
HAL Id: inria-00432373
https://inria.hal.science/inria-00432373

Submitted on 16 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Undo Framework for P2P Collaborative Editing
Stéphane Weiss, Pascal Urso, Pascal Molli

To cite this version:
Stéphane Weiss, Pascal Urso, Pascal Molli. An Undo Framework for P2P Collaborative Editing. 4th
International Conference on Collaborative Computing : Networking, Applications and Worksharing
- CollaborateCom 2008, Nov 2008, Orlando, United States. pp.529-544, �10.1007/978-3-642-03354-
4_40�. �inria-00432373�

https://inria.hal.science/inria-00432373
https://hal.archives-ouvertes.fr

An Undo Framework for P2P Collaborative Editing

Stéphane Weiss, Pascal Urso and Pascal Molli

Nancy-Université, LORIA,

F-54506, Vandoeuvre-lès-Nancy Cedex, France

{weiss,urso,molli}@loria.fr,

WWW home page:

http://www.loria.fr/∼{weiss,urso,molli}

Abstract. Existing Peer to Peer (P2P) collaborative editing systems do not al-

low any user to undo any modification. However, in such systems, users are not

aware of others’ modifications, hence, they could obtain duplicate work, conflict-

ing modifications or malicious contents. In this paper, we propose a new undo

framework called “UNO: Undo as a New Operation” in the Operational Trans-

formation approach which does not limit the scalability of P2P algorithms. As

a proof of concept, we apply our framework to build a P2P collaborative editor

with undo capabilities in which any user can undo any modification.

Key words: Group undo, P2P Collaborative Editing, Operational Transformation

1 Introduction

Collaborative editing systems allow people distributed in time and space to work to-

gether on shared documents. The major benefits of collaborative writing include reduc-

ing task completion time, reducing errors, getting different viewpoints and skills, and

obtaining an accurate document [1, 2].

Nowadays, collaborative editing systems are becoming Peer to Peer (P2P): Version

Control Systems (VCS) turn into Distributed Version Control Systems (DVCS), Wiki

systems become P2P Wiki system [3, 4, 5] and even softphones change into P2P soft-

phones such as skype. P2P architecture provides massive collaboration, resistance to

failure and censorship. Such systems could also increase data availability and allow

off-line work.

In a P2P environment, users are not immediately aware of others’ concurrent mod-

ifications. Therefore, a site merging its document with another peer could obtain dupli-

cate work, conflicting modifications or malicious contents. In such a context, an undo

feature is mandatory. Every user must be able to revert any undesired change. More-

over, the modification to undo is not necessary the last received one, hence, users must

be able to undo any operation in their history. Therefore, we need to provide the most

general model of undo mechanism which allows any user to undo any edit operation at

any time.

All existing undo approaches in the literature [6, 7, 8, 9, 10] are specific to a col-

laborative editing system. Unfortunately, none of these systems is designed to support

P2P architectures. Therefore, none of the existing approaches could provide an undo

2 Weiss, Urso and Molli.

for P2P systems. On the other hand, some existing collaborative softwares such as Wiki

or DVCS propose an undo mechanism. However , wiki systems may fail to undo any

operation. Moreover, such systems are centralized, hence, they cannot be used in P2P

environment. DVCS allow any user to undo any operation. Nevertheless, DVCS do not

bring any warranties about data consistency.

The Operational Transformation (OT) [9, 11] framework, purposes a consistency

model (CCI) to preserve Causality, Converge and Intention. OT is recognized as a suit-

able approach to maintain consistency of shared documents. This approach is applied

to develop both real-time and asynchronous collaborative editors [12, 13]. It consists of

two main components: a generic integration algorithm which manages concurrent oper-

ations and transformation functions specific to a data model. For instance, MOT2 [13]

is an integration algorithm designed for P2P architecture.

In this paper, we propose an undo in the OT framework that respects P2P algo-

rithms’ constraints. We call our approach UNO : Undo as a New Operation, because

it aims to treat undo operation as any other operation newly generated by users. This

approach, inspired from well established collaborative tools, allows building a generic

schema which can be introduced in any OT approach without affecting its scalability.

As a proof of concept, we apply our framework on the TTF functions which are also

the only published set of transformation functions which can be used with MOT2 (See

appendix section A). Therefore, in this paper, we obtain a P2P collaborative text editor

with undo features.

The structure of the paper is as follows. We first motivate the need of a novel undo

approach for P2P systems in Section 2. We explain the main idea of the UNO in Sec-

tion 3. Then, we briefly describe the OT approach in Section 4. We present our approach

in Section 5 and apply it on the TTF functions in Section 6. Section 7 deals with the

UNO framework correctness. Finally, we compare our approach with existing undo ap-

proaches in Section 9.

2 Motivation

P2P collaborative systems bring several exciting features:

– Massive editing: thousand of users can work on the same project and reduce dras-

tically the task completion time,

– Off-line work: users edit their own copy, hence, they can work online or off-line,

– Privacy: users decide when they want to publish their modifications,

– Mobilibity: such systems support ad-hoc collaboration.

However, merging data over a P2P network implies some inconvenient behaviors:

– Obviously, each user cannot know what other users are doing: we can have dupli-

cate work or conflicting modifications,

– Malicious peers could degrade existing work, merging with such peers will propa-

gate this alteration to the whole network.

Such scenarios are not problematics as soon as users are capable of quickly reverting

undesired changes. Therefore, in such systems, the undo feature is mandatory.

UNO Framework 3

In OT, several approaches allow undoing any operation at any time such as GOTO-

ANYUNDO[14], COT [10]. The GOTO-ANYUNDO approach uses state vectors (aka

vector clocks [15]) while the COT approach uses extended state vectors [10] called

“context vectors”. A state vector is a vector which contains a logical clock entry per

host present in the network. As a consequence, state vector’s size grows linearly with

the number of site in the system. In P2P networks, the number of site is potentially

unbounded and not even known by network participants. Therefore, state vectors are

not compatible with P2P constraints such as scalability or churn.

Finally, we need to design an undo approach which does not limit the integration

algorithm’s scalability.

3 UNO idea

The main idea of our approach is to treat undo operations as any other operation gener-

ated by users. To illustrate this idea, assume that a text document is replicated (Figure 1).

At the beginning, the document contains only “Rendezvous”. Then a first user inserts

the sentence “at nine.” at line 2. Concurrently, a second user inserts “At 8 in the park:”

at the beginning of the document. And finally, a user wants to undo the operation “ins(2,

at nine.)”.

Text document History

Rendezvous

ins(2, at nine.) // ins(2, at nine.)

do−undo−pair∗

Rendezvous
at nine.

undo(ins(2, at nine.))
= del(2, at nine.)

ins(1, At 8 in the park:) // ins(1, At 8 in the park:)

At 8 in the park:
Rendezvous

at nine.

undo(ins(2, at nine.))

JJ

(a) Undo Idea

Text document History

Rendezvous

ins(2, at nine.) // ins(2, at nine.)

Rendezvous
at nine.

ins(1, At 8 in the park:) // ins(1, At 8 in the park:)

At 8 in the park:
Rendezvous

at nine.

undo(ins(2, at nine.)) // undo(ins(2, at nine.))
=del(3, at nine.)

(b) UNO Idea

Fig. 1. UNO idea.

4 Weiss, Urso and Molli.

Existing OT undo approaches roughly consist in forming do-undo-pair by coupling

the undo operation with the undone operation (Figure 1(a)). Unfortunately, integration

algorithms are designed to generate and integrate operations only on the current state.

Thus, specific mechanisms, such as “context vectors” [10], are designed to support

such insertion. As a result, these undo mechanisms are tightly coupled to a specific

integration algorithm that may not scale.

To obtain a generic undo mechanism, we propose to use the same schema as mas-

sively used in collaborative tools such as VCS or Wiki. For instance, in SVN ([16] page

91), undoing a previous revision consists in applying a modification and then commit-

ting it normally. In the UNO, we produce a new operation that has the wished effect on

the current state, then we integrate it as any other user’s operation. Therefore, the undo

operation will be placed in the history according the user’s real schedule (Figure 1(b)).

Thus, we obtain an undo mechanism that can be introduced in any OT collaborative

editing system without modifying the way operations are integrated. Consequently, the

scalability of the targeted OT system is not limited by the undo mechanism.

In the Figure 1, when we want to undo the operation “insert(2, at nine.)”, we want

to remove the third line “at nine.”. Our idea is simply to generate a new operation

which removes the third line instead of undoing the insertion (see Figure 1(b)). This

new operation is generated on the current state, hence, all integration algorithms can

handle it.

In the following sections, we give the details required to implement this idea.

4 The Operational Transformation (OT) approach

In the OT approach, shared documents are replicated. Each site contains its own copy

of the document, and a user is supposed to work at one site. OT approach allows any

user to modify at any time his own copy of the document. Therefore, different copies

of the same document can be modified in parallel. In the OT model, a modification is

represented as an operation. Each site sends all the locally generated operations to the

other sites. On these other sites, such operations are seen as remote operations which

have to be integrated for execution.

To allow convergence, these algorithms use a transformation function T to modify

remote operations according to local ones. For instance, we consider two sites shar-

ing the same text document (Figure 2). We call T (op1, op2) the remote operation op1

transformed against the local operation op2. Of course the definition of the function

T is specific to the targeted data type. However, defining a transformation function is

not sufficient to ensure correctness, the transformation function must also respect some

formal properties (see Section 7).

5 Proposition: Undo as a New Operation

The main advantage of our undo scheme is that undo operations are treated as regular

ones, i.e. do-operations, when integrated on local and remote sites. Thus, undo opera-

tions do not require any special treatment on remote sites.

UNO Framework 5

Site1
”Cat”

Site2
”Cat”

ins(2, ‘o′)

**UUUUUUUUUUUUUUUUUUUUUUUUUUU
ins(4, ‘s′)

ttiiiiiiiiiiiiiiiiiiiiiiiiiii

”Coat” ”Cats”

T (ins(4, ‘s′), ins(2, ‘o′)) = ins(5, ‘s′) T (ins(2, ‘o′), ins(4, ‘s′)) = ins(2, ‘o′)

”Coats” ”Coats”

Fig. 2. Transformations

Given a set of operations, an instance of the UNO framework is built in three steps.

First, we define the (possibly new) operations that counterbalance original ones. Sec-

ond, we define the transformation functions for these new operations, if any. Third, we

formally verify the properties required by the targeted integration algorithm.

Then, a simple algorithm is used to provide the undo feature.

Algorithm We call undo(op) the undo operation of op, i.e. the operation which coun-

terbalances the effect of op, if op is the last executed operation. undo(op) can be either

a newly defined operation or an operation from the initial set.

However, since op may not be the last executed operation, we need to compute an

operation undo(op)′ which is defined on the current state. undo(op)′ is the transforma-

tion of undo(op) according to all operations which have been executed on the local site

since the execution of op. To compute undo(op)′, we use the following algorithm (also

illustrated in Figure 3):

UNO(HB, i):

op:= undo(HB.get(i))

j := i+1

while(j <= HB.size)

do

op:= T(op, HB.get(j))

j := j+1

endwhile

return op

Therefore, undo(op)′ is defined on the current state of the document. Thus, undo(op)′

is considered as a normal operation directly done by a user when it will be integrated

and transformed on remote sites.

Since undo operations are treated as normal operations, these transformation func-

tions are standard transformation functions, and thus must be proven correct according

to CCI criteria, see Section 7 about correctness of the approach.

Complexity of the UNO framework The UNO algorithm’s time complexity is linear

with the number of operation received. The space complexity is constant, indeed, the

6 Weiss, Urso and Molli.

site 1

undo(op)

==
==

=
op

��

op1

. . .

opn

undo(op)′ = T (undo(op), op1 ◦ . . . ◦ opn)

Fig. 3. Naive undo Algorithm

algorithm does not require any data structure except one operation. Since the UNO

framework complexity does not depend on the number of site, it can be applied to P2P

architecture.

6 Instantiation

Now, we want to apply our undo framework to provide the undo feature in a P2P col-

laborative text editor built with MOT2 and TTF.

6.1 The Tombstones Transformation Functions

The TTF approach is divided in two parts: the model and the transformation functions.

A detailed explanation of the TTF approach and its correctness can be found in [17].

The main idea of the model is to keep deleted characters as tombstones. The doc-

ument’s view only shows visible characters: tombstones are hidden. Consequently, the

model differs from the view. Figure 4 illustrates this. Assume that a document is in a

state “abcd”. Now, a user deletes the character ‘b’. In the TTF model, the character

is replaced by a tombstone (i.e. the character with a visibility flag set to false). The

view differs from the model as the view only contains “acd” while the model contains

“ab/cd”. Since tombstones are necessary to achieve consistency, they cannot be removed

and thus, the operation “Ins” is not inversible.

6.2 Undo operation

The first step in applying the UNO framework is to define the undo operations and their

effects. Undoing an operation must return the system to a state on which the undone

operation was never performed. In our context, this definition implies that a character

deleted concurrently by N sites should not be visible unless each of these N delete

operations are undone.

UNO Framework 7

Initial state: ‘a’ ‘b’ ‘c’ ‘d’

Model
after Del(2, sid) ‘a’ ‘b/’ ‘c’ ‘d’

View
after Del(2, sid) ‘a’ ‘c’ ‘d’

Fig. 4. Model in the TTF approach.

To achieve such a behavior, we simply propose to replace the visibility flag of each

character by a visibility level. This visibility level is an integer. Initially, an inserted

character has a visibility level of 1. Each time we undo an insertion operation, the visi-

bility level of the corresponding character is decreased. Each time we undo a deletion,

we increase the visibility level of this character.

A character is said “visible” and appears in the document’s view if its visibility

level is at least 1. Similarly, a character is said “invisible” and does not appear in the

document’s view if its visibility level is less than 1. Since characters are just marked as

invisible, we introduce a new operation “Undel(p,sid)” which effect is to increase the

visibility level of the character at position “p”. The use of visibility levels is illustrated

in Figure 5.

Site1
”a1b1c1”

Site2
”a1b1c1”

Del(0, sid1)

!!DD
DD

DD
DD

DD
DD

DD

undo

))

Del(0, sid2)

����
��
��
��
��
��
��
��
��
��
��
��

“a/0b1c
′′

1 “a/0b1c
′′

1

Undel(0, sid1)

!!DD
DD

DD
DD

DD
DD

DD
Del(0, sid1)

“a1b1c
′′

1 “a/−1b1c
′′

1

Del(0, sid2) Undel(0, sid1)

“a/0b1c
′′

1 “a/0b1c
′′

1

Fig. 5. Visibility level

The function undo(op) links normal operations to undo operations. As we have

defined undo operations, we can now write the function undo(op).

undo(op):

IF op = Ins(p, c, sid) THEN undo(op) := Del(p, sid)

8 Weiss, Urso and Molli.

IF op = Del(p, sid) THEN undo(op) := Undel(p, sid)
IF op = Undel(p, sid) THEN undo(op) := Del(p, sid)

The second step is to write transformation functions for all operations. The defini-

tion of the transformation functions for the operations “Ins” and “Del” are the same as

in original TTF approach.

T(Ins (p1, c1, sid1),Undel(p2, sid2)):

return Ins (p1, c1, sid1)

end

T(Del(p1, sid1), Undel(p2, sid2)):

return Del(p1, sid1)

end

T(Undel(p1, sid1), Ins(p2, c2, sid2)):

if (p1 < p2) return Undel(p1, sid1)

else return Undel(p1 + 1, sid1)

end

T(Undel(p1, sid1), Undel(p2, sid2)):

return Undel(p1, sid1)

end

T(Undel(p1, sid1), Del(p2, sid2)):

return Undel(p1, sid1)

end

Moreover, since these transformation functions are bijective, they can easily be

reversed. Consequently, we can apply this approach with integration algorithms as

SOCT2, GOTO which require reversible transformation functions.

7 Correctness

An OT system is considered as correct if it respects the CCI [9] criteria:

Causality: This criterion ensures that all operations ordered by a precedence relation,

in the sense of the Lamport’s happened-before relation [18], will be executed in the

same order on every copy.

Convergence: The system converges if all copies are identical when the system is idle.

Intention: The expected effect of an operation should be observed on all copies. It

must be ensured by the transformation functions and by the integration algorithm.

In [13], the authors show how MOT2 ensures Causality. Convergence is achieved if

the transformation functions satisfy two properties [19]:

* TP1: The transformation property TP1 defines a state equality. The state obtained

by the execution of an operation op1 on a state S followed by the execution of the

UNO Framework 9

operation T (op2, op1) should be equal to the state obtained by the execution of op2

on a state S followed by the execution of T (op1, op2) :

TP1 : S ◦ op1 ◦ T (op2, op1) = S ◦ op2 ◦ T (op1, op2)

* TP2: The property TP2 ensures that the transformation of an operation against a

sequence of operations does not depend on the transformation order of operations

in this sequence.

TP2 : T (op3, op1 ◦ T (op2, op1)) = T (op3, op2 ◦ T (op1, op2))

Based on some problematic scenarios called “undo puzzles”, prior works expressed

the need of additional properties to obtain a correct undo. Two properties IP2 and IP3
are proposed [7, 20] to solve these scenarios. However, none shows that these properties

are necessary and sufficient to ensure a correct undo. For instance, the property IP2
is not respected by our transformation functions while the corresponding problematic

scenario does not appear (Figure 6).

Site1 Site2

“ab′′ “ab′′

Del(0, a, s1) // Del(0, a, s1)

“a/b′′ “a/b′′

Del(1, b, s1) // Del(1, b, s1)

“a/b/′′ “a/b/′′

UNO(Del(0, a, s1)) = Undel(0, a, s1)

**VVVVVVVVVVVVVVVVVVVVVVVVV
UNO(Del(1, b, s1)) = Undel(1, b, s2)

tthhhhhhhhhhhhhhhhhhhhhhhhh

“ab/′′ “a/b′′

Undel(1, b, s2) Undel(0, a, s1)

“ab′′ “ab′′

Fig. 6. IP2 undo puzzle

The condition IP3 is formally defined as:

IP3 : T (undo(op), T (seq, op)) = undo(T (op, seq))

To illustrate this condition, Figure 7, two sites make concurrent operations. Site1 gen-

erates op while site 2 generates a sequence of operations seq. Both sites receive re-

mote operations, transform and integrate them. Now, they are on the same state. Conse-

quently, if they want to undo the same operation on the same state, they must obviously

10 Weiss, Urso and Molli.

generate the same operation. Site1 generates undo(op) and transforms it against follow-

ing operations T (seq, op). Site2 undoes the last received operation which is T (op, seq).
These two undo operations are defined on the same state, they undo the same operation,

so the resulting operation must be the same. The verification of this property ensures

that whenever an operation is undone, the undo effect remains the same.

Site1 Site2

undo(op)

**

opoo

,,XXXXXXXXXXXXXXXXXXXX Seq

rrffffffffffffffffffff

Seq′ = T (Seq, op) op′ = T (op, Seq) // undo(op′)

ss
undo(op)′ = T (undo(op), Seq′) undo(op′) = undo(T (op, Seq))

Fig. 7. Respect of the undo effect

So, there are properties to verify in order to ensure a correct OT system with undo.

Due to their conciseness, these properties are theoretically easy to prove. However, one

of the particularity of the OT approach is the huge numbers of cases to check.

In such conditions, a hand proof is error-prone. Indeed, many hand-proven transfor-

mation functions were finally revealed false (all counter examples can be found in [17]).

On another hand, each of the cases to check can be easily handled by an auto-

mated formal theorem prover. Consequently, we choose to use the proof environment

VOTE [21] based on the theorem prover Spike [22, 23] which generates all the cases

and ensures the verification of all properties.

Using the proof environment VOTE [21], we have proven that our transformation

functions verify the properties TP1, TP2 and IP3. The system specification given

to the theorem prover Spike1 can be reviewed and tested at the following url: http:

//graveyard.sf.net/.

8 Integrating the UNO with existing integration algorithms

In the OT framework, integration algorithms (SOCT2, SOCT4, GOTO, COT, MOT2)

are defined for operations (with no assumption about the number or the kind of opera-

tions) and need transformation functions to deal with these operations.

The UNO framework extends a set of operations and transformation functions to

support a recovery mechanism. We obtain a new set of operations and transformation

functions. Consequently, the resulting set can be handled by any existing integration

algorithm.

1 http://lita.sciences.univ-metz.fr/˜stratula

UNO Framework 11

Our framework also requires the UNO algorithm. To undo an operation op, we gen-

erate an undo operation undo(op). The UNO algorithm transforms undo(op) against

all operations which have been executed after op. For this stage, undo(op) is considered

as concurrent to all operations after op. Fortunately, the main goal of every integration

algorithm is to transform an operation against a set of concurrent operations.

Consequently, any OT integration algorithm can determine the undo operation. The

resulting operation is treated as a normal operation. Thus, the UNO algorithm can be

easily integrated in any integration algorithm. Of course, this requires to remove the

undo dedicated treatment from these algorithm (such as the “mirror” and “fold” func-

tions of adOPTed or “ensure-IPXSafety” of COT).

As a proof of concept, we build the Graveyard prototype2. Graveyard is an open-

source collaborative text editor that allow any user to undo any operation. It relies ei-

ther on the MOT2 algorithm or on the SOCT2 algorithm for integrating concurrent

operations and it uses the TTF transformation functions with related undo operations.

However, we can replace MOT2 by SOCT4, adOPTed or GOTO and obtain the same

result.

9 Related Work

The first selective undo was proposed in [7]. To undo an operation, the authors pro-

pose to swap it with following operations in the history. Then, the resulting operation’s

inverse is applied. However, swapping two operations in the history is not always pos-

sible, hence, the authors also add the notion of conflict. If a conflict occurs, the undo is

aborted. Therefore, this framework does not allow undoing any operation.

In [24], the authors introduce an undo specific to the adOPTed algorithm by adding

two functions called “mirror” and “fold”. This solution allows undoing operations in the

inverse chronological order, i.e. from the last operation to the first one without skipping

one. This approach does not allow undoing any operation. Since the adOPTed algo-

rithm requires transformation functions satisfying TP1 and TP2, we can use the TTF

functions in association with our undo approach to provide an undo for any operation.

The GOTO-ANYUNDO approach [20] is associated with the GOTO integration

algorithm. This approach introduces a new undo algorithm called ANYUNDO-X. This

undo approach is the first to solve known undo problematic scenarios while allowing

any user to undo any operation at any time. GOTO-ANYUNDO treats specifically undo

operations: undone and undo operations are grouped to create do-undo pairs. While

integrating an undo operation, the history buffer is modified in order to remove the

undone operation effect from the history. The GOTO-ANYUNDO approach is designed

for real-time editing. In such a context, state vectors are adequate, however they are not

compatible with P2P environment.

In [25], the authors define two properties C3 and C4 which are similar to IP2 and

IP3. To ensure the verification of these two properties, the authors introduce a specific

operation “undo(op)”. This approach defines generic transformation functions for this

operation “undo(op)” using the proposed transformation functions. The main idea to

2 http://graveyard.sf.net

12 Weiss, Urso and Molli.

enforce C4 is to swap the operations and undo the resulting operation. Unfortunately,

the authors do not discuss the case of causally dependent operations. This leads to

incorrect results.

The COT approach [10] is an OT system designed for real-time editing which intro-

duces the notion of “context vector”. A context vector is associated to each operation

and represents the operations executed before its generation. Unlike state vectors, con-

text vectors captures undo operations causality and concurrency. As state vectors, the

cost of context vector is compatible with real-time editing, however, they are not suit-

able in a P2P environment.

Distributed version control systems (DVCS) as Git 3 are P2P collaborative systems

mainly used for source code editing. They propose an undo comparable to the UNO

approach: they compute a new patch to remove the effect of a previous one and treat

it as a new patch. However, DVCS lack of a formal framework, indeed, there is no

property to validate DVCS’ correctness. On the contrary, the UNO approach is based

on the CCI framework.

Repliwiki, Distriwiki and Wooki are P2P wiki systems. Unfortunately, they do not

provide an undo mechanism.

Discussion Algorithms similar to the UNO algorithm already appear in the literature.

For instance, [25] calls it the naive undo algorithm. However, it was never supported

as a correct undo algorithm. The reason is its apparent inability to solve known undo-

puzzles.

In this paper, we have shown that it provides a correct undo

– even if the IP2 condition is relaxed

– and if the operation set and the transformation functions are able to respect the CCI

criteria including the undo intentions.

For instance, the operation “Ins” does not realize exactly the undo intention of the op-

eration “Del”, in Figure 8, this leads to swap the characters ’a’ and ’b’. The intention

of “Ins” is “insert a new element”. On the other hand the operation “Undel” realizes the

intention “makes a deleted element reappear”. Thus, if a framework wants to use the

operation “Ins” to undo the operation “Del”, it is forced to introduce complex integra-

tion mechanisms to avoid undo-puzzle to occurs. On the contrary, using an operation

expressing the undo intention solves this puzzle as show in Figure 6.

We thus strongly claim, that operations and transformation functions which ensure

undo intention preservation allow building more generic, more efficient and correct

undo mechanism.

10 Conclusions

In all existing OT approaches, undo is designed for real-time editing. In this paper, we

introduced our undo framework which provides undo feature for all integration algo-

rithms even P2P ones.

In this paper, we propose:

3 http://git.or.cz/

UNO Framework 13

Site1 Site2

“ab′′ “ab′′

Del(0, a) // Del(0, a)

“b′′ “b′′

Del(0, b) // Del(0, b)

“′′ “′′

Undo(Del(0, a)) = Ins(0, a)

))TTTTTTTTTTTTTTTTTTT
Undo(Del(0, b)) = Ins(0, b)

uujjjjjjjjjjjjjjjjjjj

“a′′ “b′′

Ins(0, b) Ins(1, a)

“ba′′ “ba′′

Fig. 8. IP2 undo puzzle

– a generic undo framework: This framework can be applied to all set of transforma-

tion functions to provide an undo mechanism on several date type. An important

feature of our approach is that the resulting transformation functions remain generic

towards integration algorithms. Consequently, we can apply these functions with

COT, SOCT2, SOCT4, MOT2, GOTO and adOPTed.

– a CCI compliant framework: The CCI criteria is a formal framework for collabo-

rative editing correctness. The UNO framework uses the CCI to ensure its correct-

ness.

– a scalable framework: The UNO approach time and space complexity is constant

with the number of site. Therefore, it is particularly adequate for P2P environment.

The UNO algorithm is efficient since it is only linear in time with the number of

operation received. We also show that a simple and efficient algorithm considered

incorrect can be instantiated to provide a correct undo.

– an implementation: We have a complete solution to build correct P2P text editors

with a flexible undo capability. The TTF transformation functions with the undo

proposed in this paper are implemented in the Graveyard4 collaborative text editor.

Graveyard is a prototype which can be used with MOT2 for P2P or SOCT2.

The CCI framework includes the Intention definition which is not formally defined

in the general case. In the UNO, the undo behavior depends on the Intention criterion.

Therefore, as future work, we will try to formally defined the Intention. We plan also to

implement a DVCS and a wiki system using the UNO approach.

4 http://graveyard.sf.net

14 Weiss, Urso and Molli.

References

1. S. G. Tammaro, J. N. Mosier, N. C. Goodwin, and G. Spitz, “Collaborative Writing Is Hard

to Support: A Field Study of Collaborative Writing,” Computer-Supported Cooperative Work

- JCSCW, vol. 6, no. 1, pp. 19–51, March 1997.

2. S. Noël and J.-M. Robert, “Empirical study on collaborative writing: What do co-authors do,

use, and like?” Computer Supported Cooperative Work - JCSCW, vol. 13, no. 1, pp. 63–89,

March 2004.

3. J. C. Morris, “Distriwiki: : a distributed peer-to-peer wiki network,” in Int. Sym. Wikis, 2007,

pp. 69–74.

4. B. B. Kang, C. R. Black, S. Aangi-Reddy, and A. E. Masri, “Repliwiki: A next generation ar-

chitecture for wikipedia,” (Unpublished) http://isr.uncc.edu/repliwiki/repliwiki-conference.

pdf.

5. S. Weiss, P. Urso, and P. Molli, “Wooki: a p2p wiki-based collaborative writing tool,” in Web

Information Systems Engineering. Nancy, France: Springer, December 2007.

6. T. Berlage and A. Genau, “A framework for shared applications with a replicated architec-

ture.” in ACM Symposium on User Interface Software and Technology, 1993, pp. 249–257.

7. A. Prakash and M. J. Knister, “A framework for undoing actions in collaborative systems.”

ACM Trans. Comput.-Hum. Interact., vol. 1, no. 4, pp. 295–330, 1994.

8. R. Choudhary and P. Dewan, “A general multi-user undo/redo model.” in ECSCW, 1995, pp.

229–246.

9. C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving convergence, causality preserva-

tion, and intention preservation in real-time cooperative editing systems,” ACM Transactions

on Computer-Human Interaction (TOCHI), vol. 5, no. 1, pp. 63–108, Mars 1998.

10. D. Sun and C. Sun, “Operation Context and Context-based Operational Transformation,”

in Proceedings of the ACM Conference on Computer-Supported Cooperative Work - CSCW

2006. Banff, Alberta, Canada: ACM Press, Novembre 2006, pp. 279–288.

11. C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware systems.” in SIGMOD Con-

ference, J. Clifford, B. G. Lindsay, and D. Maier, Eds. ACM Press, 1989, pp. 399–407.

12. P. Molli, G. Oster, H. Skaf-Molli, and A. Imine, “Using the transformational approach to

build a safe and generic data synchronizer,” in Proceedings of the ACM SIGGROUP Con-

ference on Supporting Group Work - GROUP 2003. Sanibel Island, Florida, USA: ACM

Press, November 2003, pp. 212–220.

13. M. Cart and J. Ferri, “Asynchronous reconciliation based on operational transformation for

p2p collaborative environments,” in CollaborateCom, 2007.

14. C. Sun and D. Chen, “Consistency maintenance in real-time collaborative graphics editing

systems,” ACM Transactions on Computer-Human Interaction (TOCHI), vol. 9, no. 1, pp.

1–41, Mars 2002.

15. F. Mattern, “Virtual time and global states of distributed systems,” in Proceedings of the

International Workshop on Parallel and Distributed Algorithms, M. C. et al., Ed. Chteau

de Bonas, France: Elsevier Science Publishers, Octobre 1989, pp. 215–226.

16. B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato, Version Control with Subversion.

O’Reilly Media, 2007. [Online]. Available: http://svnbook.red-bean.com/

17. G. Oster, P. Urso, P. Molli, and A. Imine, “Tombstone transformation functions for ensur-

ing consistency in collaborative editing systems,” in The Second International Conference

on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom

2006). Atlanta, Georgia, USA: IEEE Press, November 2006.

18. L. Lamport, “Time, clocks, and the ordering of events in a distributed system.” Commun.

ACM, vol. 21, no. 7, pp. 558–565, 1978.

UNO Framework 15

19. M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhäuser, “An integrating, transformation-

oriented approach to concurrency control and undo in group editors.” in CSCW, 1996, pp.

288–297.

20. C. Sun, “Undo as concurrent inverse in group editors,” ACM Transactions on Computer-

Human Interaction (TOCHI), vol. 9, no. 4, pp. 309–361, Dcembre 2002.

21. A. Imine, P. Molli, G. Oster, and P. Urso, “Vote: Group editors analyzing tool: System de-

scription.” Electr. Notes Theor. Comput. Sci., vol. 86, no. 1, 2003.

22. R. Nieuwenhuis, Ed., Rewriting Techniques and Applications, 14th International Confer-

ence, RTA 2003, Valencia, Spain, June 9-11, 2003, Proceedings, ser. Lecture Notes in Com-

puter Science, vol. 2706. Springer, 2003.

23. S. Stratulat, “A general framework to build contextual cover set induction provers.” J. Symb.

Comput., vol. 32, no. 4, pp. 403–445, September 2001.

24. M. Ressel and R. Gunzenhäuser, “Reducing the problems of group undo.” in GROUP, 1999,

pp. 131–139.

25. J. Ferrié, N. Vidot, and M. Cart, “Concurrent undo operations in collaborative environments

using operational transformation.” in On the Move to Meaningful Internet Systems 2004:

CoopIS, DOA, and ODBASE - OTM Confederated International Conferences, CoopIS, DOA,

ODBASE 2004, ser. Lecture Notes in Computer Science, vol. 3290. Springer, Novembre

2004, pp. 155–173.

A MOT2 and TTF

In [13], the authors claim that MOT2 only require the TP1 property. Therefore, we

could use the following transformation functions since they satisfy TP1.

T(Ins (p1, c1) , Ins (p2, c2)):

if p1 < p2 or (p1 = p2 and c1 < c2)

Ins (p1, c1)

else Ins (p1 + 1, c1)

T(Ins (p1, c1), Del(p2, c2)):

if p1 <= p2

Ins (p1, c1)

else Ins (p1 − 1, c1)

T(Del(p1, c1), Ins (p2, c2)):

if p1 < p2

Del(p1, c1)

else Del(p1 + 1, c1)

T(Del(p1, c1), Del(p2, c2)):

if p1 < p2

Del(p1, c1)

else Del(p1 − 1, c1)

Unfortunately, Figure 9 illustrates a divergence scenario which can occur. This prob-

lem is an instance of the TP2 puzzle [17].

Finally, MOT2 requires transformation functions which satisfy the properties TP1
and TP2. Therefore, the TTF transformation functions are particularly adequate for

16 Weiss, Urso and Molli.

Site1
“abc”

Site2
“abc”

Site3
“abc”

Site4
“abc”

Site5
“abc”

Site6
“abc”

Del(1, b) Ins(2, X) Ins(1, Y)

“ac′′ “abXc′′ “aY bc′′ “abc′′ “abc′′ “abc′′

oo //

oo //

oo //

“ac′′ “abXc′′ “aY bc′′ “ac′′ “abXc′′ “aY bc′′

oo //

“aY c′′ “abXc′′ “aY bc′′ “ac′′ “abXc′′ “aY c′′

oo //

“aY c′′ “abXc′′ “aY bXc′′ “ac′′ “aY bXc′′ “aY bc′′

oo // oo //

“aXY c′′ “aXY c′′ “aY Xc′′ “aY Xc′′ “aY bXc′′ “aY bc′′

Fig. 9. Divergence scenario

MOT2 since they are the only published set of transformation functions satisfying TP1
ant TP2.

