Real-Parameter Black-Box Optimization Benchmarking 2010: Experimental Setup
Nikolaus Hansen, Anne Auger, Steffen Finck, Raymond Ros

To cite this version:

HAL Id: inria-00462481
https://hal.inria.fr/inria-00462481
Submitted on 9 Mar 2010
Real-Parameter Black-Box Optimization Benchmarking 2010: Experimental Setup

Nikolaus Hansen — Anne Auger — Steffen Finck — Raymond Ros

N° 7215
March 2010

Thème COG
Real-Parameter Black-Box Optimization Benchmarking 2010: Experimental Setup

Nikolaus Hansen†, Anne Auger‡, Steffen Finck§, Raymond Ros¶

Thème COG — Systèmes cognitifs
Équipes-Projets Adaptive Combinatorial Search et TAO

Rapport de recherche n° 7215 — March 2010 — 19 pages

Abstract: Quantifying and comparing performance of optimization algorithms is one important aspect of research in search and optimization. However, this task turns out to be tedious and difficult to realize even in the single-objective case – at least if one is willing to accomplish it in a scientifically decent and rigorous way. The COCO platform furnishes most of this tedious task for the experimenter: (1) choice and implementation of a well-motivated single-objective benchmark function testbed, (2) design of an experimental set-up, (3) generation of data output for (4) post-processing and presentation of the results in graphs and tables. In this report, the experimental procedure for the BBOB-2010 benchmarking workshop and data formats are thoroughly defined and motivated, and the data presentation is touched on.

Key-words: optimization, evolutionary algorithms, benchmarking, black-box

* This report is based to a large extent on the INRIA research report RR-6828
† NH is with the TAO Team of INRIA Saclay–Île-de-France at the LRI, Université-Paris Sud, 91405 Orsay cedex, France
‡ AA is with the TAO Team of INRIA Saclay–Île-de-France at the LRI, Université-Paris Sud, 91405 Orsay cedex, France
§ SF is with the Research Center PPE, University of Applied Science Vorarlberg, Hochschulstrasse 1, 6850 Dornbirn, Austria
¶ RR is with the TAO Team of INRIA Saclay–Île-de-France at the LRI, Université-Paris Sud, 91405 Orsay cedex, France
No French Title

Résumé : Pas de résumé

Mots-clés : Pas de motclef
Contents

1 Introduction ................................................. 4
   1.1 Symbols, Constants, and Parameters ................. 4

2 Benchmarking Experiment .................................. 4
   2.1 Input to the Algorithm and Initialization ............ 4
   2.2 Termination Criteria and Restarts .................... 6

3 Time Complexity Experiment .............................. 6

4 Parameter setting and tuning of algorithms .......... 7

5 Data to Provide ........................................... 8

6 Post-Processing and Data Presentation ................. 8
   6.1 Processing the data ..................................... 9
   6.2 Compiling a \LaTeX document .......................... 9

A Example Optimizer with Multistarts .................... 11

B How to Resume an Experiment .............................. 11

C Rationales Behind the Parameter Settings ............. 13
   Rationale for the choice of $N_{\text{trial}} = 15$ (see also Section 2.2) 13
   Rationale for the choice of $f_{\text{target}}$ .................... 13

D Rationale Behind the Data Presentation ................. 13
   D.1 Performance Measure: Expected Running Time ........ 13
   D.2 Bootstrapping .......................................... 14
   D.3 Fixed-Cost versus Fixed-Target Scenario ............ 14
   D.4 Empirical Cumulative Distribution Functions ........ 15

E Data and File Formats ..................................... 16
   E.1 Introduction ............................................ 16
   E.2 General Settings ....................................... 17
   E.3 Output Files ............................................ 17
      E.3.1 Index File ........................................... 17
      E.3.2 Data Files .......................................... 18
1 Introduction

This document describes the experimental setup and the data presentation for BBOB-2010. The definition of the benchmark functions and the technical documentation for the provided software are accessible at http://coco.gforge.inria.fr/doku.php?id=bbob-2010.

1.1 Symbols, Constants, and Parameters

$\Delta f$: precision to reach, that is, a difference to the smallest possible function value $f_{opt}$.

$f_{opt}$: optimal function value, defined for each benchmark function individually

$f_{target} = f_{opt} + \Delta f$: target function value to reach. The final, smallest considered target function value is $f_{target} = f_{opt} + 10^{-8}$, but also larger values for $f_{target}$ are evaluated.

$N_{trial} = 15$ is the number of trials for each single setup, i.e. each function and dimensionality (see also Appendix C). A different function instance is used in each trial. Performance is evaluated over all $N_{trial}$ trials.

$D = 2; 3; 5; 10; 20; 40$ search space dimensionalities used for all functions. Dimensionality 40 is optional and can be omitted.

2 Benchmarking Experiment

The real-parameter search algorithm under consideration is run on a testbed of benchmark functions to be minimized (the implementation of the functions is provided in C, Java, and MATLAB/Octave). On each function and for each dimensionality $N_{trial}$ trials are carried out (see also Appendix C). Different function instances are used (the instantiation numbers 1, ..., 15). A MATLAB example script for this procedure is given in Figure 1 (similar scripts are provided in C and Java). The algorithm is run on all functions of the testbed under consideration.

2.1 Input to the Algorithm and Initialization

An algorithm can use the following input.

1. the search space dimensionality $D$

2. the search domain; all functions are defined everywhere in $\mathbb{R}^D$ and have their global optimum in $[-5, 5]^D$. Most functions have their global optimum in $[-4, 4]^D$ which can be a reasonable setting for initial solutions.

3. indication of the testbed under consideration, i.e. different algorithms and/or parameter settings might well be used for the noise-free and the noisy testbed

4. the function value difference $\Delta f = 10^{-8}$ (final target precision), in order to implement effective termination mechanisms (which should also prevent early termination)
Figure 1: exampleexperiment.m: example for benchmarking MY_OPTIMIZER on the noise-free function testbed in MATLAB/Octave. An example for the function MY_OPTIMIZER is given in Appendix A. Similar code is available in C and Java

% runs an entire experiment for benchmarking MY_OPTIMIZER
% on the noise-free testbed. fgeneric.m and benchmarks.m
% must be in the path of Matlab/Octave
% CAPITALIZATION indicates code adaptations to be made

addpath('PUT_PATH_TO_BBOB/matlab'); % should point to fgeneric.m etc.
datapath = 'PUT_MY_BBOB_DATA_PATH'; % different folder for each experiment
opt.algName = 'PUT ALGORITHM NAME';
opt.comments = 'PUT MORE DETAILED INFORMATION, PARAMETER SETTINGS ETC';
maxfunevals = '10 * dim'; % 10*dim is a short test-experiment taking a few minutes
% INCREMENT maxfunevals successively to larger value(s)
minfunevals = 'dim + 2'; % PUT MINIMAL SENSIBLE NUMBER OF EVALUATIONS for a restart
maxrestarts = 1e4; % SET to zero for an entirely deterministic algorithm

more off; % in octave pagination is on by default

t0 = clock;
rand('state', sum(100 * t0));

for dim = [2,3,5,10,20,40] % small dimensions first, for CPU reasons
  for ifun = benchmarks('FunctionIndices') % or benchmarksnoisy(...) 
    for iinstance = [1:15] % first 15 function instances 
      fgeneric('initialize', ifun, iinstance, datapath, opt);

      % independent restarts until maxfunevals or ftarget is reached
      for restarts = 0:maxrestarts
        MY_OPTIMIZER('fgeneric', dim, fgeneric('ftarget'), ... 
          eval(maxfunevals) - fgeneric('evaluations'));
        if fgeneric('fbest') < fgeneric('ftarget') || ... 
          fgeneric('evaluations') + eval(minfunevals) > eval(maxfunevals)
          break;
        end
      end

      disp(sprintf([' f%d in %d-D, instance %d: FEs=%d with %d restarts,' ... 
        ' fbest-ftarget=%.4e, elapsed time [h]: %.2f', ... 
        ifun, dim, iinstance, ... 
        fgeneric('evaluations'), ... 
        restarts, ... 
        fgeneric('fbest') - fgeneric('ftarget'), ... 
        etime(clock, t0)/60/60)));

      fgeneric('finalize');
    end
    disp(sprintf('---- dimension %d-D done ----', dim));
end

RR n° 7215
5. the target function value \( f_{\text{target}} \) is provided for conclusive termination of trials, in order to reduce the overall CPU requirements. The target function value is not intended to be utilized as algorithm input otherwise.

Based on these input parameters, the parameter setting and initialization of the algorithm is entirely left to the participants. As a consequence, the setting shall be identical for all benchmark functions of one testbed (the function identifier or any known characteristics of the function are not meant to be input to the algorithm, see also Section 4).

### 2.2 Termination Criteria and Restarts

Algorithms with any budget of function evaluations, small or large, are considered in the analysis of the results. Exploiting a larger number of function evaluations increases the chance to achieve better function values or even to solve the function up to the final \( f_{\text{target}} \). In any case, a trial can be conclusively terminated if \( f_{\text{target}} \) is reached. Otherwise, the choice of termination is a relevant part of the algorithm: the termination of unsuccessful trials affects the performance in BBOB-2010. To exploit a large number of function evaluations effectively, we suggest considering a multistart procedure, which relies on an interim termination of the algorithm.

Independent restarts, as implemented in Figure 1, do not change the main performance measure expected running time (ERT, see Appendix D.1). Independent restarts mainly improve the reliability and “visibility” of the measured value. For example, using a fast algorithm with a small success probability, say 5% (or 1%), chances are that not a single of 15 trials is successful. With 10 (or 90) independent restarts, the success probability will increase to 40% and the performance of (here out of 15) are desirable to accomplish a stable performance measurement. This reasoning remains valid for any target function value (different values will be considered in the evaluation).

Restarts either from a previous solution, or with a different parameter setup, for example with different (increasing) population size, might be considered as well, as it has been applied quite successfully [2, 6]. Choosing different setups mimics what might be done in practice. All restart mechanisms are finally considered as part of the algorithm under consideration.

### 3 Time Complexity Experiment

In order to get a rough measurement of the time complexity of the algorithm, the overall CPU time is measured when running the algorithm on \( f_8 \) (Rosenbrock function) for at least a few tens of seconds (and at least a few iterations). The chosen setup should reflect a “realistic average scenario”. If another termination criterion is reached, the algorithm is restarted (like for a new trial). The CPU-time per function evaluation is reported for each dimension. The time complexity experiment is conducted in the same dimensions as the benchmarking experiment. The chosen setup, coding language, compiler and computational architecture for conducting these experiments are described. Figure 2 shows a

\[ f_{\text{target}} = f_{\text{opt}} + 10^{-8} \]
Figure 2: exampletiming.m: example for measuring the time complexity of MY_OPTIMIZER given in MATLAB/Octave. An example for MY_OPTIMIZER is given in Appendix A

% runs the timing experiment for MY_OPTIMIZER. fgeneric.m % and benchmarks.m must be in the path of MATLAB/Octave

addpath('PUT_PATH_TO_BBOB/matlab'); % should point to fgeneric.m etc.
more off; % in octave pagination is on by default

timings = []; runs = []; dims = [];
for dim = [2,3,5,10,20,40]
    nbrun = 0;
    ftarget = fgeneric('initialize', 8, 1, 'tmp');
    tic;
    while toc < 30 % at least 30 seconds
        MY_OPTIMIZER(@fgeneric, dim, ftarget, 1e5); % adjust maxfunevals
        nbrun = nbrun + 1;
    end % while
    timings(end+1) = toc / fgeneric('evaluations');
    dims(end+1) = dim; % not really needed
    runs(end+1) = nbrun; % not really needed
    disp([['Dimensions:' sprintf(' %11d ', dims)]; ...
        [' runs:' sprintf(' %11d ', runs)]; ...
        [' times [s]:' sprintf(' %11.1e ', timings)]]);
end

respective MATLAB/Octave code example. For CPU-inexpensive algorithms
the timing might mainly reflect the time spent in function fgeneric.

4 Parameter setting and tuning of algorithms

The algorithm and the used parameter setting for the algorithm should be
described thoroughly. Any tuning of parameters to the testbed should be
described and the approximate number of tested parameter settings should be
given. Whether or not all functions were approached with the very same pa-
rameter setting (which might well depend on the dimensionality, see Section 2.1)
should be stated clearly and the crafting effort should be given for each dimen-
sion (see below). The crafting effort is zero, if the setting was identical for all
functions.

In general, we strongly discourage the a priori use of function-dependent
parameter settings (crafting effort larger than zero). In other words, we do
not consider the function ID or any function characteristics (like separability,
multi-modality, . . . ) as input parameter to the algorithm (see also Section 2.1).
Instead, we encourage benchmarking different parameter settings as “different
algorithms” on the entire testbed. In order to combine different parameter settings, one might use either multiple runs with different parameters (for example restarts, see also Section 2.2), or use (other) probing techniques for identifying function-wise the appropriate parameters online. The underlying assumption in this experimental setup is that also in practice we do not know in advance whether the algorithm will face \( f_1 \) or \( f_2 \), a unimodal or a multimodal function... therefore we cannot adjust algorithm parameters \textit{a priori}^2.

In case that, nevertheless, in one dimension \( K > 1 \) different parameter settings were used, the procedure of how to come up with the different settings should be explained. The settings and the functions, where they were used, should be given together with the entropy measure crafting effort (see also [5, 8]^3) for each dimensionality \( D \):

\[
\text{CrE} = - \sum_{k=1}^{K} \frac{n_k}{n} \ln \left( \frac{n_k}{n} \right)
\]  

where \( n = \sum_{k=1}^{K} n_k \) is the number of functions in the testbed and \( n_k \) is the number of functions, where the parameter setting with index \( k \) was used, for \( k = 1, \ldots, K \). When a single parameter setting was used for all functions, as recommended, the crafting effort is \( \text{CrE} = \sum_{k=1}^{1} \frac{n_k}{n} \ln \left( \frac{n_k}{n} \right) = 0.\)

5 Data to Provide

The provided implementations of the benchmark functions generate data for reporting and analysis. Since one goal is the comparison of different algorithms, the data from the experiments shall be submitted to \texttt{http://coco.gforge.inria.fr/doku.php?id=bbob-2010}. All submitted data will be made available to the public.

6 Post-Processing and Data Presentation

Python scripts are provided to produce tables and figures reporting the outcome of the benchmarking experiment that can be compiled into a paper in the following way. A more detailed description of the post-processing software is accessible at \texttt{http://coco.gforge.inria.fr/doku.php?id=bbob-2010-downloads}.

\textsuperscript{2}In contrast to most other function properties, the property of having noise can usually be verified easily. Therefore, for noisy functions a second testbed has been defined. The two testbeds can be approached \textit{a priori} with different parameter settings or different algorithms.

\textsuperscript{3}Our definition differs from [5, 8] in that it is independent of the number of adjusted parameters. Only the number of used different settings is relevant.

\textsuperscript{4}We give another example: say, in 5-D all functions were optimized with the same parameter setting. In 10-D the first 14 functions were approached with one parameter setting and the remaining 10 functions with a second one (no matter how many parameters were changed). In 20-D the first 10 functions were optimized with one parameter setting, functions 11–13 and functions 23–24 were optimized with a second setting, and the remaining 9 functions 14–22 were optimized with a third setting. The crafting effort computes independently for each dimension in 5-D to \( \text{CrE}_5 = 0 \), in 10-D to \( \text{CrE}_{10} = - \left( \frac{14}{24} \ln \frac{14}{24} + \frac{10}{24} \ln \frac{10}{24} \right) \approx 0.679 \), and in 20-D to \( \text{CrE}_{20} = - \left( \frac{14}{24} \ln \frac{14}{24} + \frac{5}{24} \ln \frac{5}{24} + \frac{9}{24} \ln \frac{9}{24} \right) \approx 1.06 \).

\textsuperscript{5}\textsuperscript{5}
6.1 Processing the data

**Single Algorithm** Given the output data from an experiment are in the folder `mydata` of the current directory\(^5\), the command line\(^6\)

\[
\text{python path_to_postproc_code_folder/bbob_pproc/run.py mydata}
\]

creates the folder `ppdata` in the working directory containing figures and tables.

**Comparison of Two Algorithms** Let the output data from two experiments with two different algorithms be in the folders `mydata0` and `mydata1` respectively for the algorithms ALG0 and ALG1.

\[
\text{python path_to_postproc_code/bbob_pproc/runcomp2.py mydata0 mydata1}
\]

generates the folder `cmp2data` containing the comparison figures and tables\(^7\). The data are displayed in this fashion: `mydata1` (the second argument) is for the data of the “algorithm under consideration” or “algorithm of interest”, while `mydata0` (first argument) is for the data of the “algorithm to compare with”.

6.2 Compiling a \LaTeX{} document

Finally, the paper template is compiled by one of the commands

```
latex templateBBOBarticle
latex templateBBOBarticletwo
latex templateBBOBnoisyarticle
latex templateBBOBnoisyarticletwo
```

that uses tables and figures from `ppdata` or `cmp2data`, respectively. (Using `pdflatex` is not recommended as it might result in large file sizes and rather poor graphics. Use `dvipdf` to create a pdf instead). The folder `ppdata` or `cmp2data`, the respective `.tex` file and the file `sig-alternate.cls` (ACM SIG proceedings template) have to be in the working directory. Compiled examples are accessible at `http://coco.gforge.inria.fr/doku.php?id=bbob-2010`.

Acknowledgments

The authors would like to thank Petr Pošůk and Arnold Neumaier for the inspiring and helpful discussion. Steffen Finck was supported by the Austrian Science Fund (FWF) under grant P19069-N18.

\(^5\)The data can be distributed over several folders. In this case several folders are given as trailing arguments.

\(^6\) Under Windows the path separator `\` instead of `/` must be used in the command line. Python 2.5 or 2.6, Numpy, and Matplotlib must be installed. For higher Python versions, e.g. 3.0 or 3.1, the necessary libraries are not (yet) available and the code could not be verified. Python 2.5 and 2.6, Numpy and Matplotlib are freely available on all platforms. Python can be downloaded from `http://www.python.org/download/releases/`, Numpy from `http://numpy.scipy.org` and Matplotlib from `http://matplotlib.sourceforge.net`.

\(^7\) The same can be accomplished within a Python shell by typing “\begin{verbatim} from bbob_pproc import runcomp2; bbob_pproc.runcomp2.main(\texttt{\textquotesingle mydata0 mydata1\textquotesingle.split()}) \end{verbatim}”. The first command requires that the path to the package `bbob_pproc` is in the Python search path.
References


APPENDIX

A Example Optimizer with Multistarts

The optimizer used in Fig. 1 and 2 is given in Fig. 3.

B How to Resume an Experiment

We give a short description of how to cleanly resume an experiment that was aborted before its completion.

1. Find the last modified .info file (see Appendix E). Function number and dimension, where the experiment was aborted, are given in the third to last line of the file. For example:

   \[
   \begin{align*}
   \text{funcId} & = 13, \quad \text{DIM} = 40, \quad \text{Precision} = 1.000e-08, \quad \text{algId} = \text{'my optimizer'} \\
   & \% \text{all default parameters} \\
   & \text{data}_\text{f13}/\text{bbobexp}_\text{f13}_\text{DIM40}.\text{dat}, \quad 1:5387|-4.4e-09, \quad 2:5147|-3.9e-09, \quad 3
   \end{align*}
   \]

   The last line points to the written data file and the last number in the last line contains the function instance number of the unfinished trial (see also Appendix E).

   Now, there are two options: either restarting by rerunning all experiments for \( f_{13} \) in 40-D, or restarting from the very instance 3, which is more involved.

   **Option 1 (rerun the complete “line” in info file)**

   2. (optional) delete the respective two(!) data files, in our example

   \[
   \begin{align*}
   \text{data}_\text{f13}/\text{bbobexp}_\text{f13}_\text{DIM40}.\text{dat} \\
   \text{data}_\text{f13}/\text{bbobexp}_\text{f13}_\text{DIM40}.\text{tdat}
   \end{align*}
   \]

   3. delete the last three lines in the info file

   4. modify your experiment script (see e.g. Fig. 1) to restart with the respective function and dimension, here \( f_{13} \) in 40-D

   **Option 2 (rerun from the broken trial)**

   2. remove the last characters, in the above example, “, 3” from the last line of the info file. If the first entry is already the unfinished one, refer to Option 1.

   3. remove the respective data of the unfinished last trial in both data files, .dat and .tdat, in our example

   \[
   \begin{align*}
   \text{data}_\text{f13}/\text{bbobexp}_\text{f13}_\text{DIM40}.\text{dat} \\
   \text{data}_\text{f13}/\text{bbobexp}_\text{f13}_\text{DIM40}.\text{tdat}
   \end{align*}
   \]

   4. modify your experiment script to restart your experiment from this very function instance (which can be a bit tricky).
Figure 3: Example optimizer used in Fig. 1 and 2

```matlab
function [x, ilaunch] = MY_OPTIMIZER(FUN, DIM, ftarget, maxfunevals)
% minimizes FUN in DIM dimensions by multistarts of fminsearch.
% ftarget and maxfunevals are additional external termination conditions,
% where at most 2 * maxfunevals function evaluations are conducted.
% fminsearch was modified to take as input variable usual_delta to
% generate the first simplex.

% set options, make sure we always terminate
% with restarts up to 2*maxfunevals are allowed
options = optimset('MaxFunEvals', min(1e8*DIM, maxfunevals), ... 'MaxIter', 2e3*DIM, ...
                   'Tolfun', 1e-11, ...
                   'TolX', 1e-11, ...
                   'OutputFcn', @callback, ...
                   'Display', 'off');

% set initial conditions
xstart = 8 * rand(DIM, 1) - 4; % random start solution
usual_delta = 2;
% refining multistarts
for ilaunch = 1:1e4; % up to 1e4 times
    x = fminsearch_mod(FUN, xstart, usual_delta, options);
    % terminate if ftarget or maxfunevals reached
    if feval(FUN, 'fbest') < ftarget || ...
       feval(FUN, 'evaluations') >= maxfunevals
        break;
    end
    % terminate with some probability
    if rand(1,1) > 0.90/sqrt(ilaunch)
        break;
    end
    xstart = x; % try to improve found solution
    usual_delta = 0.1 * 0.1^rand(1,1); % with small "radius"
    % if useful, modify more options here for next launch
end

function stop = callback(x, optimValues, state)
    stop = false;
    if optimValues.fval < ftarget
        stop = true;
    end
end % function callback
```

INRIA
C Rationale Behind the Parameter Settings

Rationale for the choice of $N_{\text{trial}} = 15$ (see also Section 2.2) Parameter $N_{\text{trial}}$ determines the minimal measurable success rate and influences the overall necessary CPU time. Compared to a standard setup for testing stochastic search procedures, we have chosen a small value for $N_{\text{trial}}$. Consequently, within the same CPU-time budget, single trials can be longer and conduct more function evaluations (until $f_{\text{target}}$ is reached). If the algorithm terminates before $f_{\text{target}}$ is reached, longer trials can be trivially achieved by independent multistarts as implemented in Figure 1, which indeed resemble a larger number of trials. Because these multistarts are conducted within each trial, more sophisticated restart strategies are feasible. Finally, 15 trials are sufficient to make relevant performance differences statistically significant.

Rationale for the choice of $f_{\text{target}}$ The initial search domain and the target function value are an essential part of the benchmark function definition. Different target function values might lead to a different characteristics of the problem to be solved, besides that larger target values are invariably less difficult to reach. Functions might be easy to solve up to a function value of 1 and become intricate for smaller target values. The actually chosen value for the final $f_{\text{target}}$ is somewhat arbitrary and reasonable values would change by simple modifications in the function definition. The performance evaluation will consider a wide range of different target function values to reach, all being larger or equal to the final $f_{\text{target}} = f_{\text{opt}} + 10^{-8}$.

D Rationale Behind the Data Presentation

D.1 Performance Measure: Expected Running Time

We advocate performance measures that are

- quantitative, ideally with a ratio scale (opposed to interval or ordinal scale) and with a wide variation (i.e. for example with values ranging not only between 0.98 and 1)
- well-interpretable, in particular by having a meaning and semantics attached to the number
- relevant with respect to the “real world”
- as simple as possible

For these reasons we use the expected running time (ERT, introduced in [8] as ENES and analyzed in [1] as success performance) as most prominent performance measure, more precisely, the expected number of function evaluations to reach a target function value for the first time. For a non-zero success rate $p_s$, the ERT computes to

\[ \text{ERT} = \frac{1}{p_s} \]

If the number of trials is chosen much larger, even tiny, irrelevant performance differences become statistically significant.

ERT(\(f_{\text{target}}\)) = \(RT_S + \frac{1 - p_s}{p_s} RT_{US}\)  
\[\text{(2)}\]
\[\begin{align*}
= & \quad p_s RT_S + (1 - p_s) RT_{US} \\
= & \quad \frac{\#FEs(f_{\text{best}} \geq f_{\text{target}})}{\#\text{succ}} \\
\text{(3)}
\end{align*}\]
\[\text{(4)}\]
where the running times \(RT_S\) and \(RT_{US}\) denote the average number of function evaluations for successful and unsuccessful trials, respectively (zero for none respective trial), and \(p_s\) denotes the fraction of successful trials. Successful trials are those that reached \(f_{\text{target}}\) and evaluations after \(f_{\text{target}}\) was reached are disregarded. The \#FEs(\(f_{\text{best}} \geq f_{\text{target}}\)) is the number of function evaluations conducted in all trials, while the best function value was not smaller than \(f_{\text{target}}\) during the trial, i.e. the sum over all trials of
\[\max\{\text{FE s.t. } f_{\text{best}}(\text{FE}) \geq f_{\text{target}}\} .\]
The \#\text{succ} denotes the number of successful trials. ERT estimates the expected running time to reach \(f_{\text{target}}\) [1], as a function of \(f_{\text{target}}\). In particular, \(RT_S\) and \(p_s\) depend on the \(f_{\text{target}}\) value. Whenever not all trials were successful, ERT also depends (strongly) on the termination criteria of the algorithm.

D.2 Bootstrapping

The ERT computes a single measurement from a data sample set (in our case from \(N\) trial optimization runs). Bootstrapping [4] can provide a dispersion measure for this aggregated measurement: here, a “single data sample” is derived from the original data by repeatedly drawing single trials with replacement until a successful trial is drawn. The running time of the single sample is computed as the sum of function evaluations in the drawn trials (for the last trial up to where the target function value was reached) [1, 3]. The distribution of the bootstrapped running times is, besides its displacement, a good approximation of the true distribution. We provide some percentiles of the bootstrapped distribution.

D.3 Fixed-Cost versus Fixed-Target Scenario

Two different approaches for collecting data and making measurements from experiments are schematically depicted in Figure 4.

**Fixed-cost scenario (vertical cuts).** Fixing a number of function evaluations (this corresponds to fixing a cost) and measuring the function values reached for this given number of function evaluations. Fixing search costs can be pictured as drawing a vertical line on the convergence graphs (see Figure 4 where the line is depicted in red).

**Fixed-target scenario (horizontal cuts).** Fixing a target function value and measuring the number of function evaluations needed to reach this target function value. Fixing a target can be pictured as drawing a horizontal line in the convergence graphs (Figure 4 where the line is depicted in blue).
Figure 4: Illustration of fixed-cost view (vertical cuts) and fixed-target view (horizontal cuts). Black lines depict the best function value plotted versus number of function evaluations.

It is often argued that the fixed-cost approach is close to what is needed for real world applications where the total number of function evaluations is limited. On the other hand, also a minimum target requirement needs to be achieved in real world applications, for example, getting (noticeably) better than the currently available best solution or than a competitor.

For benchmarking algorithms we prefer the fixed-target scenario over the fixed-cost scenario since it gives quantitative and interpretable data: the fixed-target scenario (horizontal cut) measures a time needed to reach a target function value and allows therefore conclusions of the type: Algorithm A is two/ten/hundred times faster than Algorithm B in solving this problem (i.e. reaching the given target function value). The fixed-cost scenario (vertical cut) does not give quantitatively interpretable data: there is no interpretable meaning to the fact that Algorithm A reaches a function value that is two/ten/hundred times smaller than the one reached by Algorithm B, mainly because there is no a priori evidence how much more difficult it is to reach a function value that is two/ten/hundred times smaller. Furthermore, for algorithms invariant under transformations of the function value (for example order-preserving transformations for algorithms based on comparisons like DE, ES, PSO), fixed-target measures can be made invariant to these transformations by simply transforming the chosen target function value while for fixed-cost measures all resulting data need to be transformed.

D.4 Empirical Cumulative Distribution Functions

We exploit the “horizontal and vertical” viewpoints introduced in the last Section D.3. In Figure 5 we plot the empirical cumulative distribution function (ECDF) of the intersection point values (stars in Figure 4). A cutting line in Figure 4 corresponds to a “data” line in Figure 5, where 450 (30 × 15) convergence graphs are evaluated. For example, the thick red graph in Figure 5

---

10 The empirical (cumulative) distribution function $F : \mathbb{R} \rightarrow [0,1]$ is defined for a given set of real-valued data $S$, such that $F(x)$ equals the fraction of elements in $S$ which are smaller than $x$. The function $F$ is monotonous and a lossless representation of the (unordered) set $S$. 
Figure 5: Illustration of empirical (cumulative) distribution functions (ECDF) of running length (left) and precision (right) arising respectively from the fixed-target and the fixed-cost scenarios in Fig. 4. In each graph the data of 450 trials are shown. Left subplot: ECDF of the running time (number of function evaluations), divided by search space dimension $D$, to fall below $f_{opt} + \Delta f$ with $\Delta f = 10^k$, where $k = 1, -1, -4, -8$ is the first value in the legend. Data for algorithms submitted for BBOB 2009 and $\Delta f = 10^{-8}$ are represented in the background in light brown. Right subplot: ECDF of the best achieved precision $\Delta f$ divided by $10^k$ (thick red and upper left lines in continuation of the left subplot), and best achieved precision divided by $10^{-8}$ for running times of $D, 10D, 100D, 1000D, \ldots$ function evaluations (from the rightmost line to the left cycling through black-cyan-magenta-black).

shows on the left the distribution of the running length (number of function evaluations) [7] for reaching precision $\Delta f = 10^{-8}$ (horizontal cut). The graph continues on the right as a vertical cut for the maximum number of function evaluations, showing the distribution of the best achieved $\Delta f$ values, divided by $10^{-8}$. Run length distributions are shown for different target precisions $\Delta f$ on the left (by moving the horizontal cutting line up- or downwards). Precision distributions are shown for different fixed number of function evaluations on the right. Graphs never cross each other. The $y$-value at the transition between left and right subplot corresponds to the success probability. In the example, just under 50% for precision $10^{-8}$ (thick red) and just above 70% for precision $10^{-1}$ (cyan).

E Data and File Formats

E.1 Introduction

This section specifies the format for the output data files and the content of the files, as they are written by the provided benchmark functions implementations. The goal is to obtain format-identical files which can be analyzed with the provided post-processing tools. The first section explains the general settings. Afterwards the format for the different output files will be given in detail and with examples.


Figure 6: Example data file structures obtained with the BBOB experiment software.

E.2 General Settings

The output from \texttt{Ntrial} optimization runs for a given function-dimension pair is written in a folder which path is decided by the user and consists of at least one index file and at least two data files. The output files contain all necessary data for post-processing. The extensions are ‘*.info’ for the index file and ‘*.dat’, ‘*.tdat’ for the data files. An example of the folder/file structure can be found in Fig 6. After performing all simulations, the user can use the data files with the provided post-processing tool to obtain \LaTeX files, including tables and figures of the results.

E.3 Output Files

E.3.1 Index File

The index file contains meta information on the optimization runs and the location of the corresponding data files. The user is free to choose any prefix for the index file name. The function identifier will be appended to it and the extension will be ‘.info’. The contents of the index file are the concatenation of 3-line index entries (output format is specified in brackets):

- 1st line - function identifier (%d), search space dimension (%d), precision to reach (%4.3e) and the identifier of the used algorithm (%s)
- 2nd line - comments of the user (e.g. important parameter or used internal methods)
- 3rd line - relative location and name of data file(s) followed by a colon and information on a single run: the instance of the test function, final
number of function evaluations, a vertical bar and the final best function
value minus target function value.

All entries in the 1st line and the 3rd line are separated by commas.

For each function-dimension pair the provided data-writing tools generate
one index file with the respective entries. All index files have to be included in
the archive for the submission and will contain the relative location of the data
files within the archive. Thus, it is necessary to archive all files in the same
folder-subfolder structure as obtained. An example of an index file is given in
Fig 7. An entry of the index file is written at the start of the first sample run

\texttt{funcId = 12, DIM = 5, Precision = 1.000e-08, algId = 'ALG-A'}
\texttt{\% parameterA = 2, parameterB = 3.34, ...}
\texttt{data\_f12\_test\_f12\_DIM5.dat, 1:387 | -2.9e-009, 2:450 | -2.8e-009, 3:422 | -2.1e-009, data\_f12\_test-01\_DIM5.dat, 1:500000 | 1.8e-008, ...}

\texttt{funcId = 12, DIM = 10, Precision = 1.000e-08, algId = 'ALG-A'}
\texttt{\% parameterA = 2, parameterB = 3.34, ...}
\texttt{data\_f12\_test1\_DIM10.dat, 1:307 | -8.6e-008, 2:321 | -3.5e-008, ...}

Figure 7: Example of an index file

for a given function and dimension.

\textbf{E.3.2 Data Files}

A data file contains the numerical output of an optimization run on a given
objective function. The content of the data file is given in the following. Data
files will be placed in subfolders at the location of their corresponding index
file. At the start of each sample run the header for the data file is written. The
header is one line with the titles for each data column:

- function evaluation
- noise-free fitness - \textit{F} opt (and its value)
- best noise-free fitness - \textit{F} opt
- measured fitness
- best measured fitness
- x1, x2, ... (one column for each dimension)

\textit{F} op t is the optimum of the test function considered. In the header, each of these
entries are separated by the \texttt{-} symbol. Each data line in the data file contains
the following information:

- 1st column - recent number of function evaluation in format \texttt{%d}
- 2nd column - recent noise-free function value in format \texttt{+10.9e}
- 3rd column - best noise-free function value so far in format \texttt{+10.9e}
- 4th column - recent measured (noisy) function value in format \texttt{+10.9e}
- 5th column - best measured (noisy) function value so far in format \texttt{+10.9e}
- \((5+d)\)th column - value of the \textit{d}th \((d = 1, 2, \ldots, \text{DIM})\) object parameter
  of the best so far noise-free function value (3rd column) in format \texttt{+5.4e}
## BBOB 2010: Experimental Setup

### Table: Data File Example

<table>
<thead>
<tr>
<th>Index</th>
<th>Function Value</th>
<th>Noise-Free Fitness - Fopt</th>
<th>Best Noise-Free Fitness - Fopt</th>
<th>Measured Fitness</th>
<th>Best Measured Fitness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 +9.324567891e+05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1 +9.324567891e+05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 +9.324567891e+05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1 +9.324567891e+05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Figure 8: Example of a data file**

An example is given in Fig 8.

Each entry in the index files is associated to at least two data files: one for the function value-aligned data and another for the number of function evaluations-aligned data. The data file names are identical except for the file extension being '*.dat' and '*.tdat' respectively.

The writing to the function value aligned data file happens only each time the noise-free function value minus the optimum function value is less than 10\(^{15}/5\), for all integer \(i\), for the first time (note, that the provided software does not return this difference to the algorithm).

The writing to the number of function evaluations aligned data file happens:

- in the first file each time the function evaluation number is equal to \([10^{i}/20]\) for at least one \(i = 1, 2, \ldots\). This means, that writing happens after about 12.2% additional function evaluations have been conducted. In particular the first 8 evaluations are written and also evaluations . . . , 89, 100, 112, 125, 141, . . . , 707, 794, 891, 1000, 1122, . . .
- when any termination criterion is fulfilled (writing the recent evaluation and the current best so far values)

The prefix for the data file names of one function-dimension pair will be the same as the prefix of the corresponding index file. The function identifier and the dimension of the object parameters will be appended to this prefix. All data files will be saved in subfolders data\(fX\), where \(X\) is the function identifier, located at the same location as their index file.