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Abstract. DTI is an important tool to investigate the brain in vivo and
non-invasively in spite of its shortcomings in regions of fiber-crossings.
HARDI models such as QBI and Higher Order Tensors (HOT) were in-
vented to overcome this shortcoming. HOTs, however, have not been
explored extensively even though sophisticated estimation schemes were
developed for DTI that guarantee positive diffusivity, such as the Rie-
mannian framework. Positive diffusivity is an important constraint in
diffusion MRI since it represents the physical phenomenon of molecular
diffusion. It seems apt, to leverage the work done on DTI, to apply the
positivity constraint to the HOT model. We, therefore, propose to extend
the Riemannian framework from DTI to the space of 4th order diffusion
tensors. We also review the existing methods for estimating 4th order
diffusion tensors and compare all methods on synthetic, phantom and
real datasets extensively to test for robustness and speed. Our contribu-
tions for extending the Riemannian framework from DTI to estimating
4th order diffusion tensors guarantees positive diffusivity, is robust, is
fast, and can be used to discern multiple fiber directions.

1 Introduction

Diffusion Magnetic Resonance Imaging (dMRI) has proved to be an exquisite
tool to investigate the anatomical connections of the human nervous system, in

vivo and non-invasively. Diffusion Tensor Imaging (DTI) [1], was the first model
proposed, and its value is only affirmed by its popularity till date. Its limitations
are, however, well known in the regions that contain fiber-crossings. Recent High
Angular Resolution Diffusion Imaging (HARDI) techniques have overcome that
shortcoming with a plethora of new reconstruction schemes such as radial basis
functions [2], Spherical Harmonics (SH) [3], Higher Order Tensors (HOT) [4]
[5], etc. Notwithstanding its limitations, the DTI model has been extensively
explored and sophisticated schemes for estimating it has been developed.

An important constraint in estimating DTI requires it to have a positive
diffusivity profile, since it corresponds to the physical phenomenon of diffusion of
water molecules. The sophisticated schemes for DTI rely on the native properties
of the space of positive definite 2nd order diffusion tensors to guarantee the



positive diffusivity profile. It seems appropriate, therefore, to explore HOT while
leveraging the extensive framework already established for classical DTI. In this
work, we propose a review and a comparison of the existing methods. We also
propose an extension of the Riemannian framework [6][7] to the space of 4th order
diffusion tensors. We compare our method to the other methods on synthetic,
phantom and real data for robustness and speed.

The main contributions are directed towards extending the well established
and tested Riemannian framework from DTI-2 to DTI-4. This provides a dMRI
estimation method that guarantees positive diffusivity, is robust to noise, is
computationally fast, and can also be used to discern multiple fiber directions.

2 Methods

To accommodate a multi-fiber distribution in a voxel, the Gaussian expression
of the Stesjkal-Tanner equation was extended in [4], to incorporate a HOT of
any order in the diffusivity function, generalizing it to S = S0e

−bD(g) where
D(g) =

∑3
j1=1

∑3
j2=1 · · ·

∑3
jk=1 Dj1j2...jk

gj1gj2 . . . gjk
= Dk. This generalization

of DTI is sometimes referred to as GDTI-2. Another generalization along similar
lines was done in [5], where the diffusivity function was written as D(g) =
D2 + iD3 + D4 + iD5 + . . . , with i =

√
−1. This approach, sometimes referred

to as GDTI-1, however, requires more complex aquisition and reconstruction
techniques and therefore, we restrict ourselves to the GDTI-2 model. In GDTI-2
limiting k to 4 results in a 4th order diffusion tensor model. We now review the
existing methods for estimating the 4th order diffusion tensor.

2.1 State of the Art

Least Squares (LS) The simplest approach to estimate the coefficients of a
HOT, is to solve the over-determined linear least squares inverse problem, as
suggested in [4]. This method is fast, is not limited to 4th order diffusion tensors
but does not guarantee positive diffusivity, D(g) > 0 ∀g st ||g|| = 1.

Ternary Quartic (TQ) In [8] the authors are the first to propose a method
which guarantees positive diffusivity of the estimated 4th order diffusion tensor.
They formulate the diffusivity function as a ternary quartic. Applying Hilbert’s
theorem on non-negative TQs, the diffusivity function is expressed as D(g) =
(vT q1)

2+(vT q2)
2+(vT q3)

2 = vT QQT v where Q is estimated from the HARDI
acquisitions, and the coefficients of the 4th order diffusion tensor – A, are ex-
tracted from QQT . Since Q, however, can only determine A uniquely up to a
rotation matrix, it is parameterized as Q = [B,C]T = [TR,C]T where TR is
the qr-decomposition of B and T is taken to be I to reduce this indeterminacy.
However, this method to reduce the number of parameters doesn’t seem to have
a physical explanation, and other methods may also exist. Also, this approach
can only estimate positive semi-definite tensors due to its non-negative TQ for-
mulation.



From Spherical Harmonics (SH) As proposed in [9], it is possible to
compute the independent HOT coefficients from the even spherical harmonic co-
efficients of the same order. Since it is possible to use regularization to estimate
the spherical harmonic coefficients, this provides another interesting method for
estimating a HOT. This method is also extensible to any order, but again does
not assure positive diffusivity.

2.2 Riemannian Approach (RM)

We now propose to extend the Riemannian framework from 2nd order diffusion
tensors [6][7] to the space of 4th order tensors. First we consider 4th order tensors
to be linear transformations A : Lin(V ) → Lin(V ), where V is a vector space
over R

n [10]. We can then define the double-dot-product A : D = AijklDkl where D
is a 2nd order tensor (T-2). Then we define the transpose 〈A : D | C〉 = 〈D | A

t : C〉
using the inner-product 〈. | .〉 in the space of T-2s, and also define the inner-
product in the space of 4th order tensors 〈A | B〉 = tr(At

B).
We then study the symmetries of 4th order tensors. As stated in [10] if a

4th order tensor has major and minor symmetries then it has 21 independent
coefficients, in three dimensions, and has an eigen decomposition. If it satisfies
total symmetry it has 15 independent coefficients. A proposition in [10] states
that 〈As | B

a〉 = tr(As
B

a) = 0 where B
a is the remainder or anti-symmetric part

that remains when the totally symmetric part B
s of a tensor is subtracted from

itself B (see [10]).
When a 4th order tensor A, in three dimensions, satisfies major and minor

symmetries it can be mapped to a symmetric T-2 in 6 dimensions [11][10] (6x6)
– A. And the double-dot-product A : D can be rewritten as a matrix vector
product A : D = Ad, where d = [D11, D22, D33,

√
2D12,

√
2D13,

√
2D23]

T . We
can then rewrite the diffusivity function as D(g) = Di : A : Di = tr(AGi)
where Di = gi ⊗ gi with ⊗ =outer-product and Gi = gi ⊗ gi ⊗ gi ⊗ gi which is
totally symmetric. Of course for computations we can use the equivalent matrix
formulation D(g) = d

t
iAdi.

We then proceed exactly as in [6] and estimate A in S+(6), the space of
symmetric positive definite 6x6 matrices, by using the Riemannian metric defined
in that space, with an M-estimator Ψ , minimizing the error energy function

E(A) =
N

∑

i=1

Ψ

(

− 1

bi

ln

(

Si

S0

)

+ d
t
iAdi

)

(1)

as a non-linear gradient descent problem. Since A, is estimated in S+(6), the
diffusivity function is guaranteed to be positive definite. We, however, realize
that since A is estimated in S+(6), it has 21 independent coefficients, while a
4th order diffusion tensor is totally symmetric and has only 15 independent
coefficients. This indeterminacy can be overcome by noticing that G is totally
symmetric, therefore

D(g) = tr(AGi) = tr((As + A
a)Gi) = tr(As

Gi) (2)



where A
s contains the coefficients of the 4th order diffusion tensor and A

a, the
residue, contains the excess parameters. We can, therefore, apply the symmetry
constraint of ||Aa|| = 0 by projecting A to its symmetric part A

s.

3 Results

We tested all the methods on a synthetic dataset, a phantom dataset and two
real datasets. Here we present the details of the various datasets, explain our
experiments and their motivations, and finally present the results.

Synthetic Data Experiment We used a synthetic dataset to compare
the robustness of the various methods under varying controlled conditions. The
synthetic dataset to simulate fiber-crossings was generated using the multi-
tensor model [9]. The synthetic diffusion weighted images Si were generated

from Si(b, gi) =

n
∑

k=1

pke−bgT

i
Dkgi + ξ, where b is the b-value, gi is i-th gradient

direction for i ∈ {1, N}, n ∈ {0, 1, 2, 3} is the number of fibers and ξ is the
Rician noise generated with a complex Gaussian noise with standard deviation
of 1/σ, producing an SNR of σ. The diffusion tensor profile used for a single
fiber was diag(Dk) = [1390,355,355]x10−6mm2/s and for isotropic voxels was
diag(Dk) = [700,700,700]x10−6mm2/s. Crossing voxels were composed of equal
volume fractions (pk = 1/n). This synthetic data generation is relatively stan-
dard and has the advantage of producing known ground truth ADC and ODF
profiles as well as ground truth fiber orientations.

In our experiment to compare robustness, we varied the SNR from σ = 2 to
σ = 50 to estimate the 4th order diffusion tensor using the different methods.
Then we computed the mean and the standard deviation of the squared error be-
tween the estimated ADCs and the ground truth ADC. The results are plotted in
Fig. 1. We repeated the experiment for b = 1000s/mm2 and for b = 3000s/mm2.

The Riemannian approach compares favourably to the exisiting methods. The
TQ method, whose performance may seem surprising, perhaps needs a word of
explanation. This was coded by us from [8], using the same guidelines and stan-
dards used for the rest of the methods. It seems to us, however, that it is highly
sensitive to the optimization algorithm and to the initial conditions used, and
we might not have the optimal implementation.

Estimation from Human Brain Data In the next experiment we used
a relatively large human brain dataset of 128 x 128 x 60 voxels for estimation.
We used a mask to effectively work on 249352 voxels. This dataset was aquired
on a 1.5T scanner at b = 700s/mm2 using 41 encoding directions, with voxel
dimensions of 1.875mm x 1.875mm x 2mm.

In this experiment we checked the ADC profiles of the estimated tensors on
a set of 81 gradient directions distributed evenly on a hemisphere, to examine
the compliance of the estimation methods to the positive diffusivity constraint.
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Fig. 1. Comparison of the DTI-4 estimation methods with varying SNR, computed for
b = 1000s/mm2 and for b = 3000s/mm2. The SNR varies from σ = 2 to σ = 50. The
Riemannian approach compares favourably to the exisiting methods.

(81 dirs) LS SH TQ RM

Positive 181757 249263 249352 249352

Negative 67595 89 0 0
Table 1. The estimated ADCs from 249352 tensors are checked for positive diffusivity
on a set of 81 gradient directions distributed evenly on a hemisphere. The Riemannian
and the TQ, are the only methods which guarantee a positive diffusivity profile.

The results are presented in Table 1. The Riemannian and the TQ, are the only
methods which guarantee a positive diffusivity profile.

In this experiment, we also timed the different methods, to compare their
running times. It can be expected that as the estimation methods get more
complex by trying to accomodate the positivity constraint, they also get compu-
tationally expensive. The motivation behind this experiment was to investigate
the difference in performances of the simple estimation methods (LS, SH) and
the more complex methods (TQ, RM). The results are presented in Table 2.
The Riemannian method performs competitively when compared to the LS, and
the SH methods, and it still guarantees positive diffusion (Table 1), making it a
practical method to apply on large datasets.

Fiber Orientation on Biological Phantom Data Next we worked on
a biological phantom dataset to move beyond the ADC, and to compute the
ensemble-average diffusion propagator (EAP) from the 4th order diffusion tensor.
Since the peaks of the ADC do not necessarily correspond to the orientations
of the underlying fiber bundles, it becomes necessary to compute the EAP to
infer the correct directions. The EAP, P (r), is given by the Fourier transform
P (r) =

∫

E(q) exp (−2πiqT r)dq, where q is the reciprocal displacement vector,
E(q) is the signal value associated with the vector q divided by the zero gradient



LS SH TQ RM

Time (sec) 7 28 22526 (6h 15min) 146 (2min 26s)
Table 2. Time taken to estimate 249352, 4th order diffusion tensors from a real dataset.
The Riemannian method performs competitively when compared to the LS and SH
methods, and still guarantees positive diffusion.

Fig. 2. The ensemble-average diffusion propagator (EAP) in every voxel on a biological
phantom data. It is computed from the 4th order diffusion tensor which in turn has
been estimated using the Riemanniann method. The background is coloured using the
GFA, while the glyphs are colour-encoded to indicate directional anisotropy. The image
to the right zooms into the crossing section to provide a close up.

signal, and r is the spin displacement vector. We computed the Fourier Transform
numerically to estimate the EAP from the 4th order diffusion tensor.

The phantom contained exactly two fiber bundles, and this provided us with
a framework to validate the estimated EAP. The biological phantom was created
from two excised rat spinal cords embedded in 2% agar (see [12]). The acquisition
was done on a 1.5T scanner using 90 encoding directions, with b = 3000s/mm2,
TR= 6.4 s, TE= 110 ms, 2.8 mm isotropic voxels and four signal averages per
direction. The SNR of a single DW image in the spinal cord was estimated to
be 5 and the corresponding averaged DW image had an SNR value of 10.

Fig 2, provides a qualitative result of the estimated EAP. In the figure each
glyph represents an iso-surface of the corresponding EAP. We first estimated
the 4th order diffusion tensors using the Riemannian method. Then we numeri-
cally computed the Fourier Transform to estimate the EAP. The background is
coloured using the GFA, while the glyphs are colour-encoded to indicate direc-
tional anisotropy, with red representing high anisotropy and blue representing
low values. The image to the right zooms into the crossing section to provide
a close up. It can be seen that the EAP provides the correct orientation of the
underlying fiber bundles.

Fiber Orientation on Human Brain Data This dataset was aquired with
60 encoding gradient directions, a b-value of 1000 s/mm2, twice-refocused spin-



Fig. 3. We used the Riemannian method to estimate the 4th order diffusion tensors in a
coronal slice, within a region of interest (ROI). From these we computed the ensemble-
average diffusion propagator (EAP). In the ROI we see crossing fibers between the
cortico spinal tract, superior longitudinal fibers (traversing the plane) and the corpus
callosum (in the plane).

echo EPI sequence, TE = 100 ms, GRAPPA/2, 1.72 mm x 1.72 mm x 1.7 mm
voxel resolution, with three repetitions, and corrected for subject motion. It was
acquired on a whole-body 3T Trio scanner.

In this dataset we particularly looked at a Region of Interest (ROI) of a
coronal slice, where complex fiber structures are known to exist in the white
matter. The ROI contained fiber bundles from the cortico-spinal tract, superior
longitudinal fibers (traversing the plane) and the corpus callosum (in the plane).
We looked at this ROI to detect these different fiber bundles.

First we used the Riemannian method to estimate the 4th order diffusion
tensors in every voxel, and then we computed the Fourier Transform to estimate
the EAP.

4 Conclusion

Diffusion MRI is today the cutting edge tool to investigate the human brain
anatomy. DTI was the first model proposed, and still remains today of immense
value to both the clinician and the neuro-scientist. It has a major shortcoming in
regions of fiber crossings, and therefore, other HARDI reconstruction techniques
were invented to overcome this limitation. One among these is the HOT model,
which has not been extensively researched.

We proposed to take this model further, since sophisticated esimation tech-
niques have been established and well tested for DTI, which guarantee the com-
pliance with the important constraint of positive diffusivity. To that goal we
extended the Riemanian framework from DTI to the space of 4th order diffusion
tensors. We also compared our Riemannian method to the existing methods on
synthetic, phantom and real datasets. We tested all the methods for robustness,
speed and also computed the diffusion propagator (EAP) to infer underlying
fiber bundle orientations.



In the synthetic dataset tests, the Riemannian method performed well for
varying sets of noisy data. This can be attributed to the fact that it inherently
satisfies the positive difusivity constraint. This positive diffusivity was confirmed
when the method was tested on large real datasets. A feather in the cap was also
its computational speed on these large datasets. It performed very competitively
when compared to simpler methods like the LS and the SH. Computing the EAP
from the Riemannian method also proved to be successful. This was verified
qualitatively on a controlled biological phantom, and we also tested the EAP on
a real human brain dataset.

In short the performance of the Riemannian method proved to be favourable
on all three accounts of robustness and positive diffusivity, computation-time and
estimation of the EAP, on synthetic and real datasets. Its fast computational
time made it valuable practically. We plan to explore the 4th order tensor model
further for fiber-tracking, segmenting and registration in the future.
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