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Dimensioning of the downlink in OFDMA cellular

networks via an Erlang’s loss model
Bartłomiej Błaszczyszyn1 and Mohamed Kadhem Karray2

Abstract: In this paper we propose the following approach to
the dimensioning of the radio part of the downlink in OFDMA
networks. First, we use information theory to characterize the bit-
rate in the channel from a base station to its mobile. It depends
on the power and bandwidth allocated to this mobile. Then, we
describe the resource (power and bandwidth) allocation problem
and characterise feasible configurations of bit-rates of all users. As
the key element, we propose some particular sufficient condition
(in a multi-Erlang form) for a given configuration of bit-rates to
be feasible. Finally, we consider an Erlang’s loss model, in which
streaming arrivals whose admission would lead to the violation of
this sufficient condition are blocked and lost. In this model, the
blocking probabilities can be calculated using Kaufman-Roberts
algorithm. We propose it to evaluate the minimal density of base
stations assuring acceptable blocking probabilities for a streaming
traffic of a given load per surface unit. We validate this approach
by comparison of the blocking probabilities to these simulated in
the similar model in which the admission control is based on the
original feasibility property (instead of its sufficient condition). Our
sufficient bit-rate feasibility condition can also be used to dimension
the network with respect to the elastic traffic.

I. INTRODUCTION

Orthogonal Frequency-Division Multiple Access (OFDMA) is

a multi-user version of the orthogonal frequency-division mul-

tiplexing (OFDM) digital modulation scheme. Multiple access

is achieved by assigning subsets of sub-carriers to individual

users. This allows simultaneous transmission to and from several

users. The recent interest in OFDMA comes from the fact that

it is used in the mobility mode of IEEE 802.16 WirelessMAN

Air Interface standard, commonly referred to as WiMAX and

OFDMA is currently a working assumption in 3GPP Long

Term Evolution (LTE) downlink. Also, OFDMA is the candidate

access method for the IEEE 802.22 Wireless Regional Area

Networks. It is the context of LTE cellular networks that we

have primarily on mind in this paper, however, our approach

applies to other OFDMA downlink scenarios as well.

Our objective is to build a dimensioning method for the radio

part of the downlink in wireless cellular OFDMA networks, i.e.;

a method allowing to evaluate what is the minimal density of

base stations assuring a given quality of service (QoS) of a given

traffic demand per surface unit. This requires construction of

some model that describes the relation between the three key

parameters: traffic demand per surface unit, cell size and the

QoS. In general, such a model is not easy to establish for a

cellular network since it needs to account for the geographic

positions of the users and the evolution of these positions due

to the dynamics of calls arrivals and departures. Moreover, in the

case of OFDMA, it needs to account for the power and band-

width allocation mechanisms specific for this technology. At the

same time, it needs to represent some reasonable simplification

of the reality, since any too “realistic” model has to be evaluated
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by pure simulation. This however is usually not appropriate for

dimensioning purpose since evaluating the network under one

particular choice of parameters requires long simulations.

OFDMA based network (like LTE and WiMAX) can serve

streaming and elastic traffic. Streaming (real-time) traffic con-

sists of connections of some given duration that require some

given bit-rate. Elastic traffic (non-real-time) consists of connec-

tions aiming to transfer some given volume of data at a rate that

may be decided by the network and lasting until the completion

of this job. The QoS of the streaming traffic is typically evaluated

in terms of the call blocking probabilities, while the QoS of the

elastic traffic can be evaluated in the (mean) transfer time of a

unit volume or the mean transmission speed, called throughput.

Queueing theory provides some “classical” models (as Er-

lang’s loss systems, processor sharing queues, etc.) that allow

to evaluate these QoS parameters. They have been successfully

used to dimension circuit-switched and other communication

networks. In general, it is not however obvious how to use these

models to dimension the radio part of wireless cellular networks.

In this paper we show how the downlink in LTE OFDMA

cellular network can be dimensioned by means of a mutli-

rate Erlang’s loss model that takes into account information-

theoretic foundations of the wireless communications.

The remaining part of this paper is organized as follows. In

the next section we outline our approach to the problem and

discuss briefly the related work. Our model of the OFDMA

network is presented in Section III. In Section IV we study

the problem of feasible bit-rate assignments in this model. The

results are used to construct an Erlang’s loss model in Section V,

in which we also numerically validate the whole approach.

II. OUTLINE OF THE PROPOSED APPROACH

We want to find an intrinsic relation between the traffic de-

mand, network cell size and users QoS. For this reason, instead

of studying an arbitrary OFDMA network control scheme, we

look at some “reference” one based on a theoretic feasibility

of the resource allocation. Roughly speaking, it admits a new

steaming user if and only if according to the information

theoretic limitations on the feasible bit-rates, it can be served

by the available resources of the network with already present

users (possibly, at the price of some decrease of the bit-rates of

the elastic users).

This control scheme, whose performance has to be studied by

simulation, will be considered as the reference for constructing

other schemes, including some particular one that can be eval-

uated analytically and thus can be used for the purpose of the

network dimensioning. The QoS induced by these conditions

will be shown to be close to the reference one.

A. Resource allocation and feasible bit-rates in OFDMA

The resource to be shared and allocated in OFDMA network

consists of the power and the bandwidth. More specifically, on

the downlink, each base station (BS) should allocate a power and



a bandwidth (sub-carriers) to each user in its cell. In doing so,

the BS should respect the constraints on the maximal total power

and total bandwidth called power and bandwidth constraints

respectively. Once the power and bandwidth allocation is given,

the bit-rate r of each user may not exceed some function

f of the signal-to-noise-and-interference ratio (SINR), that is

r ≤ f(SINR). The function f depends on the assumptions on

the channel between BS and its users. For example in case

of the additive white gaussian noise (AWGN) channel with

single user detection this function is given by the celebrated

Shannon relation f(SINR) = w log2 (1 + SINR) where w is

the bandwidth. This constraint on r is called the information

theory constraint.

We say that a vector of user bit-rates is feasible if it satisfies

the information theory constraint for some resource (power

and bandwidth) allocation satisfying their respective constraints.

Verification of the feasibility of bit-rates is the basis of our “ref-

erence” network control. We will also propose some sufficient

condition for the feasibility problem, whose form allows for

analytical evaluation of the QoS in the network when it is used

for admission and congestion control.

B. Multi-rate Erlang loss model and its blocking probabilities

Users arrive to the network and request some streaming or

elastic service. A (bit simplified) vision of the network control

that we have in this paper is that only streaming users are

blocked. Specifically, they are blocked when their acceptance

would lead to a configuration not satisfying some given ad-

mission condition. The role of this condition is to guarantee

the required service for all already present (streaming) users.

Elastic users are always accepted and their bit-rates are assigned

by the network (by optimizing some fair objective function)

after satisfying the streaming users. The QoS perceived by

the users may be quantified under some particular probabilistic

assumptions on the traffic demand by the blocking probability

for streaming calls and mean throughput of elastic calls.

Assuming some Markov traffic model (so called free model)

and considering an admission condition being some truncation of

the state space of this model, under very general conditions one

can express the blocking probabilities in terms of the stationary

distribution of the free model. Namely, as the probability, that

the free process is close to the boundary of the truncated part

of the space; 3. However, for a complicated admission condition

(complicated form of the space truncation) it is difficult or even

impossible to evaluate analytically this probability, even in the

(most simple) Poisson case of the stationary distribution of the

free process. This difficulty appears when the feasibility of bit-

rates is taken as the admission condition (i.e., in the reference

control scheme).

To cope with this problem, one has to look for some special

forms of the admission condition, where, under Poisson station-

ary distribution of the free process, the evaluation of the blocking

probability simplifies considerably. This is the case, when the

admission condition has a multi-Erlang form; i.e., when it

can be written as the weighted sum of the bit-rates of users

not exceeding some constant. This particular form permits to

calculate the blocking probabilities using the Kaufman-Roberts

3A classical example for this more general relation is the famous Erlang’s
loss formula giving the blocking probability for M/G/c/c loss queue with c
servers and the total capacity of c users as the probability that Poisson number
of users in the stationary M/G/∞ (free) queue is equal to c.

algorithm [13, 20]. Moreover, assuming some appropriate sep-

aration of the time scale of the coexisting streaming and elastic

traffic [7], one can also evaluate the mean throughput of the

elastic traffic using a multi-class processor sharing model (see

for example [5]).

The goal of this paper is to propose some reasonable sufficient

condition for the feasibility of the bit-rates in the multi-Erlang

form, use it as the admission condition in some Erlang’s loss

model and evaluate the corresponding blocking probabilities.

By reasonable we mean inducing a loss of network capacity

up to about 10% for blocking probability close to 0.02, with

respect to the reference network control scheme based on the

exact feasibility admission condition. 4

C. Related work

For a general reference on OFDMA see [17] and the ref-

erences therein. A growing interest in OFDMA has resulted

in many publications proposing various efficient methods for

resource allocation in OFDMA. Here are some recent and/or

highly referenced ones [1, 9, 14, 15, 19, 21, 22]; 5. In general

it is however extremely difficult to evaluate the QoS offered by

the network with these methods implemented. Many such studies

consider the case of a single cell, e.g. [11], [23]. The muti-cell

case is studied in [10] and [18]. In [8] different frequency reuse

schemes are compared.

The present work adopts the approach proposed in [6]

(with a background in [2, 3, 12]) that is implemented in the

dimensioning tool of Orange. It consists in proposing some

“virtual” network control mechanism (not necessarily meant to

be implemented in network controllers) that however is simple

enough and can by studied by the classical tools of queueing

theory. The QoS imposed by this condition is shown to be

close to this of some reference network control, to which “real”

control schemes should be close too.

III. MULTI-CELL OFDMA DOWNLINK MODEL

A. Model assumptions

We will consider a wireless network composed of several base

stations (BS). Each BS is equipped with a single antenna (no

MIMO) and its total power is limited to some given maximal

value. The same frequency spectrum is available to all BS

(frequency reuse factor equal to one). Each BS allocates disjoint

sub-carriers to its users without macrodiversity (each user is

served by exactly one BS). Thus, any given user receives only

other-BS interference that is the sum of powers emitted by other

BS on the sub-carriers allocated to him by his BS. The number

of interfering BS is large and it is reasonable to assume that

the interference power spectral density is constant in the whole

spectrum. 6 Users perform single user detection; the interference

is considered as noise. Efficient (e.g. turbo) codes are used to

obtain bit-rates close to the Shannon limit. In our analysis we

neglect fading effects. However, in the case of non-opportunistic

scheduling, the Rayleigh fading may be tentatively taken into

account in our approach by an appropriate modification of the

AWGN capacity formula that consists in dividing the SINR by 2

4This loss of capacity seems to be acceptable for network operators looking
for rapid network dimensioning tools. Note also that it is evaluated with respect
to the reference network performance assuming some perfect control scheme.

5Google Scholar presents about 2 500 recent publications on the subject
“resource+allocation+OFDMA”.

6A suitable fast sub-carrier permutation (for a given configuration of users)
may give a further justification of this assumption.



(cf [16]). In the case of opportunistic scheduling, further studies

are necessary to account for the fading effect.

B. Model description

The network is composed of a finite set U of BS located on the

plane. We assume that each BS serves users is some exclusive

geometric cell associated to it, which does not evolve in time. At

present, the geometry of the network is not important; it will be

specified in Section V-C1. Lets denote by Lu,m the propagation-

loss between a BS u and a given user m. We will write m ∈ u
when user m is served by base station u.

Each BS u transmits a power Pu,m to each m ∈ u. The total

transmitted power is

Pu = P ′
u +

∑

m∈u

Pu,m (1)

where P ′
u designates the power of common channels (not

dedicated to a specific user). The maximal value of the total

transmitted power is denoted P̃u. We assume that

P ′
u = ǫP̃u (2)

for some given constant 0 < ǫ < 1.

Each BS u allocates some number of sub-carriers of the total

width wm from the total spectrum of width W to each user

m ∈ u, in such a way that two different users of the same BS

have disjoint subsets of sub-carriers. However, since the same

frequency spectrum is allocated (assumed on average uniformly)

by all BS, user m ∈ u receives interference from each base

station v 6= u of power wm

W Pv/Lv,m. We assume that this

interference acts as Gaussian noise, thus we assume that the

SINR of user m ∈ u is equal to

SINRm =
Pu,m/Lu,m

wmN0 + wm

W

∑

v 6=u Pv/Lv,m

where N0 is the power spectral density of the thermal noise.

The bit-rate of user m is denoted by rm.

C. Resource allocation constraints

All powers, bandwidths and bit-rates should be nonnegative,

but we will not write this explicitely. The power constraint is

Pu ≤ P̃u, u ∈ U (3)

The bandwidth constraint is
∑

m∈u

wm ≤ W, u ∈ U (4)

As a consequence of our channel assumption the information

theory constraint is

rm ≤ wm log2 (1 + SINRm) , m ∈ u, u ∈ U (5)

Definition 3.1: We will say that a vector of user bit-rates

(rm) is feasible if there exist powers (Pu,m) and bandwidths

(wm) such that the constraints (3), (4) and (5) are satisfied.

In this case we will also say that (rm) satisfies the feasibility

condition (FC).

The problem of feasibility of a given vector of bit-rates

is crucial for our approach to network dimensioning. In the

following section we will give some more explicit sufficient

conditions allowing to say that some bit-rates are feasible.

IV. BIT-RATE FEASIBILITY CONDITIONS

In order to propose some analytical approach to network

dimensioning, in what follows we propose some more explicit

sufficient conditions for the feasibility of the bit-rates.

A. When all BS emit with their maximal powers

In this section we will assume that all the BS use their

maximal powers; i.e., the condition (3) is replaced by a more

constraining one

Pu = P̃u u ∈ U (6)

In view of (1), this is only possible when each base station has at

least one user, so we assume it implicitly when assumption (6)

is made.

Definition 4.1: We will say that a given vector of user bit-

rates (rm) is feasible at maximal power if the there exist powers

(Pu,m) and bandwidths (wm) satisfying (6), (4) and (5).

Denote for m ∈ u, u ∈ U

f(m) =
∑

v 6=u

Lu,m

Lv,m

P̃v

P̃u

(7)

f ′(m) =
1

1 − ǫ

(

WN0Lu,m

P̃u

+ f(m)

)

, m ∈ u, u ∈ U (8)

ξm =
wm

W

(

2rm/wm − 1
)

(9)

Proposition 4.2: A vector of user bit-rates (rm) is feasible

at maximal power iff there exist bandwidths (wm) satisfying (4)

and the following condition
∑

m∈u

f ′(m)ξm ≤ 1, u ∈ U (10)

Moreover, for any bandwidth allocation (wm) which satisfies (4)

and (10) the following power allocation satisfies (6) and (5)

Pu,m =
f ′(m)ξm

∑

n∈u f ′(n)ξn
(1 − ǫ) P̃u (11)

Proof: Under condition (6), the information theory con-

straint (5) may be rewritten equivalently as

Pu,m ≥ f ′(m)ξm (1 − ǫ) P̃u m ∈ u, u ∈ U (12)

where f ′(m), ξm are given by (8), (9) respectively.

Necessity: Adding (12) over the users m ∈ u and using

assumption (6) with (1), (2) we obtain (10).

Sufficiency: Assume now that for some (wm) satisfying (4)

condition (10) holds true. Then, the power allocation given

by (11) satisfies (12) and obviously (6).

Corollary 4.3: If for a given vector of bit-rates (rm), there

exist bandwidths (wm) satisfying (4) and (10) then (rm) is

feasible.

Proof: Assume first that each base station has at least one

user. Then, by Proposition 4.2, (rm) is feasible at maximal

power and thus is feasible (note that (6) implies (3)).

In a case when some base stations, say in U ′ ⊂ U have

no users, then for them the feasibility problem does not exist.

Consider the remaining base stations and the given vector

of their bit-rates (rm) for m ∈ u ∈ U \ U ′. Take some

bandwidths (wm) satisfying (4) and (10); by our assumption

they exist. Consider the power allocation given by (11). It

satisfies (6) and thus (3). By condition (10) it also satisfies (12),

which is equivalent to a modification of the information theory

condition (5) that consists in replacing Pv by P̃v , v ∈ U . For

v ∈ U \ U ′ Pv = P̃v and for v ∈ U ′ Pv = ǫP̃v ≤ P̃v . Thus,

this modified information theory condition is more constraining,

which means that (12) implies (5). This completes the proof.

We call the condition expressed in Corollary 4.3, the first

sufficient feasibility condition (SFC1).



B. When all BS emit with their maximal powers and the users

have equal power spectral density

In this section, in addition to the maximal emitted power

assumption (6) (when each BS has at least one user), we will

assume that the base stations observe the following condition

Pu,m =
wm

W
(1 − ǫ) P̃u, m ∈ u, u ∈ U (13)

which means that the all users have equal power spectral

density. Note that under condition (13) conditions (4) and (3)

are equivalent. Consequently we will say that:

Definition 4.4: A given vector of user bit-rates (rm) is fea-

sible at maximal power and equal users’ power spectral density

if there exist bandwidths (wm) satisfying
∑

m∈u

wm = W, u ∈ U (14)

and (5) with Pu,m given by (13).

Proposition 4.5: A vector of user bit-rates (rm) is feasible

at maximal power and equal users’ power spectral density iff
∑

m∈u

rm

log2 (1 + 1/f ′(m))
≤ W, u ∈ U (15)

Moreover, in this case the following bandwidth allocation

wm =
rm

log2 (1 + 1/f ′(m))

W
∑

n∈u rn/ log2 (1 + 1/f ′(n))
,

(16)

for m ∈ u, u ∈ U satisfies (14) and (5) with Pu,m given by (13).

Proof: Recall from the proof of Proposition 4.2 that under

the maximal power assumption the information theory con-

straint (5) is equivalent to (12). Using (13) we can further rewrite

it as
wm

W
≥ f ′(m)ξm = f ′(m)

wm

W

(

2rm/wm − 1
)

which is equivalent to

rm ≤ wm log2 (1 + 1/f ′(m)) (17)

Necessity: Evaluating wm form (17), adding over users

m ∈ u and using (14) we obtain (15).

Sufficiency: Assume (15). Consider the bandwidth alloca-

tion given by (16). Obviously it satisfies (14). From (15) and (16)

we deduce (17). This completes the proof.

Corollary 4.6: For a given vector of bit-rates (rm) if condi-

tion (15) is satisfied then this vector is feasible.

Proof: This is obvious under the assumption that each base

station has at least one user. The proof for a general case goes

along the same lines as this of Corollary 4.3.

In this context we call condition (15) the sufficient feasibility

condition (SFC). Note that SFC has the desired multi-Erlang

form allowing for its analytical evaluation.

V. BLOCKING PROBABILITIES FOR STREAMING TRAFFIC

A. Traffic demand

Denote the geographic region covered by the (multi-)cellular

network by D that is assumed to be a bounded subset of the

plane R
2. Consider only streaming calls whose inter-arrival

times to D are independent and identically distributed (i.i.d.)

exponential random variables with rate λ (mean 1/λ). The

position of each arrival is picked at random in D according

to some distribution Q(dx). We assume that users don’t move

during their calls. Each call requires to be served by the network

at a given bit-rate during some service time. The durations of the

different calls are assumed to be i.i.d. exponentially distributed

with mean 1/µ. (This assumption may be relaxed due to the

so-called insensitivity property, but this is not in the scope of

the present paper.) The quantity ρ(D) = λ/µ is called the traffic

demand (expressed in Erlangs) in the whole network.

The set of positions of all users served at a given time is

called configuration of users. Let M be the set of all possible

configurations (this can be formalized e.g. on the basis of the

theory of point processes). We denote by {Nt}t≥0
the process

describing the evolution in time of the user configurations in D

(due to arrivals and departures) in the absence of any admission

control. It takes its values in M. We call it free process. By

our previous assumptions the free process {Nt}t≥0
is a Markov

process that is ergodic and has the stationary Poisson distribution

Π of user configurations on D with mean measure ρ(D)Q(dx).
(Π describes the user configurations and not only their total

number.) Moreover {Nt}t≥0
is reversible with respect to Π.

B. Elang’s loss model

We assume that a given admission condition consists of

verifying whether a given configuration of users with a new

arrival belongs to some set of feasible configurations M
f . We

tacitly assume also that no user departure from a feasible config-

uration can make it unfeasible. Denote the evolution of the free

process modified (controlled) by the given admission condition

by
{

N f
t

}

t≥0
. This process is also Markov. More precisely, it has

the same dynamics as the free process except that the transitions

(i.e. arrivals) that would lead outside M
f are blocked. Such

a modification of the Markov process is called truncation (of

the free process) to M
f . The crucial observation, made by the

reversibility of the free process, is that the truncated process
{

N f
t

}

t≥0
admits as its invariant distribution the truncation of Π

to M
f ; that is, Πf (Γ) = Π

(

Γ ∩ M
f
)

/Π
(

M
f
)

for Γ ⊂ M.

The blocking probability (in some region of the network) is

defined as the proportion of the blocked calls to the total number

of calls arriving to this region in the long run of the system. The

celebrated Erlang’s loss formula allows to express this ergodic

average by means of the invariant measure of the free process

and in our spatial point process formalism takes the form bm =
Π({ν ∈ M

f : ν + εm 6∈ M
f})/Π(Mf), where bm is the blocking

rate of users arriving at the location m ∈ D and ν + εm denotes

configuration ν appended with one user located at m (cf [4]).

Integrating bm against the distribution Q(dm) over some given

subset of the network D gives the blocking probability in this

set (region) of the network.

For this formula to be of any use in the dimensioning process

one needs an efficient way of evaluating the Poisson probabilities

in the numerator and the denominator, in particular Π(Mf). Such

efficient method exists for some particular form of the admission

condition as we explain in what follows.

We say that the admission condition has the multi-Erlang form

if the corresponding set of feasible configurations M
f has the

following form

M
f =

⋂

u∈U

{

ν ∈ M :
∑

m∈u,m∈ν

ϕu
m < Cu

}

(18)

where U is the set of all base stations, the sum of the values of

some function ϕu
m is taken over of users m in configuration ν

and served by BS u. This function may depend on the user m
geographical location, its bit-rate and also on the serving base

station. Cu is some constant, possibly dependent on the base

station. In this case, we may easily evaluate the blocking

probability by discretization of D and using the Kaufman-

Roberts algorithm [13, 20]. Note that the sufficient feasibility

condition (15) has the multi-Erlang form (18).
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Fig. 1. Blocking probability imposed by various admission conditions for the network with cell radius R = 0.525, 3, 5km.

C. Validation of the sufficient condition

1) Model specification: In order to obtain numerical values,

we consider the most popular hexagonal network model, where

the base stations are placed on a regular hexagonal grid. Let

R be the radius of the disc whose area is equal to that of

the hexagonal cell served by each base station, and call R the

cell radius. Bearing in mind the above pattern of base stations,

one considers D =
⋃

u Cu, where Cu ⊂ R
2 are hexagonal

cells constituting the network. More specifically, we consider

4 × 4 = 16 toroidal hexagonal cell model. Thus U consist of

16 BS. We assume a path loss L(r) = (Kr)η, with η = 3.38,

K = 8667. This means that the path loss between BS u and

user m is equal to L(|xu, xm|) where xu, xm ∈ D denote,

respectively, the geometric location of u and m and | · | is the

Euclidean distance.

We consider a streaming traffic of the mean call duration

1/µ = 2min with the required bit rate 180 Kbps. Users arrive

(spatially) uniformly to D with intensity λ. We consider different

values of λ such that the traffic demand per cell λπR2/µ varies

from 0 to 30 Erlangs.

The BS maximal total power is P̃ = 52dBm, the common

channel power P ′ is the fraction ǫ = 0.12 of P̃ and the ambient

noise power WN0 = −103dBm.

2) SFC versus FC: Figure 1 shows the blocking probability

per cell in function of the traffic demand for three different

admission conditions: FC, SFC1 and SFC, for cell radii R =
0.5, 3 and 5km. The curves for FC and SFC1 are obtained by

long simulations7 (several days on a typical PC) while this of

SFC is obtained by the Erlang’s loss formula and Kaufman-

Roberts algorithm, which takes only a few seconds.

The following important observations can be made: the block-

ing probability induced by SFC is close to this of SFC1 that

in turn is sufficiently close to this of FC. The maximal loss of

capacity between FC and SFC, i.e. of the traffic demand that can

be served at the blocking probability close to 0.02, is about 10%.

We conclude that SFC, whose performance can be evaluated

analytically, is a good basis for the dimensioning process.

VI. CONCLUSION

We have proposed a dimensioning method for the downlink

of OFDMA cellular network (like LTE, WiMAX). It is much

faster than simulation since it is based on some multi-rate Erlang

loss model, whose blocking probabilities can be evaluated by

means of the Kaufman-Roberts algorithm. It is also accurate

enough, since it induces only up to (acceptable by future LTE

operators) 10% loss of capacity with respect to a theoretical

reference network control.

7For this both problems are transformed into an optimisation one (of the type
inf of some function to be negative) that is solved by the sub-gradient method.
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