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Abstract: We consider a network of parallel, non-observable queues and analyze the “price of anarchy”, an index
measuring the worst-case performance loss of a decentralized system with respect to its centralized counterpart.
Our analysis is undertaken from the new point of view where the router has the memory of previous dispatching
choices, which significantly complicates the nature of the problem. In the limiting regime where the demands
proportionally grow with the network capacity, we provide a tight lower bound on the socially-optimal response
time and a tight upper bound on the price of anarchy by means of convex programming. Then, we exploit this
result to show, by simulation, that the billiard routing scheme yields a response time which is remarkably close
to our lower bound, implying that billiards minimize response time. To study the added-value of non-Bernoulli
routers, we introduce the “price of forgetting” and prove that it is bounded from above by two, which is tight
in heavy-traffic. Finally, other structural properties are derived numerically for the price of forgetting. These
claim that the benefit of having memory in the router is independent of the network size and heterogeneity,
while monotonically depending on the network load only. These properties yield simple product-forms well-
approximating the socially-optimal response time.
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Sur le prix de anarchie et le routage optimal des files d’attente
non-observables et paralléles

Résumé : Dans cet article, nous considérons un réseau de files d’attentes en paralléles, non-observables et nous
étudions le prix de I'anarchie, qui mesure la perte de performance pour un systéme décentralisé par rapport a son
analogue centralisé.

Notre analyse introduit un nouveau concept, celui de controleur de routage centralisé avec mémoire, qui change
la nature du probléme. Dans le régime limite avec des demande qui croissent proportionnellement & la taille du
réseau, nous donnons une borne inférieure sur le temps de réponse socialement optimal, ce qui fournit une borne
supérieure sur le prix de anarchie dans ce contexte.

Ensuite, nous exploitons ce résultat pour montrer par simulation que le routage par suites billards a un
comportement remarquablement proche de la borne inférieure. Pour mettre en évidence ’apport de routage non-
Bernoulli, nous introduisons le “prix de 'oubli” qui est la rapport entre la performance d’un routage sans mémoire
(Bernoulli) et I'un routage avec mémoire, et nous montrons qu’il est borné par 2, cette borne étant exacte dans
le cas fortement chargé.

Finalement, d’autres propriétés structurelles sont établies numériquement. Elles mettent en évidence que le
bénéfice obtenu grace a la mémoire du routeur est indépendant de la taille et de I’hétérogénéité du systéme mais
a une dépendance monotone de la charge globale. Cela donne une forme produit simple approximant le prix de
I’anarchie de tels systémes.

Mots-clés : Prix de 'anarchie, Routage Optimal, Files d’attentes paralléles
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1 Introduction

The “price of anarchy” [24, 28] is an index measuring the effectiveness of a centralized system with respect to
its decentralized counterpart to tradeoff, in service networks, among performance, scalability, and reliability. It
is defined as the worst-case response-time ratio between the situation where jobs behave selfishly to maximize
their own benefit, yielding the Nash equilibrium, and the opposite situation where jobs are controlled by a central
authority, yielding the social optimum or social welfare. While the former identifies the equilibrium point for
which any unilateral deviation of each job strategy does not lower its delay, the latter represents the optimal
strategy for all jobs in a centralized setting. Therefore, it is the merging of game and queueing theories that
provides, in general, the mathematical framework for analyzing this index.

The interest for the price of anarchy in the context of queueing models is currently growing because of its
large spectrum of applications: Network routing, load balancing, peer-to-peer and content delivery networks,
wireless networks, server farms, grid computing clusters, desktop-grid computing, and database systems; see
[29, 27, 22| 20, 13}, [34} [18] [@, 1 [ [6l, B0] and the references therein. The great majority of these works provide
mathematical tools for characterizing and computing the mean response times in both the situations above and
try to relate the price of anarchy to the network size in different settings. This lets designers quantitatively
evaluate the loss of performance when shifting to decentralized solutions (corresponding to Nash equilibria) and
subsequently perform a suitable dimensioning of the system. In [29] it is shown that the price of anarchy is
independent of the network topology as long as the mean jobs arrival rate is less than the mean service rate of
the slowest server, and, in this light-load regime, an upper bound is provided. When heterogeneous processor-
sharing queues are considered, it is shown in [I8], [34] that the price of anarchy, in general, linearly scales with
the network size, and it can only depend on the heterogeneity degree of the queues provided that these adopt
the shortest-remaining-processing-time scheduling discipline [9]. In the case of multiple central authorities, which
can be the case of large server farms, the price of anarchy is shown to be lower bounded by the square root of the
number of authorities [4].

We observe that a key point common to all the above works is that the central authority, which in the remainder
of the paper we refer to as router, achieves the social optimum in a Bernoulli setting, making its routing decisions
independent each other, i.e., with no memory. In fact, the social optimum is commonly searched among all the
possible Bernoulli policies through a non-linear optimization problem. In several cases, this restriction is known
to yield tractable formulas for mean response times, but it may play a non-innocuous role in the analysis. In a
more general framework, in fact, the optimal jobs inter-arrival times of each queue are not even i.i.d. [I7]. Except
for special cases, this dynamic routing scheme notoriously complicates the nature of the problem so that the
assessment of the routing policy which minimizes the mean response time as well as the analysis of such response
time are current open problems in the literature; see, e.g., [17, [5], [0, [14] for the case of parallel and non-observable
queues. In this framework, it is also shown in [5] that finding the optimal cyclic policy is NP-complete.

1.1 Our Contribution

In this paper, we tackle the problem of analyzing the price of anarchy in open queueing systems of parallel and
non-observable queues. We undertake this analysis from a new point of view: In contrast with the existing works
above, the key point of our analysis is to consider routers with the memory of previous dispatching choices. This
feature of our approach severely complicates the problem of determining the optimal response time achievable
by the system, i.e., the social optimum, but we strongly believe that this is necessary for an accurate analysis of
nowadays networks. In fact, dispatching schemes with memory, e.g., round-robin, can be easily implemented in
network routers with very limited costs. Given the intrinsic intractability of the problem, our analysis is performed
in the limiting regime where demands, i.e., jobs arrival rate, proportionally grow with the network size, i.e., the
number of queues. This limiting regime is very popular in queueing theory to approximate the behavior of large
systems in a tractable manner; see, e.g., [33], 21].

First, we provide a stochastic comparison result providing a tight lower bound on the optimal (mean) response
time achievable by the system. This bound is expressed in terms of a convex optimization program which integrates
the mean response time of a parallel system of independent I'/M /1 queues. New asymptotically-exact bounds on
their response times follows as function of the Lambert W function [II].

Then, we introduce the price of forgetting, an index measuring the worst-case ratio between the socially-optimal
response time of a memoryless router with respect to its memory counterpart. We prove that it is bounded from
above by two being exact in heavy-traffic. Thus, the price of anarchy of a router with memory can be understood
as the price of anarchy of a Bernoulli router times a correcting factor less than two. When homogeneous queues
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Figure 1: Queueing model under investigation. The router dispatches incoming jobs to the queues according to
some policy and with no delay. The mean arrival rate is proportional to the number of queues.

are considered, our analysis simplifies and an explicit expression is found for the price of anarchy which equals
the price of forgetting. Here, we prove that it strictly increases in the queues utilization, implying that it is not
possible to design a network where the choices of selfish jobs have no impact on performance. This is in contrast
with the case of memoryless routers, which make the price of anarchy equal to one for any load [6], [18].

Our analysis also allows us to assess the quality of heuristics for the optimal (non-Bernoulli) routing. An
exhaustive numerical analysis reveals that a router forwarding jobs to queues according to a billiard scheme, a
generalization of round-robin, [3],[16] 19], yields a response time which is remarkably close to our lower bound. In
other words, we have the two-fold result that billiard routings achieve, in practice, the minimum response time
which, in turn, is very-well captured by our bound and approximations.

Finally, we give numerical evidence of the fact that the price of forgetting is insensitive to the network size
(N) and heterogeneity, while monotonically depending on the network load (L) only. These structural properties
entail that the price of anarchy admits the product-form f(N)F(L) where i) f(N) is linear and refers to the price
of anarchy achieved by a Bernoulli router (which is well-understood [6] [18]), and ii) F'(L), the price of forgetting,
is increasing in L and bounded from above by two. The term F(L), explicitely given, is thus interpreted as the
added-value of a router with memory or, more technically, as the response-time improvement which is obtained
when the input process of each queue is Gamma instead of Poisson.

This paper is organized as follows. Section [2] introduces the model under investigation and the necessary
preliminaries. In Section [3] we propose an upper bound on the price of anarchy in terms of a convex program
as well as an improved approximation. In Section [f] we define the price of forgetting which is analyzed to derive
qualitative properties on the benefit of a router with memory. In Section [5] we show how a non-Bernoulli router
should operate to minimize response time, and, in Section [6] we measure its impact on system performance
exhibiting structural properties that we interpret. Finally, Section [7] draws the conclusions of this work.

2 Model and Preliminaries

We consider a queueing system composed of N infinite-room queues working in parallel as shown in Figure
Jobs arrive from an external Poissonian source having intensity AN to a router which instantaneously dispatches
jobs to one of the N queues according to a given policy, i.e., routing rule.

We assume that the router cannot observe the state of the queues, i.e., their current number of jobs.

In queue i, we assume that jobs require service for an exponentially-distributed amount of time having mean
,ui_l = O(1). The service times are i.i.d. and independent of the arrival process and N. Initially, all queues are
supposed to be empty (this assumption can be relaxed because the mean performance does not depend on initial
states, but it is useful in our proofs for technical reasons). The scheduling discipline of each queue is assumed to
be First-Come-First-Served or Processor Sharing. In the remainder of the paper, index ¢ implicitly ranges from 1
to N, if not otherwise specified.

The routing policy a & (a',...,a") of jobs into queues is given by the sequences (a’,)nen € {0, 1}, where
al, = 1 if the n'” job is sent to queue 7, and is 0 otherwise. By definition, if a!, = 1 then aJ, = 0 for all j # i, i.e.,

a job is routed to a single queue.

INRIA



Optimal routing in parallel queues and price of anarchy 5

In contrast with existing works, we analyze the case where the router has memory of which queues previous
jobs have been dispatched. This feature of our model is innovative in the context of evaluating the price of
anarchy, easy to implement in real-world routers and plays a key role in our analysis.

Let

LYAN/ SN (1)

be the network load, an index measuring the “network utilization”. Within the optimal routing policy, the
considered queueing model is stable if and only if L < 1.

We also denote by R = R(a) the mean response time, or sojourn time, of jobs in the system under policy a,
provided the expectation exists (the dependence of a will be reported when necessary). In the remainder of the
paper, we omit the words “mean” when we refer to response time for simplicity.

2.1 Nash Equilibrium and Social Optimization

Within the model introduced above, we consider two different scenarios. In the first one, selfish jobs choose to
join a queue to minimize their response time individually, and we refer to this situation as Nash equilibrium; see,
e.g., [6, [18]. The response time achievable in this scenario is denoted by R™¢. In the second one, jobs choose to
join a queue to minimize the response time of all jobs taking into account choices of previous jobs. We refer to
this situation as social optimization, and the mean response time achievable in this scenario is denoted by R5°.
These scenarios reflect the conflicting situations where jobs moves in an infrastructure with neither control nor
shared information with respect to the case where a centralized object controls the dynamics of the system to
maximize the profit of all jobs.

Our notion of social optimization differs from the one considered in existing approaches in the sense that we
let the router operate with the memory of previous decisions. This means that the set of policies handled by the
router is much larger than the set of the Bernoulli ones, because the routing decisions are no more independent
each other. The main consequence of this point is that the optimal jobs inter-arrivals of each queue are not
ii.d. [I7], and, thus, the analysis becomes much more difficult. In the case of Nash equilibrium, however, we
observe that the optimal policy must be Bernoulli because jobs make their decisions independently of the others
(in fact, no shared information is available in a fully-decentralized system before the arrivals of jobs). As a
consequence, existing works apply to our model in this case (see [6] for a formula for RV¢).

It is clear that both the situations depicted above can be modeled in our queueing system by specifying a
suitable policy in the router.

We measure the efficiency of the social optimization scenario with respect to the Nash equilibrium by means
of the price of anarchy A, which is defined as follows

A Y jNe RSo. (2)
Evidently, large values of A indicate that the impact of a centralized control drastically improves the performance
of the system, and vice versa. On the other hand, we notice that a centralized control design is less scalable and
reliable than a distributed one because the system has a single point of failure. We also stress that A represents
the worst-case delay inefficiency of an uncontrolled infrastructure with respect to a controlled one. By definition,
A>1.

In contrast with the analysis of RV¢, there are currently no exact analyses for the efficient computation of R5°
when N is generic (see the introduction). Even though RS could be determined, in our settings, by applying
Markov decision process algorithms, e.g., [26], the intrinsic computational complexity of this approach makes it
feasible only when the number of queues is very limited. In the particular case where N = 2, an efficient analysis
of R®° can be found in [T4]. This current difficulty prevents the understanding of the problem and motivated the
authors to investigate alternative computational techniques for the approximate analysis of .

3 Analysis

In this section, we develop an approximation and a lower bound on the socially-optimal response time by means
of convex programming. Approximations and bounds on the price of anarchy immediately follow by .

RR n°



6 Anselmi and Gaujal

3.1 Bounding the Optimal Response Time

We now introduce a lower bound on the socially optimum response time R°.
Let ¢} (a%, ..., al) be the amount of work in queue ¢ after n arrivals. We denote by

. . ’L’ def . . .
Q) (al,...,a,) = Eq(ai,...,ay), (3)

the mean work where the expectation is taken over all arrival times and service times. Now, let R;(a’) be the
Cesaro limit of Q7,, i.e.,

i : Q= i i
Ri(a') = lim —3 Q(ai,...,ap). (4)
n=1
Using the PASTA property, e.g., [7], R;(a;) is the mean response time of the jobs sent to queue i.
For any 0 < 6 < 1, let p wef (1—0)> 7=, 6% tai, that exists since all a!, are bounded. By definition of pj,
ZZN:l p% = 1. Therefore, the set £ of limit points of (p},...,pY), when § — 1, also has a sum equal to one.

We also define the regular sequence with rate p and phase 0: for all n > 1, o/, (p, 0) et [np+60]—[(n—1)p+0].
Note that o (p,0) € {0,1} for all n as long as p < 1 and is periodic in § with period 1.

Theorem 1 Under the foregoing notations, the mean response time of a job under policy a verifies

R(a) > inf (p1R1(a(p1,0)) + - + py Ry (a(pn, 0))).

~ (p1,--PN)EL

The theorem says that the average response time of any policy is larger than the combination of response
times in all queues where the arrival process in each queue is a regular sequence. This result is to be compared
with [I6] where regular sequences with rate r are proved to be optimal admission sequences in a single queue
under the constraint that a proportion of at least r packets have to be admitted in the queue. The main difference
comes from the fact that routing to several queues is more difficult than admitting to a single queue because one
does not know whether the proportion of jobs sent to each queue by the optimal routing policy exists. This is still
an open problem and Theorem (1] above does not answer to this question but just provides a lower bound on the
response time of the optimal policy. For the proposed lower bound, such proportions exist in all queues and are
equal to the rates p; achieving the infimum. On the other hand, the result stated in [I]is very close to Theorem

25 in [2]. The main difference is the fact that our cost is not additive, making the proof slightly more involved.

Let us consider a single queue 7 and the arrival process induced by a(p;, ) in queue i. Let k def [1/p;]. The

inter-arrival process 71, ,7,, -+ has a distribution that is made of a sequence of sums of k (or k + 1) i.i.d.
exponential distributions, with parameter NA. For example, if p; = 2/7, then k£ = 3 and the arrival process in
queue ¢ under policy «(2/7,0) = 0,0,1,0,0,0,1,0,0,1,--- where the sequences 0,0,1 and 0,0,0,1 alternate, is
such that the distribution of the inter-arrival times alternates between the sum of three exponentials with rate
N and the sum of four exponentials with rate NA.

In general, the arrival rate in queue ¢ is p; NA. Now , considering a stationary i.i.d. arrival process 71, --T3, - -,
with a Gamma distribution for inter-arrival times, with parameters p; and NA. It should be clear that for
any n, these two inter-arrival processes compare for the convex ordering of random sequences: (71, ,7y) Zcx
(Th, -+, Th).

Using the fact that the mean response time of jobs is a convex increasing function of the input process, this
implies that the mean response time in queue ¢ under a regular arrival process with rate p; is larger that the mean
response time in queue ¢ under a Gamma-distributed arrival process with rate p; NA. Putting this together with
Theorem [I] yields the following result.

T(a,b)/M/1 . Lo . . . L
Theorem 2 Let R, be the mean response time of a job in queue i having exponential service times and
i.i.d. inter-arrival times with a I'(a,b) distribution. Then,

RS> inf S mR(/meNNMA 5

In the following, we will use a coefficient that scales with N for the proportion of jobs sent to queue i: we define

Bi ef N 7, where (3; is a positive constant. A lower bound on RS° is finally obtained by solving the following

INRIA



Optimal routing in parallel queues and price of anarchy 7

optimization problem

(2

N
GB(N) def min Z%RF(N/@,NA)/MA(@)
=1

s.t. (6)
Zf\; pi=N
U:(B;) <1, Vi
/87,' Z 07 VZ7
where
Ui(Bi) = ABi/ i (7)

and GB(N) stands for Gamma-Bound with N queues. By means of Little’s law, the quantity U; is interpreted
as the wutilization of station 7, and it represents the “proportion of time” in which station i is busy (in the long
term), e.g., [25].

3.1.1 Heavy-Traffic Behavior

The proposed bound GB(N) is interpreted as the response time achieved when the input arrival processes of all
queues are independent and Gamma distributed. This means that the router can be now thought as Bernoulli,
provided that its jobs arrival process is no more Poisson. Given that all queues become independent I'/M/1
queues, classic heavy-traffic analysis immediately applies to derive useful approximation and insights; see, e.g.,
[23] 15].

This corollary follows by Theorem [2| and the heavy-traffic analysis of GI/GI/1 queues; e.g., [23].
Corollary 1 As L — 1, GB(N) > R%° (N)/2, where equality holds when N is large.

Bernoulli

In other words, our bound is essentially half of the response time of the optimal Bernoulli routing in heavy-
traffic. This reveals one important structural property that we anticipate here and analyze in next sections for
the non-heavy-traffic case: The added-value of a router with memory is independent of the network heterogeneity
and size.

3.2 Asymptotic Analysis of the I'/M/1 Queue

In previous section, we established a lower bound on the social optimum RS° in terms of an optimization problem
involving the response time of parallel I'/M /1 queues. The integration of the exact I'/M/1 (or G/M/1) analysis,
see [7], in the constraints of @ renders a non-linear problem which seems to be difficult to analyze, e.g., in
terms of convexity, and also yields numerical instabilities related to O(N™) terms. Therefore, we now address
the development of simple (non-numerical) approximations for the response time of I'/M /1 queues, which, to the

best of our knowledge, are not currently available in the literature (except for the heavy-traffic case).
The following theorem provides bounds on RiF(N/ BNO/MIL g any network load and size.

Theorem 3 Let 0;,0,7 € [0,1), respectively, be the (unique) solutions of the equations

zexp( 1[71-2) =1 (8)

and ( 2

s 1(1—=2
ze:pp(lUi ) <1 - 2NU-2) =1. (9)
Then,
1 T(N/B:i,NX)/M/1 1

—— <R, " < —Q 10
pi(1 — o) pi(1 = o) (10

Given that, as N — oo, 07 — o, the following corollary is straightforward.

Corollary 2 As N — oo,
) 1
RI(N/Bi,NA)/M/1 ) 11
’ (ﬁ)ﬁﬂi(l_gi) (1D

from above.

RR n°



8 Anselmi and Gaujal

Lemma 1 o; < U2

Rewriting (8) as
zZ =z 1 _
_ - U, — —— Us;

Uie i e (12)
and observing that it admits exactly two positive roots when 0 < U; < 1, where the largest one is at z = 1, we
note that o; can be expressed in terms of the Lambert W function [11] if and only if —z/U; > -1 = =W (-1/e),
which is true by Lemma([l} Hence,

g; = 7UiW(fi67Uii). (13)
Ui
where W is the principal Lambert function (with W (0) = 0).

We recall that the Lambert W function [11], defined as the inverse function of f(W) = Wexp(W), over

[—1, +00), satisfies

0< W (—16_L}i> <1 (14)

Ui

for all 0 < U; < 1. In particular, =W (—1/e) = 1 and W(0) = 0. Therefore, by means of Formula and within
the considered limiting regime, the response time of a queue with Gamma-distributed arrivals and exponential
service times can be interpreted as the response time of an exponential queue with Poisson arrivals and utilization
multiplied by the correcting factor —W (—exp(—1/U;)/U;), which plays a very important role in our analysis of
the price of anarchy. In the particular case where N/f3; € N, we observe that the popular Ey/g,/M/1 queue is
found.

The rate of convergence of Formula is strictly related to the convergence of (1 + a/N)¥, for a fixed, to
its limiting value exp(a) (see the proof of Theorem [3), which is known to be ©(1/N). In the experimental results
section, we numerically show that this suffices to obtain very accurate response time estimates even when N is
relatively small and that it provides improved accuracy with respect to heavy-traffic approximations.

We also observe that the result of Theorem [2|can be extended to higher-order moments of response time. This
is ensured by the uniform convergence of the states stationary probabilities which follows by the analysis above.

As last remark, we note that the applicability of Formula goes beyond the scope of this paper and
immediately finds applications in capacity planning studies, e.g., optimization of power consumption in server
farms with utilization and /or quality of service (QoS) constraints, and in the analysis of (bulk service) M /M™N/% /1
queueing systems because a strict relation with Ey,3,/M/1 queues is known, e.g., [7].

3.3 Approximations for Large Network Sizes

The simplicity of Formula allows for the development of a simple optimization procedure. In fact, problem (]ED
can be rewritten as follows

N
e . 1 [
GB() def o nin E IL

S.t. (15)

where o;(U;) is given by (13), which is exact as N — oc.
Remark 1 For any N, GB(x) < GB(N) < R5°(N).

Let also GBy(0o) be the optimum of where o;(U;) is given by (9). Even though GBy(c0), in general,
does not seem to provide upper bounds on the optimal response time, the following result ensures that it always
provides improved accuracy with respect to GB(0o) when estimating R5°.

Theorem 4 R%° — GB(c0) > |R°° — GBy(c0)|.

Even though more accurate approximations than G'B(co) and GBy(occ) for R%° can be derived (by taking
into account more expansions terms, see the proof of Theorem , we will numerically show that they suffice to
obtain very accurate results.

The following result ensures that efficient algorithms, see [§], can be immediately applied to solve in
polynomial time.

INRIA



Optimal routing in parallel queues and price of anarchy 9

Theorem 5 The optimization problem s convez.

The proposed upper bound on the price of anarchy simply follows by taking the ratio between RV [6] and
GB(o0). A numerical evaluation of its tightness and convergence speed is postponed in the experimental results
section.

4 Price of Forgetting

We define the “price of forgetting” as the worst-case ratio between the socially-optimal response time achieved
with a Bernoulli router and a router with memory, i.e.,

F % Rso JR5°. (16)

Bernoulli
The following connection is immediate.

Proposition 1 The price of anarchy is given by the product between the price of forgetting and the price
of anarchy achieved with a memoryless router.

Since the price of anarchy in the Bernoulli case is well-understood, we limit the focus on the price of forgetting.

4.1 Heterogeneous Queues

The nature of the price of forgetting in heavy-load conditions immedately follows by the discussion in Section[3.1.1
Coincisely, for any network size

i < 2.
lim F(L) <2 (17)

In contrast, in light-load conditions we must have

lim F(L) =1, (18)

which is intuitive. In fact, if the queue lengths are almost empty, then the response time approaches the service
time of the fastest queue in any case.
The following result extends the result over all network loads.

Theorem 6 For any network load and size, F < 2.

These results imply that the socially-optimal Bernoulli policy yields a response time which can be at most
twice larger than the response time achieved by a router with memory. We will numerically show that F' is an
increasing function of the network load.

4.2 Homogeneous Queues

A scenario of practical interest is the case where the queues are homogeneous, i.e., u; = --- = uy = u, for which
we can draw additional results and easily compare with the case of Bernoulli routers.

Remark 2 If the router has no memory, then the socially optimum response time coincides with the response
time in Nash equilibrium (see [18, [12]) and they both admit a very simple formula, i.e.,

1
RSZrnou i RNe = ’ (19)
B U ‘LL(]. _ L)
where L =U = \/p.

In other words, the price of anarchy, in the context of memoryless routers, becomes one regardless of the utiliza-
tions.

Remark 3 If the router has memory, then implies that the price of forgetting equals the price of anarchy
(when the queues are homogeneous).

RR n°
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We now apply our analysis in this easier setting in order to understand the price of forgetting (or price of
anarchy). The following result is known in the literature (and also follows from Theorem [1| using a symmetry
argument); see, e.g., [32] Prop. 8.3.4.

Theorem 7 ([32]) Under the foregoing assumptions, the round-robin (or cyclic) policy minimizes the mean
response time for any N.

The results which follow in the remainder of this section are implicitly assumed to hold in the considered
limiting regime, i.e., when N — oco.

The following result is an immediate consequence of Theorems and Formula , and provides an
asymptotically-exact formula for the price of anarchy.

Corollary 3
14 LW(g(L))

F(L) = A(L) 7

(20)
where g(L) = —exp(—1/L)/L and L =U = \/p.

As first consequence, we notice that the price of anarchy now becomes a function of the utilization U (note that L
boils down to U here), which is in contrast with the case of memoryless routers. In other words, it is not possible
to design a network where the behavior of selfish jobs has mo impact on the response time as in the memoryless
case. Formula is thus interpreted as the correcting factor that should be taken into account by a Bernoulli
analysis of the price of anarchy. Secondly, the expression allows us to derive more results than Theorem @

Corollary 4 A(L) is strictly increasing in L and

. dA(L) . dA(L)
fo = = g =0 1)
The limits in (21) show that i) the response-time benefits of a router with memory are non-negligible even when
the utilizations are small, and that ii) A(L) is concave in heavy-load conditions (we will numerically show that
concavity does not seem to hold for A(L) in general), and, thus, large improvements can be obtained even in a
non-negligible neighborhood of L = 1.

5 Optimal Routing

The framework introduced above allows us to numerically inspect the response-time gap between our bounds and
approximations and heuristic policies for the optimal routing.

In this section, we first perform a validation of Formula on several models. Then, we measure the
performance achieved with a router assigning jobs to queues according to billiard sequences, e.g., [3] [16], 19]. We
show that the resulting distance from our formulas is remarkably small. Coincisely, our conclusions are that i)
the billiard routing scheme minimizes the response time, and ii) our bounds and approzimations on the minimum
response time are tight.

5.1 Accuracy of Formula (11)
We now measure the accuracy of asymptotic formula by means of the percentage relative error

|RF/M/1 _ R/M/1

exact approx
R 100%, (22)
exact
where RY/M/1 is obtained numerically through the (exact) standard analysis of the G/M/1 queue, and R%%{,}U

exact

is given by . Numerical computations have been performed using Maple 13. We initially evaluate (22))
by varying N € {50, 100,200,1000} and U € {0.1,0.2,...,0.9,0.95}. Since the mean arrival rate X\ affects the
percentage relative error only through the utilization, it is not considered in our experiments.

Figure [2]illustrates the quality of in the above cases. As N grows, we first note that the accuracy of
increases, which is expected because it is asymptotically exact. For N = 50, is remarkably accurate and
yields a relative error always less than 2%. Since real-world systems are composed of hundreds (or thousands) of
queues, we conclude that the asymptotic formula can be used to obtain very accurate response time estimates
of the I'/M/1 queue.

INRIA
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Figure 2: Accuracy evaluation of the asymptotic formula through the error measure .

5.2 Quasi-Optimality of Billiard Sequences

We consider the case where the router forwards jobs to queues according to billiard sequences, see [3], 16l [19],
which are constructed through the SG algorithm introduced in [19] (easily implementable in network routers with
a very limited cost). The SG algorithm takes has input the fraction of jobs to send to the queues (given by the
solution of ) and an initial-position vector € R which we assume such that z; = 1 if y; = max; y; and 0
otherwise (we point the reader to [19] for further details on the SG algorithm and billiard sequences). Given that
a numerical solution of the response time induced by billiard sequences is impractical for a number of reasons, e.g.,
the aperiodicity of the resulting routing patterns, we use simulation. To measure the gap between the response
time achieved with this routing scheme and our bounds/approximations, we assess the general quality of the
percentage relative error

Err _ |RAp]) - RSim
App GBN(OO)

where R,,, € {GB(), GBy(c0)} (defined in Section axnd Rg,, is the average response time computed
by simulation. We measure percentage relative errors with respect to GBy(00) because it represents the closest
approximation of ROP! (see Theorem . The measures of Rg;, refer to 99% confidence intervals having size no
larger than 1% of Ry, itself. For any pair (N,L), N € {20,50,100} and L € {0.10,0.15,0.20,...,0.95}, we
generated 1,000 random models where the service rates p; have been drawn in the range [0.01,100] according
to a uniform distribution. Larger values of N have not been considered because of the strong computational
requirements of simulation. In any case, the proposed analysis sufficies to assess the accuracy of our approach.

The experimental results of this analysis are summarized in Figures which, thus, refers to a total of
nearly 50,000 experiments. In the figure, the dashed (continuous) lines refer to the error obtained with GB(o0)
(GBn(00)) for different network sizes. We clearly see that the response time achieved through a billiard routing is
remarkably close to our approximation G By (o0) and also to our bound GB(oco). Given that the optimal response
time achievable by the system must lie between our bound and the response time achieved by the billiard routing,
we conclude, in an empirical sense, that billiard sequences are optimal for the response time which is very-well
approximated by our analysis.

-100% (23)

5.3 Computational Requirements

We illustrate the computational requirements for calculating the price of anarchy through the mathematical
program . These are important to know because the program should be executed each time the network
changes to reinitialize the parameters of the optimal routing algorithm. Real-world systems change over time for
a number of reasons, e.g., addition or removal of one queue, variation of the arrival rate or service times, CPU
frequency scaling.
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Figure 3: Plots of the error averaged over a large number of tests.

Experiments have been performed by running the Ipopt optimization solver [3I] on a 2.80Ghz Intel Xeon
processor with multi-threading technology. By varying N, we consider a wide test-bed of randomly generated
models, where the service rates uniformly range in [0.01, 100] and the arrival rate is such that the network load
uniformly ranges in [0, 1]. Table [1] illustrates the average and the standard deviation of the computation times
(in seconds) required by the solution of , where each number refers to a sample of 1,000 models. From the

N 50 100 500 1,000 | 5,000
Average time (sec) 0.181 | 0.251 | 1.317 | 2.433 | 10.85
Std. dev. 0.038 | 0.059 | 0.187 | 0.312 | 2.901

Table 1: Computation times required by the solution of by varying N.

results in the table, we conclude that the solution of is almost online: models of networks composed of a
thousand of servers only require, in the average, less than three seconds.

6 The Impact of Routers with Memory: Structural Properties

We now measure the proposed upper bound on the price of forgetting in order to numerically investigate its
fundamental properties. Following the results of previous section, it is very tight. We infer an important structural
property which we interpret: the price of forgetting only depends on the network load L, meaning that it is
independent of the network heterogeneity and size.

6.1 Homogeneous Queues

In the case of homogeneous queues, the proposed bound boils down to the simple formula , which is asymp-
totically exact. By varying the utilization from 0.05 to 0.95 with step 0.05, Figure illustrates i) the asymptotic
price of anarchy (the dashed bold line), ii) the price of anarchy obtained with a memoryless router (the
dashed-dotted line), and iii) for N € {10,50, 100, 1000}, the exact price of anarchy, which is obtained by applied
standard analysis of the En/M/1 queue. In that figure, we first notice that the price of anarchy is not concave
and (slightly) increases as N does converging to our asymptotic formula . The fact that the price of anarchy
increases with N finds the simple intuition that adding new resources gives more and more freedom to the router
for optimizing the response time with respect to its Bernoulli counterpart. On the other hand, the price of anarchy
in the case of memoryless router remains constant to one for any number of queues and utilizations, and it is
remarkably far from the ones where the router has memory. The exact price of anarchy computed for N = 100
is very close to our asymptotic formula and, for N = 10, it has almost the same behavior. When N = 100
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Figure 4: Price of anarchy (equivalent to price of forgetting here) by varying the queues utilization. The
three continuous lines correspond to the exact prices of anarchy for increasing network sizes, where the lowest
refers to N = 10 and the largest to N = 1000.

and U = 0.85, Figure [4] shows that a Bernoulli-based analysis underestimates the price of anarchy of a factor
1.9. When the utilizations are 0.1, i.e., small, the Bernoulli price of anarchy is 10% lower. These observations
immediately quantify how large can be the worst-case impact of considering routers with memory in the design
of distributed or centralized systems, where utilizations usually range in [0.6,0.85].

6.2 Heterogeneous Queues: Independence of Network Heterogeneity and Size

We now measure the price of forgetting in the heterogeneous case. We first consider an illustrative example which
we use to inspect fundamental properties. Then, we carry out an extensive numerical analysis to give evidence
of their correctness.

An illustrative scenario We consider a clustered network composed of N queues where 1/10 of the queues
have fast service rates py = 100, 2/10 of the queues have medium service rates j,,, = 50, and the remaining
ones have low service rates u; = 1. By varying the network load (L) and size (N), we plot the resulting price of
forgettings in Figure o, which lets us draw two important hypotheses.

First, we observe that our bound on the price of forgetting is independent of the network size (note that this
is also true for the case of homogeneous queues, provided that N is sufficiently large, see Figure [5)).

Second, if the ratios of Figure [5| are compared pointwisely to the corresponding ones of Figure |4| (where the
concepts of network load and utilization are equivalent) we note that these points are very close each other. This
suggests that our bound on the price of forgetting is not influenced by the heterogeneity of the considered scenario,
as L varies, becoming a function of the network load only. In Section [3.1.1] we showed that this property holds
true in heavy-traffic and as N — oc.

Exhaustive numerical investigation We now carry out an extensive numerical analysis to give evidence of
the independence of the price of forgetting on the network size and heterogeneity. To do this, we focus on a
very large test-bed of randomly generated models drawing the service rates y; in [0.01,100] uniformly. For any
pair (N, L), we generated 1,000 models computing average and standard deviation of the price of forgetting.
The results of this analysis are shown in Table 2] which refers to a total of 48,000 different models. The results
presented in that table robustly confirm the two hypotheses arisen in previous section. When N = 50, we observe
that the averages of the price of forgetting are already settled to their asymptotic value. Furthermore, the standard
deviations are very small and decreasing in both N and L. This shows the independence with respect to the
network heterogeneity. By varying L and U (for L = U), Figure |§| plots and the average price of forgetting
shown in Table [2] to stress independence with respect to heterogeneity. Both curves are remarkably close each
other, and they are almost equivalent when L > 0.55. In the figure, we observe that the slight gap achieved when
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Averages

N 50 100 500 1,000 | 5,000 | 10,000
L =010 1.252 | 1.254 | 1.254 | 1.254 | 1.253 | 1.253
L =025 1.408 | 1.409 | 1.409 | 1.409 | 1.409 | 1.409
L =040 1.534 | 1.534 | 1.535 | 1.534 | 1.535 | 1.534
L =055 1.652 | 1.652 | 1.652 | 1.652 | 1.652 | 1.652
L =070 1.768 | 1.768 | 1.768 | 1.768 | 1.768 | 1.768
L=085 1.885 | 1.885 | 1.885 | 1.885 | 1.885 | 1.885
L=0.95 1.966 | 1.966 | 1.966 | 1.966 | 1.966 | 1.966
L=099 1.992 | 1.992 | 1.992 | 1.992 | 1.992 | 1.992

Standard deviations

N 50 100 500 1,000 | 5,000 | 10,000
L =010 3.0e-2 | 2.0e-2 | 8.3e-3 | 7.9e-3 | 6.9¢-3 | 6.1e-3
L =025 1.4e-2 | 1.0e-2 | 5.3e-3 | 4.8e-3 | 2.8e-3 | 1.8e-3
L =0.40 9.5e-3 | 6.9¢-3 | 3.1e-3 | 2.3e-3 | 2.1e-3 | 8.9e-4
L =055 5.3e-3 | 3.9e-3 | 1.7e-3 | 1.3e-3 | 7.1le-4 | 6.4e-4
L =070 2.9e-3 | 2.1e-3 | 1.0e-3 | 8.3e-4 | 5.5e-4 | 5.3e-4
L =085 2.1e3 | 1.6e-3 | 7.Te-4 | 6.4e-4 | 4.8e-4 | 4.5e-4
L =095 7.3e-4 | 5.9e-4 | 4.Te-4 | 4.5e-4 | 4.4e-4 | 4.3e-4
L =099 4.8e-4 | 4.6e-4 | 4.3e-4 | 4.4e-4 | 4.3e-4 | 4.2e-4

Table 2: Averages and standard deviations of our bound on the price of forgetting over the large number of tests
(e-n reads 107™).

L is small must go to zero as L — 0 because, in this regime, the optimal Bernoulli and non-Bernoulli response
times equal the service time of the fastest queue. Also, the fact that the curve is increasing follows by Theorem [6]

Except for the heavy-traffic case in Section 3] this is surprising because the optimal fractions of jobs sent to
each queue in the Bernoulli and non-Bernoulli settings are different (see next section). These structural properties
show that:

e our bound on the price of anarchy can be seen as the product between the price of anarchy with a memoryless
router and . Equivalently,

e our bound on the optimal response time can be seen as the ratio between the optimal Bernoulli response
time and F(L) given by (20).

The tightness of our GB bounds provides the following approximation for the optimal response time:

RSO = R%?srnoulli/F(L)' (24)

6.3 Optimal Routing Probabilities Comparison

We show the relation between the routing probabilities of the optimal Bernoulli router (p;) and of our bound
(m;) by evaluating the quantity Zf\;l |7; — pi|, which measures their cumulative absolute difference, over the
experiments performed in previous section. While in heavy-traffic the fractions of jobs in a memory/non-memory
setting are equal (which is obvious) and the properties above could find some interpretation, this does not hold
for the non-heavy-traffic case, for which a significant difference exists (see Table . Notwithstanding, the price
of forgetting is not affected by such difference as shown in previous section.

L 0.25 0.40 0.55 0.70 0.85 0.95 0.99
1.9e-1 | 7.7e-2 | 2.6e-2 | 6.2e-3 | 5.4e-4 | 1.3e-5 | <e-b

Table 3: vazl |7; — pi| by varying the network load (e-n reads 10~™).
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7 Concluding Remarks

We presented a new framework for assessing the performance benefits of large centralized infrastructures with
respect to their decentralized counterparts through the price of anarchy. Our analysis lets the central router
exploit local information on its past routing decisions to achieve the social optimum. We showed that the price
of anarchy admits can be interpreted as the product between the corresponding memoryless price of anarchy
and an increasing function of the network load only approaching two in heavy-traffic. The latter represents the
added-value of having memory in the router. Also, we used our framework to compare routing policies for the
optimal response time, numerically showing that the response time achieved by a billiard routing scheme, which
provides an upper bound, matches our lower bound. We leave as future work the case with general service time
distributions.

8 Proofs of Our Results
Proof of Theorem [I]

First, note that @, is only defined on integer points in {0, 1}" and can be extended to [0, 1]* by linear interpolation
over simplexes, defined by the multimodular base vy, = (0,...,0,—1,+1,0,...,0) (see [I7]). Once this is done, it
has been shown that Q¢ has the following properties [2]:

(i) QF is convex.

(ii) for all m, Q% (ai,...,al) =Q% . (0,...,0,a%,...,at).

»'n n+m
(i4i) for all m <n, Qi (al,...,ak) > QL (ah_, v, a%).

The last two properties are easy to verify since they are also true on each trajectory, for the quantities ¢ : Point
(i) is true because the system is initially empty and time-homogeneous, while the third property comes from the
fact that adding a job in the past increases the load at time 0.

However, the first item () is not true for the random quantities ¢/, but only in expectation.

Using these properties, one has:

(1— 8)5"al, Qi (al .. )

M8

1

3
Il

M
> 30— )5 Qhy (0, 0,a )

n=1
+ Z (1- 5)5”a;Q§\4(a;7M+1, S, a)
n=M+1
oS M
> (2(1 - 5)5”%)@& ( > (1-6)5™(0,...,0,d},...,a})
n=1 n=1

+ > (1—5)5n(a;_M+1,...,a;))

n=M+1
= p5Qhy (6Mps, 6™ pk, ... pk).

Now, let us define
Bi(M.6,p) = sup Qi (6" p ™ p,....p), (25)
0<6<1
and let us consider all the queues together. By definition,
: 1« 1l/,1 NAN(, N
R(a’) = hmsup ? Z(a‘nQn(a’ ) Tt ay Qn (a’ )) (26)

K—oo n—1
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Using the well-known fact that the Cesaro limit is always larger than the discounted limit with a discount
going to one,

R(a) > limsup(1-4) ZJ" apQn(a)+- - +al QN (a™))
d—1 —_
- hmbupzpéQM (6™ p5, 6§, ..., p§)
0—1 i1
N
> mf oYl 7;, i L i '
B (P17...pN)eL;p1QM(p P, )
The point (p?, p’, ..., p") belongs to the simplex of RM whose extreme points are all the regular sequences of

length M: a(p;,0),0 < 6 < 1. Since @, is linear on each simplex, one gets Q% (p*, p’, . .., p*) = EgQ';(a(p;, 0)1, ...,

where the expectation is taken over the uniform distribution on 0 < 6 < 1.
Finally, by letting M go to infinity, it has been shown in [2] that one gets, for the Cesaro limit,

Jim Q0 p' ')
> lim — i ((pi, 01, - - -, (piy O)).
_mgnoomZQ a(pi, 0)1; -, &(pi; 0))

This concludes the proof.

Proof of Corollary
In heavy-traffic,
, V(BARN) +1/p2 1
RF(N/ﬁuN/\)/M/l ~ \N i L 27
; 0= w (27)
where the summands in the numerator of the first term refer to the variance of interarrival and service times.
After some algebra, GB(N) has thus the form (for some ;)

U, +U;/N

Z —+/ (28)

N 2/-% 1 - )

when L — 1. Observing that GB(N) must have §;/N = ui/zyzl K, Vi, (as L — 1) and that these terms equal
the routing probabilities of a Bernoulli routing scheme, a term-by-term comparison between and

N

Hi 1
RBernoullz = (29)
P ST

implies that GB(N) > R, ..(N)/2. As N grows, the terms related to the variance of the input process, i.e.,
U;/N, approach zero and, as L — 1, U; — 1, meaning that GB(N) — R3° . ..(N)/2.

Proof of Theorem (3]
Applying the standard analysis of G/M/1 queues, e.g., [7], it follows that
prN/gNym/ L (30)
pi(1 — )
where z is the least positive solution of
_ Np; NI (31)
C\Np;+1—2 ’
and p; = A/p;, which we rewrite as
L A\NB:
1 i =1, 32
(146577 (52)
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Assuming a = (1 — 2)/U;, with a Maclaurin series expansion in 3;/N we obtain

N/ :
o)
a0+ 50 1 (33)

33
N3

— (ia4 + %a5 + ﬁaﬁ)
+0(6}/N*)

where the coefficient of (3;/N)~%, i > 0, alternates because a > 0. Observing that o and o refer to truncations
of the alternating series above, we must have o < z < ¢+, which implies (10).

Proof of Lemma (1]

The fact that o; < U; follows by the following facts. Let f(z) = zexp(—¢) — exp(— Ui) We have:
i) f(U;) >0,

i) f'(z )—exp( )(1—2/U)—01fand0nly1f2—U

111) 1'(z) = exp(f—)(2+ z/U;) <0 (z > 0), i.e., f(z) is concave, and

v) (B) has only two (posmve) real roots (when 0 < U < 1) where the largest one is z = 1.
Now, taking into account facts i)—iv), the statement can be proven by showing that f(z) is positive when
z = UZ. This simplifies to

h(U;) = 2U;InU; —U? +1 > 0. (34)
Since L (T
5 v, =InU;+1-U,; <0,VU; € [O,l)7 (35)

which easily follows by the change of variable U; = 1 — z; and expanding the logarithm in Taylor series, and
Jim h(U;) =0, (36)
we conclude that h(U;) must be strictly positive when U; € [0, 1).

Proof of Theorem [
Within the GB(N) bound (), the response time of queue i is RFWV/B::NV/M/L — 1 /(14,(1 — 0;)), where o; is the

least positive root of
1— 2\ V6
z (1 + : ) =1 (37)

After a Maclaurin expansion in 3;/N (see (3 ) and taking the first two expansion terms (yielding 1 ) and )
we must have GB(N) — GB(o0) > GBy(00) — GB(N). The statement follows by observing that GB(N

Proof of Theorem [l

Given that the Hessian of the objective function is diagonal and the constraints are linear, to prove the convexity
of (15), it suffices to show that U;/(1 — 0;) is convex in U;. Let g = g(U;) = —exp(—1/U;)/U;. From the
expressions of the derivatives of the Lambert W function [11], we obtain

d W(g)
—W(g) = ——2—, 38
dg (@) g(1+W(g)) (%)
d exp(—2W(g))(g +2)
— _Wi(g) = — 39
a2 T+ W) 9
and substituting g = W (g)exp(W (g)) in the latter, which follows by the definition of the W function, we obtain
b _ ! (40)
dU; 1+ UW(g9)  (1+UW(g))(1+W(g))
and )

AU 1+ U;W(g) (1 +W(9))*U?
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which is strictly positive because 0 < —W(g) < 1, for 0 < U < 1.

Proof of Theorem
Let v
1 1 U
AN ; 21-U; (42)
for Ue RY : 3, KU = N, 0 < U; < 1, Vi and
U;
f2(U) (43)

:Tﬁglﬂwwmm

for g(U;) = —exp(—1/U;)/U; and U € RY : ZN 'lj\ZU =N, 0 <U; <1, Vi. To prove the theorem, we show
that fo(U) > f1(U), VU, which is equivalent to show

Since —W(g(U;) < U; by Lemma is satisfied because it holds with equality when U; = 1 and strictly when
U; =0, and

d [1 1 A-U)W(g(Uy))
dU; E‘Q—W(Q(Ui)) U UR1+w(g(t)) ()

is always negative.
Proof of Corollary [

Monotonicity
From the expressions and , we have

dS(U)  UW(g)* + W(p;) +W(QU*+U (46)

v U+ W(g)1-W(g))

if and only if UW (¢)(W(g) +U) + W(g) + U > 0. Lemma [l implies that —W(g) < U, and proves that it is
increasing in U.

Limit as U — 1
From the expressions and , we have

W2+ U

dAU) _ UW(g)*> +W(g) +W(g
w oUW -wep (47
and applying L’Hopital’s rule, we obtain

i GAW)
Ulgll dU
— i W9 + W(g) + W(9)U? +U

U—1 4(1+W(g)) (48)
— i W(9)* +20W ()W (g) + W'(g) +2UW (g) + W'(9)U* + 1

U—1 AW’ (g)

. : L R . :
Since 51311 Wi(g) = l}linl W'(g) = —1 (see the proof of Corollary , the limit is zero.

Limit as U — 0
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From (7)), we obtain
o dA(U)

U0 dU W(a)

1 2 g

= éanOIfV(g) /+ -t

1+I}1LHOWI$7()) .
. g -

=1+ lim ————

o T +Wi(g) U2

. Wi(g)

=1+ [}1310 U2

W(g)U +1

The Lambert W function admits the following Maclaurin expansion [1T]

n—1

Wig) ==Y “—(-9)" (50)

n>1

which is convergent Vg : |g| < 1/e. The leading term of is exp(—1/U)/U, when U — 0. Therefore, we have

Wig) _ . ep(=1/0) o (51)
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