Variance Optimal Hedging for discrete time processes with independent increments. Application to Electricity Markets

Stéphane Goutte 1 Nadia Oudjane 1, 2 Francesco Russo 3, 4, *
* Auteur correspondant
3 MATHFI - Financial mathematics
Inria Paris-Rocquencourt, ENPC - École des Ponts ParisTech, UPEC UP12 - Université Paris-Est Créteil Val-de-Marne - Paris 12
Abstract : We consider the discretized version of a (continuous-time) two-factor model introduced by Benth and coauthors for the electricity markets. For this model, the underlying is the exponent of a sum of independent random variables. We provide and test an algorithm, which is based on the celebrated Foellmer-Schweizer decomposition for solving the mean-variance hedging problem. In particular, we establish that decomposition explicitely, for a large class of vanilla contingent claims. Interest is devoted in the choice of rebalancing dates and its impact on the hedging error, regarding the payoff regularity and the non stationarity of the log-price process.
Type de document :
Pré-publication, Document de travail
2012
Liste complète des métadonnées

https://hal.inria.fr/inria-00473032
Contributeur : Francesco Russo <>
Soumis le : jeudi 17 mai 2012 - 23:28:32
Dernière modification le : jeudi 5 janvier 2017 - 01:53:23
Document(s) archivé(s) le : samedi 18 août 2012 - 02:25:24

Fichiers

GoutteOudjaneRussoJCFOct11.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00473032, version 2
  • ARXIV : 1205.4089

Citation

Stéphane Goutte, Nadia Oudjane, Francesco Russo. Variance Optimal Hedging for discrete time processes with independent increments. Application to Electricity Markets. 2012. 〈inria-00473032v2〉

Partager

Métriques

Consultations de
la notice

371

Téléchargements du document

187