P. J. Besl and N. D. Mckay, A method for registration of 3-D shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.14, issue.2, pp.239-256, 1992.
DOI : 10.1109/34.121791

Z. Zhang, Iterative point matching for registration of free-form curves and surfaces, International Journal of Computer Vision, vol.7, issue.3, pp.119-152, 1994.
DOI : 10.1007/BF01427149

S. Rusinkiewicz and M. Levoy, Efficient variants of the ICP algorithm, Proceedings Third International Conference on 3-D Digital Imaging and Modeling, 2001.
DOI : 10.1109/IM.2001.924423

A. W. Fitzgibbon, Robust registration of 2D and 3D point sets, Image and Vision Computing, vol.21, issue.13-14, pp.1145-1153, 2001.
DOI : 10.1016/j.imavis.2003.09.004

D. Chetverikov, D. Stepanov, and P. Krsek, Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm, Image and Vision Computing, vol.23, issue.3, pp.299-309, 2005.
DOI : 10.1016/j.imavis.2004.05.007

G. C. Sharp, S. W. Lee, and D. K. Wehe, Maximum-Likelihood Registration of Range Images with Missing Data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.1, pp.120-130, 2008.
DOI : 10.1109/TPAMI.2007.1130

D. Demirdjian, Combining Geometric- and View-Based Approaches for Articulated Pose Estimation, European Conference on Computer Vision, pp.183-194, 2004.
DOI : 10.1007/978-3-540-24672-5_15

L. Munderman, S. Corazza, and T. P. Andriacchi, Accurately measuring human movement using articulated ICP with soft-joint constraints and a repository of articulated models, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007.
DOI : 10.1109/CVPR.2007.383302

A. Rangarajan, H. Chui, and F. L. Bookstein, The softassign Procrustes matching algorithm, Information Processing in Medical Imaging (IPMI), pp.29-42, 1997.
DOI : 10.1007/3-540-63046-5_3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Chui and A. Rangarajan, A new point matching algorithm for non-rigid registration, Computer Vision and Image Understanding, vol.89, issue.2-3, pp.114-141, 2003.
DOI : 10.1016/S1077-3142(03)00009-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. Liu, Automatic 3d free form shape matching using the graduated assignment algorithm, Pattern Recognition, vol.38, issue.10, pp.1615-1631, 2005.
DOI : 10.1016/j.patcog.2005.01.008

W. Wells and I. , Statistical approaches to feature-based object recognition, International Journal of Computer Vision, vol.28, issue.12, pp.63-98, 1997.

H. Chui and A. Rangarajan, A feature registration framework using mixture models, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737), pp.190-197, 2000.
DOI : 10.1109/MMBIA.2000.852377

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Granger and X. Pennec, Multi-scale EM-ICP: A Fast and Robust Approach for Surface Registration, European Conference on Computer Vision, pp.418-432, 2002.
DOI : 10.1007/3-540-47979-1_28

URL : https://hal.archives-ouvertes.fr/inria-00615911

A. Myronenko, X. Song, and M. A. Carreira-perpinan, Non-rigid point set registration: Coherent point drift, Proc. of Advances in Neural Information Processing Systems, pp.1009-1016, 2006.
DOI : 10.1109/tpami.2010.46

URL : http://arxiv.org/abs/0905.2635

M. Sofka, G. Yang, and C. V. Stewart, Simultaneous Covariance Driven Correspondence (CDC) and Transformation Estimation in the Expectation Maximization Framework, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007.
DOI : 10.1109/CVPR.2007.383166

B. Jian and B. C. Vemuri, A robust algorithm for point set registration using mixture of Gaussians, IEEE Proc. of the Tenth International Conference on Computer Vision, 2005.

P. Meer, Robust techniques for computer vision, " in Emerging Topics in Computer Vision, 2004.

R. Sinkhorn, A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices, The Annals of Mathematical Statistics, vol.35, issue.2, pp.876-879, 1964.
DOI : 10.1214/aoms/1177703591

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion), Journal of the Royal Statistical Society, Series B, vol.39, pp.1-38, 1977.

C. Fraley and A. E. Raftery, Model-Based Clustering, Discriminant Analysis, and Density Estimation, Journal of the American Statistical Association, vol.97, issue.458, pp.611-631, 2002.
DOI : 10.1198/016214502760047131

K. S. Arun, T. S. Huang, and S. D. Blostein, Least-Squares Fitting of Two 3-D Point Sets, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.9, issue.5, pp.698-700, 1987.
DOI : 10.1109/TPAMI.1987.4767965

B. Horn, Closed-form solution of absolute orientation using orthonormal matrices, Journal of the Optical Society of America A, vol.5, issue.7, pp.1127-1135, 1987.
DOI : 10.1364/JOSAA.5.001127

S. Umeyama, Least-squares estimation of transformation parameters between two point patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, issue.4, pp.376-380, 1991.
DOI : 10.1109/34.88573

J. Williams and M. Bennamoun, A multiple view 3D registration algorithm with statistical error modeling, IEICE Transactions on Information and Systems, issue.8, pp.1662-1670, 2000.

A. I. Yuille, P. Stolorz, and J. Utans, Statistical Physics, Mixtures of Distributions, and the EM Algorithm, Neural Computation, vol.6, issue.2, pp.334-340, 1994.
DOI : 10.1162/neco.1990.2.1.1

B. Luo and E. Hancock, A unified framework for alignment and correspondence, Computer Vision and Image Understanding, vol.92, issue.1, pp.26-55, 2003.
DOI : 10.1016/S1077-3142(03)00097-3

Y. Tsin and T. Kanade, A Correlation-Based Approach to Robust Point Set Registration, Proceedings of the Eighth European Conference on Computer Vision, 2004.
DOI : 10.1007/978-3-540-24672-5_44

F. Wang, B. Vemuri, A. Rangarajan, I. Schmalfuss, and S. Eisenschenk, Simultaneous Nonrigid Registration of Multiple Point Sets and Atlas Construction, Proceedings of the Ninth European Conference on Computer Vision, 2006.
DOI : 10.1109/TPAMI.2007.70829

X. Meng and D. B. Rubin, Maximum likelihood estimation via the ECM algorithm: A general framework, Biometrika, vol.80, issue.2, pp.267-278, 1993.
DOI : 10.1093/biomet/80.2.267

C. Lemarechal and F. Oustry, SDP Relaxations in Combinatorial Optimization from a Lagrangian Viewpoint, Advances in Convex Analysis and Global Optimization, Hadjisavvas and Panos, pp.119-134, 2001.
DOI : 10.1007/978-1-4613-0279-7_6

I. Kakadiaris and D. Metaxas, Model-based estimation of 3D human motion, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.12, pp.1453-1459, 2000.
DOI : 10.1109/34.895978

R. Plaenkers and P. Fua, Articulated soft objects for multiview shape and motion capture, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, issue.9, pp.1182-1187, 2003.
DOI : 10.1109/TPAMI.2003.1227995

C. Bregler, J. Malik, and K. Pullen, Twist Based Acquisition and Tracking of Animal and Human Kinematics, International Journal of Computer Vision, vol.56, issue.3, pp.179-194, 2004.
DOI : 10.1023/B:VISI.0000011203.00237.9b

D. Knossow, R. Ronfard, and R. Horaud, Human Motion Tracking with a Kinematic Parameterization of??Extremal Contours, International Journal of Computer Vision, vol.48, issue.1, pp.247-269, 2008.
DOI : 10.1007/s11263-007-0116-2

URL : https://hal.archives-ouvertes.fr/inria-00104098

R. Horaud, M. Niskanen, G. Dewaele, and E. Boyer, Human Motion Tracking by Registering an Articulated Surface to 3D Points and Normals, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.1, pp.158-164, 2009.
DOI : 10.1109/TPAMI.2008.108

URL : https://hal.archives-ouvertes.fr/inria-00446898

S. Pellegrini, K. Schindler, and D. Nardi, A generalization of the ICP algorithm for articulated bodies, Proc. of the British Machine Vision Conference, 2008.

J. D. Banfield and A. E. Raftery, Model-Based Gaussian and Non-Gaussian Clustering, Biometrics, vol.49, issue.3, pp.803-821, 2002.
DOI : 10.2307/2532201

C. Hennig, Breakdown points for maximum likelihood estimators of location?scale mixtures, The Annals of Statistics, vol.32, issue.4, pp.1313-1340, 2004.
DOI : 10.1214/009053604000000571

C. Hennig and P. Coretto, The Noise Component in Model-based Cluster Analysis, Proceedings of the 31st Annual Conference of the German Classification Society on Data Analysis Machine Learning, and Applications, 2007.
DOI : 10.1007/978-3-540-78246-9_16

R. A. Redner and H. F. Walker, Mixture Densities, Maximum Likelihood and the EM Algorithm, SIAM Review, vol.26, issue.2, pp.195-239, 1984.
DOI : 10.1137/1026034

G. J. Mclachlan and T. Krishnan, The EM Algorithm and Extensions, 1997.

P. J. Rousseeuw, Least Median of Squares Regression, Journal of the American Statistical Association, vol.53, issue.388, pp.871-880, 1984.
DOI : 10.1214/aos/1176345451

P. J. Rousseeuw and S. Van-aelst, Positive-breakdown robust methods in computer vision, Computing Science and Statistics Interface Foundation of North America, pp.451-460, 1999.

C. Bishop, Pattern Recognition and Machine Learning, 2006.

S. Ingrassia and R. Rocci, Constrained monotone EM algorithms for finite mixture of multivariate Gaussians, Computational Statistics & Data Analysis, vol.51, issue.11, pp.5339-5351, 2007.
DOI : 10.1016/j.csda.2006.10.011

R. J. Hathaway, A Constrained Formulation of Maximum-Likelihood Estimation for Normal Mixture Distributions, The Annals of Statistics, vol.13, issue.2, pp.795-800, 1985.
DOI : 10.1214/aos/1176349557

C. Lemarechal and F. Oustry, Semidefinite relaxations and Lagrangian duality with application to combinatorial optimization, INRIA, Tech. Rep, vol.3710, 1999.
URL : https://hal.archives-ouvertes.fr/inria-00072958

J. M. Mccarthy, Introduction to Theoretical Kinematics, 1990.

G. Dewaele, F. Devernay, and R. Horaud, Hand Motion from 3D Point Trajectories and a Smooth Surface Model, Proc. of the Eighth European Conference on Computer Vision, ser, pp.495-507, 2004.
DOI : 10.1007/978-3-540-24670-1_38

URL : https://hal.archives-ouvertes.fr/inria-00262293

G. Celeux and G. Govaert, A classification EM algorithm for clustering and two stochastic versions, Computational statistics and data analysis, pp.315-332, 1992.
DOI : 10.1016/0167-9473(92)90042-E

URL : https://hal.archives-ouvertes.fr/inria-00075196

B. Thiesson, C. Meek, and D. Heckerman, Accelerating EM for large databases, Machine Learning, pp.279-299, 2001.

J. Verbeek, J. Nunnink, and N. Vlassis, Accelerated EM-based clustering of large data sets, Data Mining and Knowledge Discovery, vol.13, issue.3, pp.291-307, 2006.
DOI : 10.1007/s10618-005-0033-3

URL : https://hal.archives-ouvertes.fr/inria-00321022