Skip to Main content Skip to Navigation
Journal articles

Algorithms and arithmetic operators for computing the $\eta_T$ pairing in characteristic three

Abstract : Since their introduction in constructive cryptographic applications, pairings over (hyper)elliptic curves are at the heart of an ever increasing number of protocols. Software implementations being rather slow, the study of hardware architectures became an active research area. In this paper, we discuss several algorithms to compute the $\eta_T$ pairing in characteristic three and suggest further improvements. These algorithms involve addition, multiplication, cubing, inversion, and sometimes cube root extraction over $\mathbb{F}_{3^m}$. We propose a hardware accelerator based on a unified arithmetic operator able to perform the operations required by a given algorithm. We describe the implementation of a compact coprocessor for the field $\mathbb{F}_{3^{97}}$ given by $\mathbb{F}_3[x]/(x^{97}+x^{12}+2)$, which compares favorably with other solutions described in the open literature.
Complete list of metadatas

Cited literature [42 references]  Display  Hide  Download

https://hal.inria.fr/inria-00423993
Contributor : Jérémie Detrey <>
Submitted on : Tuesday, October 13, 2009 - 4:18:16 PM
Last modification on : Tuesday, June 16, 2020 - 12:56:02 PM
Document(s) archivé(s) le : Tuesday, October 16, 2012 - 12:11:12 PM

Files

pairing_appendix.pdf
Publisher files allowed on an open archive

Identifiers

Collections

Citation

Jean-Luc Beuchat, Nicolas Brisebarre, Jérémie Detrey, Eiji Okamoto, Masaaki Shirase, et al.. Algorithms and arithmetic operators for computing the $\eta_T$ pairing in characteristic three. IEEE Transactions on Computers, Institute of Electrical and Electronics Engineers, 2008, Special Section on Special-Purpose Hardware for Cryptography and Cryptanalysis, 57 (11), pp.1454-1468. ⟨10.1109/TC.2008.103⟩. ⟨inria-00423993⟩

Share

Metrics

Record views

215

Files downloads

389