In the future,
with faster migration implementations, the importance of a
low overhead decision making policy will increase and our
proposal can outperform software instrumentation by as much
as 20%.

In our experiments, the single-core baseline has a single
1 MB L2 cache, while the off-loading models have two 1 MB
L2 caches. This is a faithful model of how off-loading is
expected to work in future multi-cores, and the additional
cache space is a strong contributor to the high benefit from

off-loading. It is worth noting that even an off-loading model
with two 512 KB L2 caches can out-perform the single-core
baseline with a 1 MB L2 cache if the off-loading latency is
under 1,000 cycles. Such a comparison only has academic
value however, as hardware designers are unlikely to cripple
an existing processor design to enable off-loading.

C. Scalability of Off-loading

Table III shows the percentage of benchmark execution time
that the OS core was active while running our server intensive
benchmarks with a 5,000 cycle off-loading overhead. At an
off-loading threshold ofN = 10, 000 the OS core shows low
utilization, but atN = 1000 and N = 100, the threshold
where optimal performance is found for most benchmarks,
the utilization quickly increases. This high rate of utilization
indicates that, unfortunately, it is unlikely that multiple user-
cores will be able to share a single OS core successfully.

TABLE III
PERCENTAGE OF TOTAL EXECUTION TIME SPENT ONOS-CORE USING

SELECTIVE MIGRATION BASED ON THRESHOLDN

Core Migration Threshold N
Benchmark 100 1,000 5,000 10,000+

Apache 45.75% 37.96% 17.83% 17.68%
SPECjbb2005 34.48% 33.15% 21.28% 14.79%

Derby 8.2% 5.4% 1.2% 0.2%

To test this hypothesis we evaluated the scaling of a single
OS core to two and four user cores using SPECjbb2005, under
an off-loading threshold ofN = 100 and an aggressive off-
loading overhead of 1,000 cycles. As a non-SMT core, if the
OS core is handling an off-loading request when an additional
request comes in, the new request must be stalled until the
OS core becomes free. With just two user cores, there was
an average queuing delay of 1,348 cycles in addition to the
1,000 cycle off-loading overhead. With four user cores, the
average queuing delay for the OS core exploded to over 25,000
cycles as the OS core was inundated with off-loading requests.
While L2 cache hit rates remained high in both scenarios,
our user cores were often stalled waiting for the OS off-
loading to occur. As a result, the 2:1 ratio of User to OS
cores saw only a 4.5% improvement in aggregate throughput,
and performance was decreased substantially at the 4:1 ratio.
We conclude that 1:1, or possibly 1:N, may be the appropriate
ratio of provisioning OS cores in a many-core system.

VI. RELATED WORK

A. Impact of OS on System Throughput

There have been many studies on how operating system
overhead affects the throughput of user applications (the
eventual metric of interest). Gloy et al. [11], Anderson et
al. [4], and Agarwal et al. [2] have shown that operating
system execution generates memory references that negatively
impact the performance of traditional memory hierarchies.
Redstone et al. [21] and Nellans et al. [19] have shown that
there are important classes of applications, namely webservers,
databases, and display intensive applications for which the OS
can contribute more than half the total instructions executed.

19



Nellans et al. [19] and Li et al. [15] show OS execution
under-performs user applications by 3-5x on modern out-of-
order processors and suggest that OS code can be run on less
aggressively designed processors to improve energy efficiency.

B. Hardware Support for Efficient OS Execution

Several groups have proposed that a class of OS intensive
workloads combined with the proliferation of chip multipro-
cessors has led us to an architectural inflection point, where
off-loading operating system execution may be beneficial for
both performance and power efficiency. As already described,
Chakraborty et al. [10] have proposed that some system calls
should be selectively migrated to and executed on an alternate,
homogeneous core within a CMP. This results in better cache
locality in all cores, yielding higher server throughput without
requiring additional transistors.

Mogul et al. [17] recently proposed that some OS system
calls should selectively be migrated to and executed on a mi-
croprocessor with a less aggressive microarchitecture. OS code
does not leverage aggressive speculation and deep pipelines,
so the power required to implement these features results in
little performance advantage. While system calls are executing
on the low-power OS core, the aggressively designed user
core can enter a low-power state. When the OS routine has
completed execution, the user core is powered back up and
execution returns to the high performance user core while
the OS core enters low-power state. This migration of OS
execution to an energy-efficient core results in overall lower
energy for the system.

Li et al. [15] take a slightly different approach to OS
execution than other proposals. They propose that rather than
implementing a secondary processor, existing uni-processors
should be augmented so that aggressive out-of-order features
can be throttled in the microarchitecture. By limiting the
instruction window and issue width, they are able to save
power during operating system execution. Similar to previous
proposals, they still must identify the appropriate opportunities
for microarchitectural reconfiguration to occur. Identification
of reconfiguration opportunities has many of the same steps
as off-loading identification. We believe our hardware-based
decision engine could be utilized effectively for the type of
reconfiguration proposed by Li et al.

VII. C ONCLUSIONS

Off-load of OS functionality has promise in future multi-
cores because it can afford better cache utilization and energy
efficiency. While it has traditionally been assumed that off-
loading only makes sense for long OS executions, we show
that the off-load of short sequences also contributes greatly to
reduced cache interference. Prior work has implemented off-
loading with profile-guided software instrumentation. We show
that such an approach is burdensome, incurs high overheads
(especially when off-loading short sequences), and is often
inaccurate. All of these problems are addressed by instead
implementing a hardware tunable predictor that estimates the
length of OS sequences and off-loads upon expected benefit.

The predictor has a storage overhead of only 2 KB and out-
performs the best instrumentation policy by 13%. For future
work, we plan to study the applicability of the predictor for
OS energy optimizations.
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