N

N

EASY: Efficient semAntic Service discoverY in pervasive

computing environments with QoS and context support

Sonia Ben Mokhtar, Davy Preuveneers, Nikolaos Georgantas, Valérie Issarny,
Yolande Berbers

» To cite this version:

Sonia Ben Mokhtar, Davy Preuveneers, Nikolaos Georgantas, Valérie Issarny, Yolande Berbers. EASY:
Efficient semAntic Service discoverY in pervasive computing environments with QoS and context
support. Journal of Systems and Software, 2007, 81 (5), pp.785-808. inria-00415930

HAL 1d: inria-00415930
https://inria.hal.science/inria-00415930
Submitted on 16 Oct 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00415930
https://hal.archives-ouvertes.fr

EASY: Efficient SenAntic Service DiscoveY in
Pervasive Computing Environments with QoS
and Context Support

Sonia Ben Mokhtar Davy Preuveneers Nikolaos Georgantas
Valérie Issarny Yolande Berbers

June 11, 2007

Abstract

Pervasive computing environments are populated with networked sefama
hardware resources providing various functionalities that are abetrgbanks to
the Service Oriented Architecture paradigm, as services. Within thes®mnv
ments, service discovery enabled by service discovery protocoBYSB a crit-
ical functionality for establishing ad hoc associations between servicgdprs
and service requesters. Furthermore, the dynamics, the openrb#iseauser-
centric vision aimed at by the pervasive computing paradigm call fortieak
that enable rich, semantic, context- and QoS-aware service disco¥hpugh
the Semantic Web paradigm envisions to achieve such support, custetibiss
are hardly deployable in the pervasive environment due to the costiriyidy
semantic reasoning with ontologies. In this article, we present EASY toosupp
efficient, semantic, context- and QoS-aware service discovery onftexisting
SDPs. EASY provides EASY-L, a language for semantic specificatidoraf-
tional and non-functional service properties, as well as EASY-M reesponding
set of conformance relations. Furthermore, EASY provides solutmesiciently
assess conformance between service capabilities. These solutiopasark on
an efficient encoding technique, as well as on an efficient organizatiservice
repositories (caches), which enables both fast service advertisthdiscovery.
Experimental results show that the deployment of EASY on top of an egistin
SDP, namely Ariadne, enhancing it only with slight changes to EASY-Arad
enables rich semantic, context- and QoS-aware service discovanh fdnther-
more performs better than the classical, rigid, syntactic matching, anawesgpr
the scalability of Ariadne.

1 Introduction

Pervasive computing [23] envisions the unobtrusive diffasof computing and net-
working resources in physical environments, enablingaigeaccess information and
computational resources anytime and anywhere, and thisuseacentric way, i.e.,
where user interaction with the system is intuitive, pleasad natural. Mobile users

take part in these pervasive environments by carrying arting personal devices that
integrate seamlessly in the existing infrastructure. Saicletup is highly open and
dynamic: pervasive computing systems should support adléployment and execu-
tion, integrating the available hardware and softwareusss at any given time and
place. Incorporation in a larger system is facilitated hydering such resources into
autonomous, networked components.

A recent computing paradigm particularly appropriate fervasive systems is
Service-Oriented Architectures (SOA) [19]. In this arebiural style, networked de-
vices and their hosted applications are abstracted aslyousapled services. Service
discovery is an essential function within SOA, as it enabidesruntime association to
networked services. Three basic roles are identified faticediscovery in SOA: (1)
Service providers the role assumed by a software entity offering a netwodezdice;
(2) Service requesteis the role of an entity seeking to consume a specific service;
(3) Service repositorys the role of an entity maintaining information on avaikbl
services and a way to access them.sé&vice descriptioriormalism or language to
describe the capabilities and other non-functional prige(such as quality of service
(Qo0S), security or transactional aspects) complementtdtagiervice discovery proto-
col (SDP)let service providers, requesters and repositories icttarih each other. In
[34], a classification of academic and industry-supporte@s§ specifically for perva-
sive environments, is proposed. Service discovery becaves critical in pervasive
environments due to their openness and dynamics and thth&giervasive software
services and potential software clients (assuming theafodervice requester) are de-
signed, developed and deployed independently. These rmmncaise the following
requirements:

e During service discovery, semantics underlying servicgcdptions and client
requests should be matched. In classic service discoverynatching is based
on assessing the conformance of their syntactic interfadesvever, an agree-
ment on a single common syntactic standard is hardly adblieva the open
pervasive environment. Thus, higher-level abstractimtependent of the low-
level syntactic realizations specific to the SOA technaegn use, should be
employed for denoting service semantics.

e Finding a service that exactly matches a client requesttigrshe exception than
the rule in pervasive environments. Thus, matching shoeldltle to identify
the degree of conformance between services and clientgatadervices with
respect to their suitability for a specific client request.

e The user-centrism of pervasive environments calls foresyst awareness of
context and QoS. Context [11] is any information that can seduto charac-
terize the situation of the user (location and current @givthe system (avail-
able resources) and their interaction. Both context and @agpa decisive role
in enhancing users’ experience of the pervasive envirohnteor establishing
a common understanding of such non-functional propertiesemabling their
matching, semantic abstractions and associated relagsessing the degree of
conformance are required — as in the case of functional ptiepe

A key requirement identified above for service discovery @mvpsive environ-
ments concerns expressing the semantics of services. Aigingnapproach address-
ing the semantic modeling of information and functionatibmes from the Semantic
Web' paradigm [7]. Within the Semantic Web, information is ehed with machine-
interpretable semantics by referring to a structured voleap of termgontology)rep-
resenting a specific area of knowledge. Ontology languases) as the Web Ontol-
ogy Language (OW!I9 support formal descriptions and machine reasoning. Bigld
on the Semantic Web, a number of efforts have been conductdeiarea of auto-
mated semantic Web service discovery, invocation, conipasand execution mon-
itoring [29, 28, 16, 30, 25]. However, the employment of setitatechnologies and
related tools for service discovery in pervasive environtaeomes with a major handi-
cap: the underlying semantic reasoning is particularlylg@s terms of computational
resources and not intended for use in highly dynamic anddatiee environments.
Hence, providing service discovery that is adequate fod#reanding pervasive envi-
ronment and that achieves satisfying performance at the siame for interactivity is
still an open issue.

We present in this article our approach ffficient semAntic Service discoverY
(EASY)in pervasive environments, which extends the efforts piteskin [6, 5] with
a number of attractive features. As already mentioned, gelaumber of SDPs al-
ready exist, deployed in various pervasive and mobile cdimgenvironments. Our
objective is not to propose yet another SDP, but to elabaaelution for efficient,
semantic, context- and QoS-aware service discovery, wtachflexibly be deployed
on top of existing SDPs. EASY operates at a higher, semahsitraction level, and
is thus independent of the specific underlying SOA technpkrgployed. As part of
EASY, we introduce:

e EASY-Language (EASY:lglanguage for semantic service description covering
both functional and non-functional service charactarsstEASY-L is a simple,
generic representation for service functionalities, erhproperties and QoS
properties; and extensible, allowing the addition of newtegt and QoS di-
mensions. EASY-L contains only the necessary informat@mertable service
matching.

e EASY-Matching (EASY-Mjefines a set of conformance relations and prescribes
the way for applying them in order to perform service matghiBASY-M iden-
tifies three levels of matching; it further enables assegssie degree of con-
formance between a service advertisement and a servicestegund rating of
services with respect to their suitability for a specificuest. EASY-M takes
into account both functional and non-functional serviceperties.

With EASY-L and EASY-M, service discovery can be carriediow service repository
to resolve a service request. To ensure efficient EASY semiscovery we provide
two optimizations:

e By numerically encoding ontologies, we transform the gostimantic reasoning
into a simple numeric comparison of codes. Our solution sttgpncremental

1Semantic Web: http://iwww.w3.0rg/2001/sw/
20WL: http:/iwww.w3.org/TR/owl-ref/

conflict-free encoding, which allows the freely reuse antdeding of existing
ontologies; this is an essential requirement for the seimaepresentation of
open pervasive environments and their services. Moreowersolution proves
satisfactory in terms of employed code lengths comparedittirgg encoding
algorithms, which allows saving memory and computatioeaburces.

e We introduce an algorithm for organizing service adventisets in a service
repository based on their semantic similarity in order tostderably reduce the
number of matchings performed to resolve a service requ@st. algorithm
consists of two parts: the first concerns inserting a newieeadvertisement in
the organized repository; the second concerns resolviegvice request.

The two above optimizations move a great part of the compyleriated to semantic
service discovery offline, and also improve the performasfdée online service reg-
istration and resolution of service requests. As such, EA&Yice discovery becomes
highly efficient and applicable for highly interactive pasiwe environments. To eval-
uate the flexibility and scalability of EASY, we elaborate firototype implementation
on top of Ariadne, a semi-distributed SDP for mobile ad hotwoeks (MANETS)
[22]. We thus enhance Ariadne, which supports syntacticadisry of Web services,
into EASY-Ariadngwhich inherits all features of EASY.

The remainder of this article is structured as follows. It 2, we provide a
state-of-the-art survey on service discovery enhanceceimastic technologies. Hav-
ing identified above the high computational cost of sematatinologies as a key
issue, we complement this survey with our experimentalssssent of this cost, which
motivates our approach presented in the next sections. diio8e3, we elaborate on
EASY-L and EASY-M, while in Section 4, we discuss our optiatinns for efficient
EASY service discovery. In Section 5, we present our implaaiéon of EASY on top
of Ariadne and our related performance evaluation. Finale/conclude in Section 6.

2 Service Discovery Enhanced by Semantic Technolo-
gies: State of the Art

In this section, we survey current efforts related to semaetrvice discovery. We first
provide an overview of the Semantic Web paradigm and regukixtensions to the
semantic description of Web services (Section 2.1). We thiscuss related work on
service matching based on semantic service descriptiahgsaapplication in service
discovery (Section 2.2). As pointed out in the previousisagsemantic reasoning un-
derlying the semantic Web paradigm involves a high comjmnat cost. To precisely
evaluate this cost and its impact on service matching amubdsy, we carry out a de-
tailed experimental analysis (Section 2.3). Finally, wesey recent efforts attempting
to tackle this problem by introducing optimizations to sati@aservice matching and
discovery (Section 2.4).

2.1 Semantic Web and Semantic Service Description

The World Wide Web contains a huge amount of informatioratee by multiple orga-
nizations, communities and individuals, with differentposes in mind, which makes
it hard for Web users (either humans or software agentsxatéahe information they
are looking for. The Semantic Web vision aims to addressi$kise by the introduc-
tion of semantic annotations in Web pages in order to supgffattive discovery, data
integration and navigation on the Web; this effort espéctalrgets the automation of
such tasks, which should be carried out intelligently afidiefitly by software agents.

Towards the realization of the Semantic Web objectives ynpanadigms and tools
are being developed. Ontologies are one of the main buildiogks to enable the
Semantic Web vision. Ontologies describe structured wdeailes containing useful
terms (also calledonceptsor classe} for a community that wants to organize and
exchange information in a non-ambiguous manner. One of thet midely used lan-
guages for specifying ontologies is the Web Ontology Laggu®WL). OWL has its
formal foundation in Description Logics (DL) [4]; hencensantics specified in OWL
enable semantic reasoning using a DL-reasoner to infetidginmlationships between
concepts from the explicit definitions of these conceptsiarology. Among these re-
lations, thesubsumptiomelation allows to relate concepts to more generic condeats
way similar to inheritance in the object oriented programgninodel. After subsump-
tion reasoning on an ontology, the resulting hierarchy isrred to as thelassified
ontology

Ontologies have conveniently been employed in the semapécification of ser-
vices. For instance, the latest WSDL (2.0) standard doesnigtsaipport the use of
XML Schema, but also provides standard extensibility fezgdor using, e.g., classes
from OWL ontologies to define Web service input and output thgtas. OWL is fur-
ther the semantic representation language of choice fadWike-S® proposal, the Web
Ontology Language for Web services; OWL-S is a high-level OWitotogy for ser-
vices. A similar recent proposal for the semantic specificadvf Web services is the
Web Services Modeling Ontology (WSM®)which is specified using the Web Service
Modeling Language (WSML). Besides service specificatiois tmtology provides
support formediators which can resolve mismatches between ontologies or svic
The Web Service Semantics - WSDE-froposal annotates WSDL descriptions with
semantics, using references to concepts from, e.g., OWllamiés, by attaching them
to WSDL input, output and fault messages, as well as opesatidine First-Order
Logic Ontology for Web Services (FLOWS) is a recent propogattie semantic spec-
ification of Web services. It has a well defined semantics st-brder logic enriched
with support for Web based technologies (e.g., URIs, XMILO®VS encloses parts of
other languages and standards (e.g., WSMO, OWL-S, PSL (1S@9)Bé&nd supports
a direct mapping to ROWS, another language from the same tamdased on logic
programming.

Another effort that focuses more particularly on pervasieevices is Amigo-S,
which extends OWL-S by integrating features characterizivey heterogeneity and

SOWL-S: http://www.daml.org/services/owl-s/1.2/
4WSMO: http://www.wsmo.org/
SWSDL-S: http://www.w3.0rg/Submission/WSDL-S/

richness of pervasive environments [3]. For instance, thegh-S language enables
different service groundings — thus applying to diverse SG/Aand models the related
discovery, communication and network protocols. Morep&etigo-S models context

and QoS properties of services.

As part of our approach in this article, we introduce the EASdhtology-based
language that has similar characteristics and objectivAgtigo-S (Section 3.1). Thus,
we also target independence of the underlying SOA as welleasgecification of non-
functional properties. Compared to the above relatedtsffor semantic service spec-
ification including Amigo-S, EASY-L captures the set of sogtting concepts shared
by these various languages with additional support for Qubcmntext properties of
services. EASY-L can thus be envisioned as a ‘meta-langulgecan be easily ex-
tended and/or mapped to any of the above languages. Fudhermmlike Amigo-S,
EASY-L does model features of the underlying middleward aan be applied on top
of different middleware infrastructures.

2.2 Semantic Matching for Service Discovery

Based on semantic service description formalisms, suchesries surveyed in the
previous section, a number of research efforts focus onhimeggdetween services to
compare the suitability of advertised services againstdcerequest. The effective-
ness of service matching depends on the expressivenesvicksgescriptions and on
adequate relations assessing the degree of conformaneedreservice descriptions.

A number of research efforts have been conducted in the &matohing semantic
Web services based on their signatures. Signature matdealg with the identifica-
tion of subsumption relationships between the conceptsrithérsg inputs and outputs
of capabilities [33]. A base algorithm for service signataratching has been proposed
by Paolucciet al. in [28, 18]. This algorithm allows matching a requested téljig,
described as a set pfovided inputs and required outputsith a number of advertised
capabilities, described each as a setagfuired inputs and provided output$nputs
and outputs are semantically defined using ontology coscépte algorithm defines
four levels of matching between a provided and a requiredlogy concept. The four
matching levels are:

e exact if the concepts are equivalent or if the required conceptdsect subclass
of the provided one

e plug in: if the provided concept subsumes the required one,
e subsumesf the required concept subsumes the provided one, and
o fail: if there is no subsumption relation between the two corscept

As part of our approach in this article, we introduce the EA&Ynatching (Section
3.2), which adopts (with a slight modification) the same lewd matching for com-
paring two ontology concepts. Compared to other relateattsffor matching service
capabilities, EASY-M also supports the matching of nonetional service properties
(i.e., QoS and context properties) and provides a meanddaseavices according to
user preferences on the various heterogeneous non-foatfioperties. The resulting

matching algorithm rates services according to the magclewvels evaluated between
the concepts used in the service request and those usedsprifiee advertisement.
Other solutions based on the above signature matching arg@Web services have
been proposed in the literature [16, 30, 12].

Furthermore, specification matching of software compaentmore particularly,
semantic Web services, has been studied in the literat@e2|8 27]. Specification
matching deals with matching pre- and post-conditions tiegtcribe the functional
semantics of components. For instance, in [32], specifinatiatching is performed
using theorem proving, i.e., inferring general subsummptielations between logical
expressions that specify pre- and post-conditions of corapts. A more practical
way to perform specification matching is to upgery containmenf25, 27]. This is
done by modeling both service advertisements and servipgests as queries with
a set of constraints (e.g., required inputs and outputs adehlad as restrictions on
their types). Starting from the specified constraints, th&sible values of both queries
are evaluated, and possible inclusions between the resutte queries are inferred.
Specifically, a queryy; is contained ing, if all the answers of;; are included in the
answers ofy,.

Whether semantic service matching is performed in terms refcgesignature or
specification, the key issue for efficient matching lies ia plerformance of the under-
lying semantic reasoning, as analyzed in the followingieact

2.3 Analyzing the Cost of Semantic Service Discovery

In this section we analyze the cost of semantic matching vfice capabilities. We
primarily focus on evaluating the cost related to DL-reasgnwhich is justified by
the wide use of such reasoning. To this end, we consider @iteppof Web services
described using OWL-S. Specifically, we provide an evaluatithe signature match-
ing of service requests against the service advertiserhested by the repository. The
semantic matching between a requested capability and aerushlbdvertised ones is
carried out by employing the base matching algorithm by lRamkt al. presented in
the previous section.

We have carried out experiments on a notebook with a 1.6 Gl @entrino
processor and 512 MB of RAM. Our prototype implementatiaciudes the use of a
DL-reasoner to infer the subsumption relationships betweamcepts. There are var-
ious implementations of DL-reasoners; the most populas @me: Racé; FaCT++
and Pellét. We provide a performance evaluation of our prototype im@lBtation em-
ploying each one of the aforementioned three reasonersler tw assess their impact
on the matching process. To this end, we conducted two diftéinds of experiments.

Figure 1 shows the results of the first experiment. This expatt gives an overview
of the cost of each step of the matching process, i.e.: (ljinieto parse the service
advertisement and the service request; (2) the time forghgoner to load and classify
the ontologies involved in the service advertisement agdest descriptions; and (3)
the time to match the concepts involved in the advertiserardtthe request, i.e., to

6Racer: http://www.sts.tu-harburg.de/ r.f. moeller/racer
"FaCT++: http://owl.man.ac.uk/factplusplus/
8Pellet: http://www.mindswap.org/2003/pellet/

4000
3750
3500
3250
3000
2750
2500
2250 [XML Parsing (ms)

2000 [l Ontology
1750 Classiﬁcation (ms)
[] Matching Concepts
1500 (ms)
1250
1000
750 —
500 —
250 —
0
Pellet Racer FaCT++

Figure 1: Processing time for each step to match a requestedraadvertised capa-
bility

assess the relations between these ontology conceptsis lexiberiment, the service
request comprises 7 provided inputs and 3 requested ouffheontology used for the
experiment is th@izzaontology’. This ontology contains 99 OWL classes, 4 datatype
properties, 11 object properties, 24 annotation propeaine 5 individuals. Results for
all three reasoners of the total time of the matching proeessn the order of 4 to 5
sec. Furthermore, for all three reasoners, the most exygepbase is the one of load-
ing and classifying the involved ontologies: from 76% to 78%&CT++ gives slightly
better results than the other two reasoners.

Our second experiment measures the time taken by each ezasomatch the
concepts involved in the service request and the serviceriskment for an increasing
number of concepts. Specifically, we increase the numbeordapts involved in the
service request from 4 to 14. Figure 2 shows the increasimgggsing time. We notice
that this processing time increases significantly: it grpweportionally to the number
of concepts. Again, FaCT++ performs slightly better.

From the above experiments, we conclude that semantic imgtoi service ca-
pabilities is a heavy process. Moreover, the resolution sihgle service request in
a repository implies carrying out matching between the estjand all registered ser-
vice advertisements, so as to select the advertisemenivéafits the request. For a
repository containingw service advertisements, the time to match a request with all
advertisements is equal to:

Tparse request + 1 x Tparse advertisement 1 Tclassify ontologies + 1 x Tmatch concepts

As measured above, for n=1, i.e., one advertisement, angugseincluding 10 con-

9Pizza Ontology: http://www.co-ode.org/ontologies/pizz

1600 T T T T
RACER j—+—
FaCT++ ---x---

1400
1200

1000

Time (ms)

800

600

400

200 1 1 1 1 1
4 6 8 10 12 14

Number of Concepts

Figure 2: Time to only match concepts

cepts, this time is in the order of 4 to 5 seconds for any of tkergreasoners. It is

obvious that the cost of semantic reasoning and matchingdeairable for immediate
use in the interactive pervasive environment. A number ¢ihdpations need to be

introduced to significantly increase efficiency. A first rekntowards this direction is

that the step of loading and classifying an ontology, asciteid in the above relation,
needs to be performed only once. Later on, the classifiedagyta@an be accessed
several times to assess relations between concepts that more than once in the
service requests and advertisements. Therefore, clas&ificshould be performed of-
fline, while the rest of the matching steps can be performéid@anMoreover, the step

of matching concepts, which costs around 25% of the totathmag time, has to be

performed as many times as there are advertisements ingbsitary. Thus, optimiza-

tions for this step should be investigated. In the followsggtion, we survey efforts
towards optimization of semantic service discovery. Int®ac4, we elaborate our
approach to efficient service discovery.

2.4 Optimizations to Semantic Service Discovery

Several research efforts attempt to optimize the costhasgimservice discovery. We
distinguish efforts that: numerically encode ontologyraiehies, so as to reduce se-
mantic reasoning to numerical comparison of codes (Se2tibi1); organize semantic
service advertisements in repositories, so as to reduceutmder of matchings per-
formed for resolving a service request (Section 2.4.2); Womencoding and organi-
zational techniques (Section 2.4.3).

2.4.1 Encoding the Multiple Inheritance Hierarchy of an Ontdogy

For encoding ontology hierarchies, various techniques beagought in other related
problem areas, such as the encoding of class hierarchidgdntariented program-
ming languages. However, ontology encoding also needsationdth issues typical for
knowledge representation, such as support for incrementading without causing
conflicts for existing codes while achieving efficient maich

A straightforward constant time matching technique ensadeasses in a hierar-
chy using an x n binary matrix with a 1 on position§, 5) if classi is an ancestor of
classj. Ait-Kaci et al.[2] achieved a more compact bottom-up approach, requiess |
thann? bits, that selects different bit positions for leaf classed encodes each parent
using the OR operation on the children’s codes. Caseau gh®Krall [14] proposed
graph coloring based approaches that further improve timpaotness of the code, but
conflict-free incremental encoding or solving conflicts faw classes in an efficient
way is no longer straightforward. Numeric intervals ar@aised to encode inheritance
by ensuring that children have non-overlapping intervads fall inside the interval of
their parent. Theelative numbering24] algorithm traverses the tree in post-order to
define the range of a class’ interval, but it neither supportdtiple inheritance nor
incremental encoding. To support multiple inheritancethbdgrawal et al. [1] and
Constantinescat al.[10] add additional intervals to parent classes to corteirter-
val containment of the children. However, inheritanceitestor classes with multiple
intervals can become an expensive operation. Zaial. [35] proposed an algorithm
based on relative numbering and PQ-trees that improvesitedeg length and test
time of the algorithm of Krallet al. [14], but the algorithm cannot be easily modified
for incremental encoding. As such, the quest for a compawesentation that can
be easily extended without introducing conflicts in the gxgscodes and that enables
efficient matching, motivates the introduction of a new tog9 encoding scheme.

2.4.2 Organizing Service Descriptions

For organizing semantic service advertisements in reis#, solutions may be sought
in service classifications. The OWL-S specification provitiesmeans for defining hi-
erarchies of service descriptions callgofile hierarchies These hierarchies are sim-
ilar to the object-oriented inheritance hierarchies. Fatance, when a new service
profile is defined, it may be specified as a subclass of an megigtiofile class. This
allows the new service to inherit all the properties of ab ttlasses specified in its
super-hierarchy of classes. While this approach allows thssification of service
profiles according to the classes from which they inherdp#s not allow considering
possible relations between service profiles that do not Havesame common set of
properties but still provide similar functional featureervice classification can also
be based on the service category using existing taxonom@sas NAICS® or UN-
SPSC!. However, service categories alone do not give enoughrirdtion about the
service functionality.

10NAICS taxonomy: http://www.census.gov/epcd/www/naitsih
11UNSPSC taxonomy: http://www.unspsc.org/

10

2.4.3 Combined Techniques for Efficient Service Discovery

Several efforts towards efficient semantic service disgokiave been proposed in the
literature [10, 26, 31]. In [10] the authors propose to nuoadly encode service de-
scriptions and use the Generalized Search Tree (GiST)itdgoproposed by Heller-
stein in [13] for creating and maintaining the repositorynaimerically encoded ser-
vices. Combining both encoding and indexing techniquesaliperforming efficient
service search, in the order of milliseconds for trees o0D0&ntries. However, inser-
tion within trees of this size is still a heavy process thkétsapproximately 3 seconds.
In [26], the authors propose an approach to optimizing serdiscovery in a UDDI
registry augmented with OWL-S for the description of sem@aWeb services. In this
approach, the authors propose to exploit the service aslwerent phase to perform
semantic reasoning and pre-compute information that weilp o efficiently answer
service requests. Performance evaluation of this apprelaaivs that the service pub-
lishing phase employing this algorithm takes around seiraps the time taken by
UDDI to publish a service. On the other hand, the time to pse@eservice request is
in the order of milliseconds.

While the two presented approaches opt for overloading théceeadvertise-
ment phase with costly computations in order to later aehéfficiency upon resolv-
ing service requests, we aim at achieving both lightweightise advertisement and
lightweight request resolution, as pervasive serviceadisy needs to be performed
as well on resource constrained-devices. Hence, we catiheuesource-demanding
semantic reasoning on ontologies offline, i.e., neithemugrvice advertisement nor
upon service request. In our EASY approach to efficient séimaarvice discovery,
described in Section 4, classified ontologies are encoaelhi intended to be used as
such by service developers for the semantic annotatiormaites and service requests,
which enables efficient service matching. Furthermorepded service descriptions
are effectively classified in service repositories or cachdiich enables scalable, effi-
cient service insertion and retrieval. In the following ts&t, we first introduce EASY-
L and EASY-M, our semantic service description language asabciated matching
approach.

3 EASY-Language and -Matching: Semantic, Context-
and QoS-aware Service Description and Matching in
Pervasive Computing Environments

3.1 EASY-Language

Service discovery in pervasive environments calls for glage enabling the seman-
tic, context- and QoS-aware specification of services’ gibesl capabilities as well
as clients’ requested capabilities. We introduce EASYgumge (EASY-L), which
supports the unambiguous specification of functional andfoactional properties of
services and clients. EASY-L is specified using the Web @gyplLanguage (OWL).
The main conceptual elements characterizing EASY-L aréctisgpin Figure 3. In this
diagram, as well as in the two diagrams depicted in Figuredbanolored boxes repre-

11

has

. has has

Client =]
|— provides consumes

I" quest "Capabilityl ——

<<enumeration>>
Operator
o — - e b
requires +or

+not

+equal

I ol
Advertised Capability | +instf;equa
=] +is-not-a
i uses +is-not-
has m— +is-exactly-a

Property +more-than
uses uses +less-than

] +min-value-of
Service +max-value-of

v

QoS Information Context Information

Figure 3: Service Model

sent service information that will be used for service maugliSection 3.2), including
functional and non-functional properties of services. sehproperties can be of two
types: qualitative or quantitative. Qualitative propestirepresented in the diagrams
by dark colored boxes, are those described with referenoattwogy concepts (e.g.,
service inputs, outputs, security levels), whereas qtaive properties, represented in
the diagrams by light colored boxes, are those that can beurehand assigned with
numeric values (e.g., service latency, service cost, engient temperature).

At the heart of EASY-L (Figure 3), we distinguish the notidncapability, which
corresponds to the description of any functionality thayfoe advertised by a service
or sought by a client. This description is given in termdngfuts outputs category
and properties Using our model, &ervicedescription contains a set aflvertised
capabilities while aclient request description contains a seteduested capabilities
A requested capability is described with a set of providguliia and a set of required
outputs, a required category and a set of required propestikile an advertised ca-
pability is described using a set of required inputs and aE@rovided outputs, a
provided category and a set of provided properties. Inputputs and category are
defined with reference to one or more ontology concepts inyasivailar to qualitative
non-functional properties defined below.

Non-functional properties (calledropertyin the diagram) are expressed in the
form of boolean expressions. We actually support the falhgwoperators:and, or,
not, equal, not-equal, is-a, is-exactly-a, is-not-a, mtiran, less-than, max-value-of,
min-value-of The operatorss-a, is-exactly-andis-not-aare used to define qualitative
properties, including both functional and non-functiooaés, whileequal, not-equal,
more-than, less-than, max-value-of, min-valuespérators are used to define quanti-
tative properties. Finally, thand, orandnot operators are used to define composite

12

Temperature Pressure Humidity
°Cc) (bar) (%)

Lighting Noise
(%) (dB)

Time
(ms)

4—| Environment I——| Context Information |‘—| User |_7
i .

(latitude, longitude)
Platform |<—' Software |<—

Hardware
[|

CPU Resource Memory Resource
(GHz) (MB Ram)

I |

Network Resource Storage Resource
(MBIs)

Figure 4: Context Properties

properties. Non-functional properties are related to exirand QoS information rep-
resented using the context and QoS models depicted in Figarel 5, respectively.
These models have been defined based on the context ontolmggysed by Preuve-
neerset al. in [21], and the QoS model proposed by Liu and Issarny in [IHBjese
models contain elementary context and QoS informationsseey for a basic specifi-
cation of non-functional properties of services in penvaginvironments, and can be
further extended using external ontologies for the definitif additional or more fine-
grained service properties. The context model depictedgare 4 classifies context
information into three main categorigsnvironmentUserandPlatform Environment
properties are related to the physical environment, éng.etivironment’s temperature.
User properties describe information related to the udtteqgervasive environment,
e.g., user profile and current mood. Finally, platform prtips are related to both
software and hardware resources of the environment. Saftpraperties describe in-
formation related to software applications, the operasiggiem, and the middleware
used by these applications, while hardware propertiesedaged to computing and
networking resources.

Furthermore, the QoS information related to services isritged in the QoS model
depicted in Figure 5. In this model, QoS information is daddnto five categories (i.e.,
Security Transaction Reliability, PerformanceandCosy), while each category decom-
poses itself into various QoS dimensions. As propertiesbfith QoS and context
information may contain expressions with measuremensudéfault units have been

13

Bandwidth
(Percentage = [0, 1])

CPU Load
(Percentage = [0, 1])

Memory
(Percentage = [0, 1])

Battery Price
(Percentage = [0, 1]) (€)

| Cost l——| QoS Information

Performance | | Reliability |
Latency Availability
(Time in ms) (Probability = [0, 1])

Figure 5: QoS Properties

specified in the model and a separate ontology of thitsn be further used. This on-
tology can be used to achieve reusability of unit definitjargl to enable conversion
from one unit to another.

An example of a service advertisement and request spedfidatdepicted on the
top part of Figure 6. In this example, the requested capplfiight part of the figure)
is of categoryideoServerwhile the advertised capability (left part of the figurepfs
categonyDigitalServer so it is able to act as a gaming, music or video server, aouprd
to the employed ontology depicted in the middle part of tharitf. The requested
capability has dlitle as input and the correspondiMideoResourcas output, while
the advertised capability has alsd@i#le as input and provides the client with a list of
correspondindigitalResources A number of properties have further been specified
regarding theNetworkto be used by the requested capability of the client, which is
required to be of typ®VirelessNetworkMoreover, the requested capability should have
a minimum value oPrice and engender atencyless than 10 units of time, as well as
ensure an availability greater than 80%. On the other hheddvertised capability has
a number of properties, including the one related to the eysol network connectivity,
which is of typeWiFi 802.11g the one specifying that using this capability costs 10
units of money, and other QoS related properties such azxchatnd availability.

3.2 EASY-Matching

Based on EASY-L, defined in the previous section, we now pmiteBASY-Matching
(EASY-M) a set of conformance relations for matching segsit terms of their func-

120ntology of units: http://www.cs.kuleuven.be/"davyialogies/2007/02/Units.owl
13A more formal definition of this category would ligategory is-a (VideoServer and MusicServer and
GameServer)

14

Advertised Capability

Requested Capability

* Inputs 0 * Inputs

» Title O » Title
* Outputs \ * Outputs

* DigitalResource * VideoResource
* Category * Category

* DigitalServer * VideoServer
* Properties * Properties
* Price is-equal 10 * Min-Value-Of price
* Latency less-than 9 * Latency less-than 10
* Availability more-than 95% * Availability more-than 80%
* Network is-a WiFi 802.11b * Network is-a Wireless

DigitalResource Network
Server
Entertainment | | Information ‘Wired ‘ ‘Wireless‘
Resource Resource ‘ DigitalServer H DBServer‘

‘VideoResouch\ GameResource
SoundResource

Ontology describing digital
resources

\ WiFi \ ‘Bluetooth‘ ‘ _
VideoServer ‘ GameServer ‘
| 802.11g | | 802.11b |

Ontology describing Ontology describing servers
network connectivity

Figure 6: Example of Advertised and Requested capabilities

tional and non-functional properties. First, we introdtoee relations for matching
the functional properties of a requested capabiiégand an advertised capabilitydy,
i.e., ExactCapabilityMatch (Adv, Reg, InclusiveCapabilityMatch (Adv, Reg}, andWeakCa-
pabilityMatch (Adv, Red. In these three relations, we use the relatitmmceptMatch()
to compare two concepts, co of an ontologyO. This relation is based on the four
matching levels defined by Paoluatial.in [18] and discussed in Section 2.2. How-
ever, we redefine the exact level of match as holding onlyeittto compared concepts
are the same i@, removing the case where one concept is a direct subclass oftter
as part of the plugin level of match.

The ExactCapabilityMatch () relation allows to find advertised capabilities that ex-
actly match a requested capability, i.e., only exact matdistween concepts are con-
sidered. This relation is defined as follows:

ExactCapabilityMatch (Adv, Rej=
Vin € Reqln, 3in’ € Adv.In: ConceptMatch(in’, in) = exact and
V out € ReqOut, 3 out’ € Adv.Out: ConceptMatch(out’, ouf) = exact and
ConceptMatch(Adv.Category, Req.CategQry exact

15

The InclusiveCapabilityMatch (Adv, Reg allows to find capabilities that can as well be
more generic than the requested capability, i.e., the ;ymuttputs and category of the
advertised capability are more generic than the inputfutsitand category of the re-
quested capability. This relation is defined as follows:

InclusiveCapabilityMatch (Adv, Reg=
Vin € ReqlIn, 3in’ € Adv.In: ConceptMatch(in’, in) = exactplugin and
V out € ReqOut, 3 out’ € Adv.Out: ConceptMatch(out’, out) = exactplugin and
ConceptMatch(Adv.Category, Req.Categ9ry exactplugin

Finally, theweakCapabilityMatch (Adv, Rejjrelation is the least restrictive matching re-
lation among the three relations: sought concepts of chfabican either subsume or
be subsumed by provided concepts. The consequence of hsngeplation is that it
is possible to find services that provide the client with otgghat are more specific
than required (e.g., a car renting capability may only mte\particular brands of cars,
such asPeugeot rather than providing angar as a client may have specified in the
service request). Furthermore, the client may provide somas that are too generic
for the service, leading to a possible malfunction of theelaservice (e.qg., if the ser-
vice translates onlizatin languages into othdratin languages, and the client provides
as input the conceptanguage which subsumes botBreekandLatin languages, the
service will not work if the client invokes the service withtext in Greekas input).
This relation is defined as follows:

WeakCapabilityMatch (Adv, Rey =
Vin € Reqln, 3in’ € Adv.In: ConceptMatch(in’, in) # fail and
v out € ReqOut, 3 out’ € Adv.Out: ConceptMatch(out’, out) # fail and
ConceptMatch(Adv.Category, Req.CategQr¥ fail

In the three matching relations the functiGonceptMatch() can apply to boolean
expressions (e.g., a client may specify as output of itsiredwapability:outputl is-a
VideoResource or SoundResourda this case, boolean expressions are transformed
into the disjunctive normal form and matching is performedédach term of the ex-
pression.

From the previous relations note that:
Prop 0: ExactCapabilityMatch (Adv, Re§j= InclusiveCapabilityMatch (Adv, Rejj= Weak-
CapabilityMatch (Adv, Reg;

If we consider the example of Figure 6, amclusiveCapabilityMatch() relation holds
between the advertised and the requested capabilities, as the input, culpoatagory of
the advertised capability are all equivalent or more generic than the ioptgut and cat-
egory of the requested capability. SpecificalipnceptMatch(Title, Title)=exact, Concept-
Match(DigitalResource,VideoResoujeplugin andConceptMatch(DigitalServer,Video-Servieplugin.
Furthermore, when a match holds between a set of advertised capalititieand a re-
guested capabilitiReq we use the functio@apabilityDegreeOfMatch() to rate each advertised
capabilityAdy; with respect tdReq This function is based on the functi@onceptDegreeOf-

16

Match() between two concepts andc: in an ontologyO. ConceptDegreeOfMatcHc,, c.) is
defined as follows:

ConceptDegreeOfMatchic,, c2)
=0, if ConceptMatch(c, c;) = exact
= number of levels between andc,, if ConceptMatch(ci, ¢;) = pluginjsubsume
= NULL, if ConceptMatch(c,, ¢) = fail

The definition of the functiol€apabilityDegreeOfMatch() is then given by:

CapabilityDegreeOfMatch(Adv, Reg=
wp(3_11, ConceptDegreeOfMatclfc;, ¢';) whereConceptMatch(c;, ¢’;) = plugin) +
ws (Y2, ConceptDegreeOfMatclfc;, ¢’;) whereConceptMatch(c;, ¢’;) = subsume)

wheren; andn. are, respectively, the number pfugin and subsume matches recognized
between concepts oddv and concepts oReq. Furthermorew, andw, are weights given to
the two levels of matchiugin andsubsume respectively, such thab, < w,. These weights
are used to specify the relative importance oflegin andsubsume levels of match between
concepts. lfw, is specified as strictly lower thans, then this means that more generic concepts
are preferred to specific ones. Note that ¢hect level of match is not given a weight as the
correspondin@onceptDegreeOfMatch) is equal to 0. Finally, for the evaluation of tikapa-
bilityDegreeOfMatch() function, only pairs of concepts such that the relattmmceptMatch()
holds, i.e., it is not equal tdail, are considered.

In the previous example of Figure 6, tapabilityDegreeOfMatch() between the adver-
tised and the requested capabilities is equaktw,,, which is calculated as follows: Twdugin
matches are identified between the requested and the advertised capab#iti€Soncept-
Match (DigitalResource, VideoResoujceplugin andConceptMatch(DigitalServer, VideoServgr
= plugin. As such, using the ontologies depicted in the middle of Figure 6 awe: h

ConceptDegreeOfMatcl{DigitalResource, VideoResoujce 2 and
ConceptDegreeOfMatcH{DigitalServer, VideoServee 1.

Hence CapabilityDegreeOfMatch(Adv, Re§|= wp, * (2 4 1).

After rating the advertised capabiliti@slv;, the ones such th&apabilityDegreeOfMatch(Adv;,
Req is the lowest are preferred. Nevertheless, the fulfillment of noctfanal properties is also
checked. Specifically, all the required properties specified in the séeglieapability description
are compared with provided properties of the advertised capabilitiesntifiae properties
(e.g., latencyless-than5, temperaturenore-than20, priceless-than50) are numerically com-
pared, whereas qualitative properties (e.g., NetworkConnecidsiyactly-aBluetoothConnec-
tivity, VirtualMachineis-aJVMb5) are checked using the relatiQonceptMatch().

If two or more advertised capabilities have the s@apabilityDegreeOfMatch() and meet
all the required properties of the requested capability, we select theiligpidat best matches
the required properties of the requested capability. This is done usifRydpertiesDegreeOf-
Match() function defined as follows:

PropertiesDegreeOfMatch{Adv, Reg = >~ w; * p; (1)

i=1
wherew; is the relative importance of the considered property, i.e., the higheweight w;
assigned to the property is, compared to the weights assigned to the other properties, the more

17

pi is preferred in relation to other properties. This allows a client to specifyipes between
non-functional properties. For instance, a client may prefer usimgwice that ensures a higher
security level even if this service has lower latency than other servindhisl case, the weight
given to the propertyecurity should be greater than the weight given to the propBtisency.

In nature, finding a good match is reduced to a problem where multiplsifgpsontra-
dicting) objectives need to be satisfied. The use of weights assigned toojmeriies reduces
the problem to a single-objective optimization problem. A different apgraeould reduce the
problem to a Multi-objective Optimization Problem (MOP). Rather than findisig@le solution
as in global optimization, the goal would be to find good compromises oe-éfd, resulting
in a set of solutions often referred to as fPareto optimal setThe QoS properties correspond-
ing to solutions in the optimal set are calledn-dominatedi.e. for a given set of constraints,
some QoS properties may affect the outcome of the optimization problerthi@s those in the
optimal set. As the relative importance of the QoS requirements may €fiffier one another,
further research will have to investigate whether solving the optimizatidoigmoto determine
the Pareto optimal setgraphically represented adPareto front would be feasible and lead to
other results.

Since properties are heterogeneesuse., some are qualitative, some are quantitative and
further expressed in different unitsdata normalization is needed in order to evaluateitog-
ertiesDegreeOfMatcH). The first normalization that we introduce is assigning numeric values
to qualitative properties such that they can participate irPttopertiesDegreeOfMatcK) func-
tion. These values are given by the functiBonceptDegreeOfMatclf) defined earlier. This
allows evaluating a provided qualitative property with respect to a reqpneguerty. Indeed, the
smaller theConceptDegreeOfMatclf) between a provided qualitative property and a required
one is, the better. The second normalization that we apply is the stand@tatenormalization
on the various properties as in [15]. This normalization is as follows:

Properties that are stronger with larger values (e.g., availability) arealzed according to the
following equation:

1 if (p(advi) —m(p) > 2 *(p))
P (adv;) = 0 if (p(adv;) —m(p) < —2 % (p)) 2)

pladv;)—m(p) i
o)~ T 0.5 otherwise

While properties that are stronger with smaller values (e.g., latenapalized qualitative prop-
erties), are normalized according to the following equation (so that smallees contribute
more to thePropertiesDegreeOfMatcK) function):

0 if (p(adv;) —m(p) > 2 4d(p))
P’ (adv;) = 1 if (p(adv;) —m(p) < —2x4d(p)) 3)
0.5 — 2ledro—tle) - otherwise

wherep(adv;) is the value of property for the advertised capabilitydv;, andm(p) andd(p)
are the mean value and standard deviation for the propergspectively.

An example of evaluating theropertiesDegreeOfMatcK) is depicted in Figure 7. In this
example, two advertised capabilitiesds andAdw,) are matched with the requested capability
Req The requested capability is specified on the device of a traveling userswboking for
entertainment capabilities in the various pervasive environments thed$ses during his travel.
In particular, this user is looking for digital servers, which he can axagiging the title of an
entertainment resource and receiving in result the correspondingnee. Currently, the user is
waiting for his train in a big city train station. The requested capability on thedeséce further
identifies some required properties regarding latency and availabilityelhaswnetwork connec-

18

Required Capability Provided Capability-Adv1l Provided Capability-Adv2
* Inputs * Inputs * Inputs
e Title * Title = e Title
* Outputs * Outputs ° * Outputs
¢ EntertainmentResource e VideoResource T ¢ SoundResource
* Category * Category * Category
e DigitalServer e VideoServer ¢ MusicServer
* Properties * Properties * Properties
* Min-Value-Of Price * Price is-equal 10 * Price is-equal 0
* Latency less-than 10 * Latency Jess-than 4 * Latency less-than 9
e Availability more-than 70% e Availability more-than 95% e Availability more-than 80%
* Network is-a Wireless * Network is-a WiFi 802.11b * Network is-a Bluetooth
Req Advi Adv2 Adv1' Adv2' Adv' Adv2
In Title Title Title 0 0 CDM= CDM=
Out Entertainment | VideoResource [SoundResource 1 1 2""5 ZWS
Category Digital Server VideoServer | Music Server 1 1
Price Min 10 0 10 0 0,32 0,68
Latency <10 <4 <9 4 10 0,68 0,32
Availability >70% >95% >80% 95,00% 80,00% 0,68 0,32
Network | WirelessConnection| WiFi802.11b Bluetooth 1 2 0,68 0,32

PropertiesDegreeOfMatch(Advi, Req)=0,32*w +0,68*w,+0,68*w, +0,68*w,=2,36 (if w=1)
PropertiesDegreeOfMatch(Advz, Req)=0,68*w +0,32*w,+0,32*w,+0,32*w,=1,64 (if w=1)

Figure 7: Matching non-functional Properties Example

tivity and price. In this example, two entertainment capabilities are availatteienvironment.
Specifically, avideoServerand aMusicServer The video server is offered by the networking
infrastructure of the train station, thus providing strong QoS propertigs (@gh availability,
low latency). However this capability is not free-of-charge. On the dthed, another traveler
in the train station allows other users to use his music resources for ére@jthout good QoS
guaranties. Both advertised capabilities match the requested capabilityuoé lig These two
advertised capabilities have the same valu€apabilityDegreeOfMatch() (noted CDM in the
figure) with the requested capability, i.e., equakto,. Hence, for selecting the best among
the two advertised capabilities, we use BrepertiesDegreeOfMatcK) function. Towards this
purpose, we first normalize qualitative properties to numeric valueg tisair ConceptDegree-
OfMatch() (results are given in column&dvl’ and Adv2’ of the table for the advertisements
AdvlandAdv2respectively). Using these values we then normalize all the properiigs the
standard deviation normalization (results are given in coluiuhsl” and Adv2”). Having all
the values normalized, it is easy to evaluateRhapertiesDegreeOfMatcH) for each advertised
capability as follows:

PropertiesDegreeOfMatcHAdv1, Rel= 0.32 * w1 + 0.68 * w2 + 0.68 * w3 + 0.68 * wy,
PropertiesDegreeOfMatcHAdv2, Redj= 0.68 x w1 + 0.32 * wa + 0.32 * w3 + 0.32 * w4

wherew;, w2, ws andw, are the weights of each of the propertiésice, Latency, Availability
and Network, respectively. Assuming that they all have the same relative importaece
w; = 1, EASY-M will select the advertised capabiliydv1, as it presents the highest degree of
match for properties, i.€2,36 > 1.64.

19

In this section, we presented EASY-L, a language for semantic, coraedtQoS-aware
service specification, as well as EASY-M, a solution for matching reqdesnd advertised ca-
pabilities in pervasive computing environments. Nevertheless, EAS¥rd,in particular the
underlyingConceptMatch() relation, relies on the costly reasoning on ontologies used to as-
sess relations between concepts. In the following two sections, we psedetions for efficient
service discovery of service capabilities.

4 EASY: Efficient Semantic Service Discovery in Per-
vasive Computing Environments

In this section, we present our solution for efficient semantic discovksgrvice capabilities.
This solution decomposes into two parts. First, we focus on the optimizatgenedintic reason-
ing on ontologies in order to efficiently infer relations between ontology episc Our approach,
described in Section 4.1, allows to quickly find whether two concepts &tedeto each other
in an ontology or not, without performing the costly semantic reasoning enli8pecifically,
we propose to perform classification of ontologies, which involves sémaasoning, offline,
and to encode the classified ontology hierarchies. Concepts involvedvinesand request de-
scriptions are then annotated with their corresponding codes in the ehbimtarchies, which
reduces the semantic matching of concepts performed b@dheeptMatch() function to a nu-
meric comparison of codes. In the second part of our solution, itbescin Sections 4.2 and
4.3, we introduce an overview of the architecture of EASY that enabéesansparent deploy-
ment of semantic service discovery on top of existing SDPs. We furtkesept our mechanisms
for organizing services according to their semantic similarity within a semépesitory. This
allows efficiently advertising services and resolving service requests.

4.1 Encoding Semantic Concept Hierarchies

As discussed in Section 2.4.1, encoding object class hierarchies wittplminheritance for
quickly performing subtype testing has been a very active field of relséa the last decade.
However, there are several reasons why the previously discusbgge encoding techniques
are not so useful for representing subsumption within ontologies. &firsll, incremental en-
coding for ontologies assumes apen worldview on the concepts involved, whereas a compiler
knows all types in a progranclpsed worldassumption) and can do a more efficient and compact
encoding. The compiler can assume that no other classes are besugraahif such classes do
not exist, which is not the case with ontologies. Another reason is thahfolagies we require
scalability to very large ontologies with support for conflict-free incretaleencoding so as to
easily reuse previously encoded concepts. Some encoding techpiguie support for incre-
mental encoding, but require the re-encoding of conflicting codesi@use a subsumption test
results in a false positive. For ontologies, where reuse of concepteddfierein is one of the
main goals, the encoding should be carried out once offline and bedassnuch as possible.
To deal with the above requirements, we have developed a prime-baseding technique
for subsumption testing of classes in ontologies that yields a new way gfaction, supporting
incremental encoding by avoiding conflicts rather than solving them. [Gogitom exploits the
sparseness of the binary matrix representation by only encoding remeéeto ancestors of a
class; this is done by assigning a unique prime numbeas a personal geng € G to each
classC; € x in the hierarchyy. Unique prime numbers ensure the conflict-free incremental
encoding. The encoding of a multiple inheritance hierarghy {A, B, C, D, E} is illustrated
in Figure 8. ClasgE inherits the gene& and 7 from its ancestors and is assignéet as its

20

Figure 8: Hierarchy encoding using prime numbers

personal geneg. Personal genes are underlined in Figure 8. Encoding of aClaissgiven by
the relationy(Ci) = []; g;, with g; the genes of clasS; and its ancestors. For instance, for the
classE, this relation yields:yy(E) = 2 x 7 x 11 = 154. As classesd and D have no ancestors,
their encodingy(A) and~(D) is solely based on their personal gene= 2 andgp = 7.

AclassA € yx is subsumed by a clad3 € x if the genegg = ¢(B) of classB divides
the encodingy(A) of class A. For incrementally encoding a new cléss; 1, the next available
prime numbetr,+1 = ¢(Cr+1) is used as a personal gengC',+1) can be computed without
traversing the hierarchy to collect the genes of the ancestors, buigythsleast common mul-
tiple functionlcm({ v(Ca),v(Cs),v(C¢), ... }) of the encoding of its parents,, C, C.,
Note that our incremental encoding only ensures conflict-free engpbirt not the most com-
pact representation.

4.1.1 Optimizing the Encoding Length of the Representation

The order of assigning prime numbers in Figure 8 was randomly choBkeis may not only
affect the encoding length of the class itself, but also that of its despendBy selecting a
prime number for each class, more compact representations camibged. In our algorithm,
we assign prime numbers in order, (i.e., 2, 3, 5, ...) and use the following heuristics:

e Minimize total encoding lengthAncestors with the most descendants are encoded first,
hence using the smallest prime numbers, to achieve the shortest taidirentength of
the hierarchy for all classes together.

e Minimize longest encoding lengtfio minimize the longest encoding of a single class in
the hierarchy, the least possible encoding of the leaves of the hieliarebffmated given
the current incremental encoding.

Our first algorithm illustrates the use of the first heuristic to encode therbigravhile en-
suring the most compact representation of the hierarchy for all dldsgether. The algorithm
iteratively selects the next best class and assigns it a prime number ILitl# @lasses have
been processed. For a multiple inheritance hierarchy containitigsses’, Co, ..., Cy, (Al-
gorithm 1) shows the encoding of the hierarchy to achieve the set o dodeach class(C4),
v(C2), ..., 7v(Cr). On the other hand, if minimizing the longest encoding of a cigss;) is
required, then the selection béstClasss changed by investigating what the largest encoding
would be if all descendants of claés would immediately receive a next prime. The one with
the largest predicted leaf is chosen asltlkstClassn that case. After the gene assignment has
been carried out, each of theclasse<; has a personal gene and a cod€’;) computed by

21

Algorithm 1 EncodeHierarchy(in: hierarchyout: gammal])
: n =SizeOf hierarchy)
. primeTable[1..n] <ComputePrimegn)
i=0
. classList =Rootg hierarchy)
: while SizeOfclassList)> 0 do
bestClass First(classList)
for each Cin classListdo
if SizeOf(DescendantfC)) > SizeOfDescendantébestClass)))hen
bestClass =C
10: end if
11: endfor
12 i=i+1
13: AssignPersonalGengbestClass, primeTable[i])
14: AddinheritedGene(DescendantébestClass), primeTable[i])
15: RemoveClasflassList, bestClass)
16: AddClasqclassListNoPersonalGenéChildren (bestClass)))
17: end while
18: for each Cin hierarchydo
19: gammalC] “MultiplyAliGenes (C)
20: end for

CoNTORWNE

multiplying the personal gene with the inherited genes. The following hewiséio then be
used to test for subsumption:

e AclassA € x never inherits from another clags € x if the encodingy(A) of classA
is smaller than the encoding B) of classB.

e AclassA € x never inherits from another clags € if the personal gene(A) of class
A is smaller than the geng(B) of classB.

For two classe€’;, C» in a hierarchy that have encodindC1),~v(C2) and genesr, 72, the
subsumption algorithm for testing if one claSs subsumeg’; is given in (Algorithm 2). In

Algorithm 2 Subsumesgin: Cy, Cs)

s if T > mo then
return false

end if

L if y(C1) > v(C2) then
return false

end if

: return (y(C2) % m = 0)

NoakwhRe

our implementation, we have also developed an optimized version of thalonoperator that
avoids any logic for determining the correct sign of the result. In factewen eliminate the
computing of the quotient or the remainder, but just test whether themderds zero or not. A
performance evaluation of our encoding mechanism is presentedtioiSg2.

Under the assumption that the classified ontologies are encoded andrthie¢ sidvertise-
ments and service requests have been annotated with the codesauiieggo the concepts
that they involve, semantic service reasoning reduces to a numericacsop of codes. In-
deed, to infer whether a conceft represented by the code subsumes another concept
represented by the codg it is sufficient to numerically compare with 3, i.e., check whether
the gene oty divides 3, which is an elementary processor operation that has a cost in the or-
der of nanoseconds. In order to ensure consistency of codes iadaef the dynamics and

22

evolution of ontologies, service advertisements and service requestifysihe version of the
codes being used. Specifically, each involved concept is annotated withle: <Ontology,
Code, Versiorr, whereOntologyis the URI of the ontology describing the concepadeis the
code given to the concept by the encoding algorithm, @adionis the version of the code,
which evolves along with the ontology evolution. We assume that servicesdjwally check
the version of codes that they are using and update their codes in thef ceelogy evolution.
Performing efficient matching of service capabilities constitutes a firatfgignt optimiza-
tion towards enabling the deployment of semantic solutions in pervasiseoements: thin
devices can efficiently carry out semantic matching without the need toamalsrun highly
resource-consuming reasoners. Nevertheless, with the increasimtgenof services in the envi-
ronment, solutions for reducing the number of semantic matchingsrpetbto resolve a service
request are required. Our second related optimization relies on indeméhglassifying service
advertisements according to their semantic similarity. Before introducingfitimization in
Section 4.3, we first give in the following section, an overview of the @/&ASY architecture.

4.2 EASY Architecture Overview

As previously discussed in the introduction, EASY is not yet-another Bfad, EASY allows
enhancing existing SDPs with support of semantic-based matchingeFgilows an overview
of the architecture of EASY, which enables the transparent deployomeiap of existing SDPs.
In this figure, a legacy SDP is depicted with its provided mechanisms facsanatching, called
SDP-M, and its provided mechanisms for storing service descriptigas gi SDP-1**. Deploy-
ing EASY on top of this SDP enables dealing with both the EASY-L semantiaigéisos and
the SDP-L syntactic descriptions. Indeed, semantic service advertisgneguests are man-
aged by the introduced EASY mechanisms while the syntactic servicetisdveents/requests
are managed by the initial SDP stack. An index that links the semantic EA&aStriptions
with their corresponding SDP-L descriptions is maintained. The introdE&&Y mechanisms
further discussed in the following section include: EASY-M for matchingSlYA. service de-
scriptions and a solution for grouping EASY-L service descriptions tdsv&fficient service
insertion and retrieval. In the case of a centralized legacy SDP, the dephtyscheme shown in
this figure applies only at the centralized registry. In the case of a fullyiliséd SDP, where
caches are maintained for temporary storing service advertisemeneployment of EASY
should be performed in all the nodes of the network that participate in tbeweis/ process. An
example of the deployment of EASY on top of a semi-distributed SDP in sszlin Section 5.

4.3 Organizing Services in the Repository

Based on the EASY-M conformance relations of Section 3.2 and aogpta the architecture
described in the previous section, we present in this section a solutioanf@rgically organiz-
ing a service repository in order to minimize the number of matchings pee to answer a
service request (Section 4.3.2). Our solution further enables efficisertion of a service ad-
vertisement in the repository, minimizing the number of matchings pegdror this purpose
with advertisements already registered (Section 4.3.1).
Finally, each performed matching is itself carried out efficiently withoublving any se-

mantic reasoning thanks to the encoding technique presented in Section 4.1

14SDP-L and SDP-M are respectively the legacy service desmmifanguage and matching mechanisms
related to the legacy SDP

23

EASY-L
E descriptions
ESASY_L+ é Index Q@O
DP-L L
Req/Adv > v - ont?logy ——] ng
4 (0]
- group
M QﬁVQ
Index EASY-L
EASY to SDP-L
I
S SDP-L
D descriptions
SDP-L P ¥
Req/Adv > @ @
L 7 M
Legacy SDP
EASY-Enhanced SDP

Figure 9: EASY Architecture Overview

4.3.1 Adding a New Service Advertisement

At a pre-processing phase, our approach constructs directetcagsaphs (DAGS) of capa-
bilities of the advertised services. These graphs are indexed accdoding ontologies being
used in the capabilities that they contain as shown in Figure 9. More precseigdex table
is maintained for specifying which ontologies are used for each grapfroiistruct the graph
we employ the relationExactCapabilityMatch () andInclusiveCapabilityMatch () defined in
Section 3.2. Specifically, ExactCapabilityMatch (C4, C2) holds between two service capabil-
ities C1 andC4, then these capabilities will be represented by a single node in the gragheOn
other hand, ifinclusiveCapabilityMatch (C;, C2) holds andExactCapabilityMatch (C1, C-)
does not(C; andC will be represented by two distinct nodes with a directed edge ftano
Cs.

Using this grouping technique, the magneric capabilities will be represented by root
nodes in graphs;, notedRootqG;), i.e., nodes ofG; that do not have predecessorsG.
These capabilities are said to be more generic than other capabilities cdntaitieir sub-
hierarchy because they provide outputs, inputs and category thatrselibe respected ones
of their successors in the graph. For instance, the advertised capabijigtet! in Figure 6,
which provides digital resources isore generichan the two advertised capabilities depicted
in Figure 7, which are providing only specific types of digital resourtces,Video and Music,
respectively. Similarly, we definkeavegG) as the set of nodes in the graghthat do not
have successors {B. The capabilities classified in the detavegG) of a graphG are the most
specificcapabilities of the graph, which means that they provide outputs, inputsatagory
that are subsumed by the respected ones of their predecessorsiiaghe g

24

Algorithm 3 InsertService(in: serviceDescription7 ., out: G .)

1: for each C; in serviceDescriptiomlo

2 for each G; using the same ontologies % do
3 while not C; inserteddo

4: for each Root; in Roots(G;) do
5: if not InclusiveCapabilityMatch (Root, C;) then
6 for each Leaf; in LeaveqG;) do

7 if InclusiveCapabilityMatch (C;, Leaf) then
8 Test with N € predecessors of Leaf

9 until — InclusiveCapabilityMatch (C;, Pred(N;))
10 Draw an edge fronT; to N;
11 end if
12 end for
13 else
14: Test with N € successors of Ropt
15: until — InclusiveCapabilityMatch (SucdN;), C;)
16: Draw an edge from Cto N;
17 for each Leaf; in LeavegG;) do
18 if InclusiveCapabilityMatch (C;, Leaf) then
19 Test with N € predecessors of Leaf
20: until — InclusiveCapabilityMatch (C;, Pred(N;))
21: Draw an edge fronT; to N;
22: end if
23: end for
24: end if
25: end for
26: end while
27: end for
28: end for

When a new service is registered with a repository, the set of capabilitieg gravides
are classified among the existing graphs. The algorithm of classifyingcapabilities in the
existing graphs is described later in this section. This algorithm is based dolltheing two
properties:

Prop 1 : — InclusiveCapabilityMatch (Root, AdV): Root € RootyG) =
V C € Successor@Root): — InclusiveCapabilityMatch (C, Ady

Prop 2 : — InclusiveCapabilityMatch (Adv, Leaf): Leaf € LeavegG) =
V C € Predecessord eaf): — InclusiveCapabilityMatch (Adv, O

The proofs of these properties, as well as of the property (Prop 8dinted in the next section,
are given in Appendix A. The properties (Prop 1) and (Prop 2) aeel ts check whether an
advertised capabilitAdvwill have, respectively, a predecessor and/or a successor in the gra
G, without applying thénclusiveCapabilityMatch () with all the nodes of a graph. Indeed, if the
InclusiveCapabilityMatch () fails between a nodRoot in RootqG) andAdy, it will also fail
with all the successors &oot in G, i.e., Advwill not have a predecessor (& Respectively, if
thelnclusiveCapabilityMatch () fails betweerAdvand a node iheavegG), it will also fail with
all the predecessors akaf, i.e., Advwill not have a successor iB. The steps for classifying
the capabilities of a new service within a set of gra@hsG.,..., G, is given in (Algorithm 3).
For each capabilit; advertised by the new service, the algorithm tries to find a g&ph
which this capability will be integrated (lines 1..3). A subset of graphsdseglected according
to the ontologies being used I6};. The algorithm first checks wheth&; can be inserted in
the sub-hierarchy of one of the root nodes@f This is done by verifying if there exists a

25

nodeRoot in RootyG;) such thatnclusiveCapabilityMatch (Root, C;) holds (line 5). Note
that, for the sake of simplicity, we sometimes use nodes instead of capalaititirameters of
matching relations (e.g., the useRbot in InclusiveCapabilityMatch (Root, C;)). For such
notations, we mean that the matching is performed with one of the capabiipessented by
the corresponding node, instead of the node itself, as all the capabilpieseated by a node
are semantically equivalent.

If InclusiveCapabilityMatch (Root, C;) holds (line 13), ther€; will have a predecessor in
G;. The next step is to find this nodd;, among the successors of the nétiEot, such thatn-
clusiveCapabilityMatch(Succ(N), C;) fails, and to draw an edge frof®; to N;. Moreover,C;
could have a successor®@. Thus, the algorithm tries to find among the keavegG;) if there
is a node_eaf; such thatnclusiveCapabilityMatch (C;, Leaf) holds (line 17)). IfinclusiveCa-
pabilityMatch (C;, Leaf) holds, therC; will have a successor iB;. The next step is to find this
node,N;, among the predecessorslafaf such thatnclusiveCapabilityMatch (C;, Pred(N))
fails, and to draw an edge fro®; to N; (line 21)). On the other hand, ificlusiveCapabili-
tyMatch (Root, C;) does not hold (line 5)C; will not have a predecessor ;. Nevertheless,
C; could have a successor @. Thus, the algorithms checks whether there is a g, in
LeavegG;) such thainclusiveCapabilityMatch (C;, Leaf) holds (lines 6..10). These steps are
similar to the aforementioned lines 17..21.

@< e<® ©
c

InclusiveCapabilityMatch(C1,NewC) holds InclusiveCapabilityMatch(NewC,C7) holds
InclusiveCapabilityMatch(C3,NewC) holds InclusiveCapabilityMatch(NewC,C5) holds
InclusiveCapabilityMatch(C5,NewC) fails InclusiveCapabilityMatch(NewC,C3) fails

%?

Figure 10: Example of inserting a capability in a DAG

Figure 10 shows an example of inserting a capabitigwG in a DAG of capabilitiesG.
The first step (left part of the figure) is to mateBwCwith capabilities fronrRootqG) in order
to find out whethenewCwill have a predecessor 8. Indeed nclusiveCapabilityMatch (C,
newQ holds, which means that one of the successoG;ofill be linked with newG i.e., Cs.
The next step (right part of the figure) is then to find out whettesvCwill have a successor iG.
This is done by matching the capabilitieslinavegG) with newC Indeed,InclusiveCapabili-
tyMatch (newC, G) holds, which means thaiewCwill be linked with one of the predecessors
of Cr, i.e.,Cs.

4.3.2 Resolving Service Requests

When a service requeReqarrives, our approach first pre-selects, among the existing DAGSs,
graphs that contain services that are most likely to match the requestisTdose using the
indexes given to each graph, which correspond to the set of ontologgesby the capabilities

of that graph. For each pre-selected gr&tthe approach performs matching between the re-
quest and the capabilities BootqG). Specifically, ifWeakCapabilityMatch () does not hold

26

Algorithm 4 MatchService(in: serviceDescription7;. .., (out: capabilitySet)

1: for each C; in serviceDescriptionlo

2 for each G; using the same ontologies &% do
3 while not C; matcheddo

4: for each Root, in Roots(G;) do

5

6

7

8

if WeakCapabilityMatch (Root;, C;) then
Add M to capabilitySet with Nh SucqRoot)

end if
: end for
9: end while
10: endfor

11: Select frontapabilitySethe capability M such that:
12: CapabilityDegreeOfMatch(M, C;) is minimaland
13: PropertiesDegreeOfMatci{M, C;) is maximal

14: end for

betweenRegand any of the capabilities dtootyG), the graphG is filtered out, and the next
pre-selected graph is checked. This filtering is based on property @pro

Prop 3 : V Root € RootgG): — WeakCapabilityMatch (Root, Req =
V C € G: = WeakCapabilityMatch (C, Req

Prop 4 : — WeakCapabilityMatch () = — InclusiveCapabilityMatch () =
- ExactCapabilityMatch ()

Note that we use th&/eakCapabilityMatch () relation instead of the other two relations, i.e.,
ExactCapabilityMatch () andInclusiveCapabilityMatch (), to filter out graphs, because it in-
cludes the other two relations, as described in property (Prop 4) defiven (Prop 0). On
the other hand, if the matching between the request and a cap&tlity of RootgG) holds,
i.e., WeakCapabilityMatch (Root, Req holds, the algorithm tries to find a nodzfrom the
successors oRooft, including Root itself, such that:CapabilityDegreeOfMatch(C, Req =
Min (CapabilityDegreeOfMatch(C;, Req), whereC, is a successor dRoot or Root itself,
andC; meets all the required propertiesRéq

Note that for finding a capability that exactly matches or is more genericttifmnequested
capability Req excluding capabilities that use more specific concepts R an additional
test, i.e.,ExactCapabilityMatch (C;, Req or InclusiveCapabilityMatch (C;, Req, should be
performed with the selected no@g, respectively.

Finally, selection among capabilities represented by the selected nodedsdratheProp-
ertiesDegreeOfMatcK) relation. Indeed, as capabilities represented by the same node of a
graph are semantically equivalent, we select the capability that bestesdtEhrequest in terms
of non-functional properties.

Given a set of capabilitie€,, Cs, ..., C,, requested in the service description and a set of
graphsGi, G, ..., Gm, (Algorithm 4) resolves the service requests and returns a set dbitapa
ities of advertised services that best match the input capabilities.

An example concerning the first steps of our algorithm for matching aestiqd capabil-
ity with advertised capabilities of services is given in Figure 11. In this figtre requested
capability Requses the ontolog; in its specification. This allows to filter olRAG, as it
is indexed with only the ontolog®s. The next step is to matcReqwith capabilities from
RootgDAG;) andRootgDAGs), i.e., the capabilitie€; andC,. If the matching fails with one
of these capabilities, we can infer that no capability will maRggin the corresponding graph.

The benefits of using the introduced solution is that it minimizes the numbserméntic
matchings performed to answer a query. Indeed, thanks to the indefkgrgphs, matching is

27

e
DAG 1 m DAG 3

Uses ontology 01, 02 DAG 2 Uses ontology 01, 04
A Uses ontology 03 *

[

[[
! Request ‘
e Uses ontology O1 !

WeakCapabilityMatch(C1,Req)
WeakCapabilityMatch(C4,Req)

Figure 11: Example of matching a user’s requested capabilit

only performed with graphs that use the same ontologies as the quettyeiffoore, graphs that
will not provide capabilities that match the query are quickly filtered out hycimng the query
only with root nodes of those graphs.

As the main function of both service insertion and matching algorithms isnpaes set
DAGs and performing matches on the capabilities of the visited nodes itslexitypcan be
approximated with the complexity of elementary graph algorithms (e.gbréedth-first search
algorithm whose complexity is linear in the size of the graph). Furtherntbeeprocessing
done in each node for matching capabilities is composed of a set of disi$iw assessing
subsumption between concepts and is thus linear in the number of cohedpgscompared
(i.e., inputs, outputs, category of advertised and requested capapilities

Our overall EASY solution to efficient semantic service discovery, damg the substitu-
tion of semantic reasoning and the minimization on the number of matchingatesavithin
a repository, complements the EASY-L and EASY-M instruments forriteag and matching
services. In the next section we evaluate our overall EASY solution.

5 Prototype Implementation and Performance Evalua-
tion

5.1 EASY-Ariadne: Deployment on Top of Ariadne

EASY is intended to be deployed on top of existing SDPs in order to provide with support
for efficient semantic, context- and QoS-aware, service discowdrgh are essential require-
ments for service discovery in pervasive environments. We havieyeh EASY on top of
Ariadné®, a scalable semi-distributed service discovery protocol for MANE B3 §2cording
to the architecture presented in Section 4.2. Ariadne relies on a backbmositories storing
WSDL descriptions and constitutingvirtual network Repositories are dynamically deployed,
each repository performing service discovery in its vicinity. As suchjiee discovery in the
global network is based on collaboration among deployed repositoriégdrfe can be con-
figured as a fully distributed SDP, if all the networked nodes act as itepies, as well as a
centralized or semi-distributed SDP if only one, or a subset of netwarédds, respectively, act

15Ariadne SDP: http://iwww-rocq.inria.fr/arles/downloadadne/

28

as repositories. This allows assessing the flexibility of EASY to be employedpmof various
SDPs with different deployment schemes.

EASY-Ariadne, i.e., Ariadne augmented with EASY, decomposes intea knd a global
discovery process. The local discovery process is performeddiyrepository. Each repository
is thus responsible for:

(i) storing the EASY-L descriptions of the services available in its vicinity, arghnizing
the capabilities provided by these services according to the DAG-balsemhedliscussed
in Section 4, and

(i) periodically advertising its presence to its vicinity.

When a repository receives a service request, specified using EABY¥eeks capabilities
of registered services that semantically match the requested serviiscassed in Section 4.

To deal with the dynamics of pervasive networks, repositories arardimally and homo-
geneously deployed in the network using an on-the-fly election proc&sscifically, if for a
given period of time, a node does not receive any repository adwewtist, the node initiates the
election of a new repository. The election process is done by broadgastialection message
in the network up to a given number of hops. Thereafter, nodes caar aithept or refuse to act
as a repository, depending on a number of parameters such as ketwerage, mobility and
remaining/available resources. This mechanism allows electing repositatiethe best prop-
erties, and distributing them efficiently, as an election process is launcltbd insufficiently
covered areas.

The global service discovery process is based on collaboration aelectgd repositories.
The aim for efficiency of the discovery process in terms of response dindl generated traf-
fic implies querying repositories that are the most likely to store servicerasements that do
match a requested service. Towards this goal, we use repository izatigo as introduced in
[22], which gives a compact overview of the repository content, lwewenhancing it with se-
mantic content representation. More precisely, we use Bloom filtersifonrizing the content
of a repository. The main idea is to compute a veet@f m bits per registry, which corre-
sponds to a Bloom filter. For any advertised capabilityv, its semantic description relies
on a set of ontologie®(Adv) = {01,0,...,0,} for describing its inputs, outputs, cate-
gory and properties. For each capabilitylv provided by a networked service and stored in
a repository, its description in terms of its used ontologies is hashediwitdependent hash
functions. Each ontology is considered in terms of its URI. The bits of tlutover whose
positions are given by the results of thehash functions are set to 1, i.e., the bits at position
h1(O(Adv)), h2(O(Adv)), ..., hi (O(Adv)) are set to 1.

In order to determine whether a repository possibly stores a requestedility Req, we
check in the repository’s Bloom filter whether the bit positidn§O(Req)), h2(O(Req)), ..,
hi(O(Req)) are all set to 1. If there is a bit that is not set to 1, the repository doesombain
the required capability. On the other hand, if all the bits are set to 1, theitepois likely to
contain the required capability, and EASY local service discovery impedd in that repository.
The probability of a false positive depends on the paramétevghich is the number of hash
functions, andn, which is the size of the Bloom filter. These values can be chosen so that the
probability of false positives is minimized.

The cooperation between repositories is performed by exchangingldeenHilters that
give an overview of the repositories’ content. The exchange of Blobendiis done when new
repositories are elected, and as well reactively, i.e., requesteddtlyesirepository when the
percentage of false positives reaches a given threshold.

According to the deployment policy, each mobile node is associated tsablearepository.
When the mobile node seeks a service characterized by a set of ceqapabilities, it sends a

29

_;?"‘
Directory B

Directory A

Figure 12: EASY-Ariadne

guery message to the repository that is responsible for its vicinity. Thusitepy performs for
each required capability EASY local service discovery, as describ&kation 4.3.2. If the
required capabilities are not stored locally, the repository forwardsateest to a subset of
repositories that are likely to store capabilities that match the request. positaies to which
the request is forwarded are selected according to their Bloom filters.

Figure 12 provides an overview of the EASY-Ariadne architecture. érfifure, three nodes
have been elected to act as repositories. When a service requestik therepository node that
is in the vicinity of the service requester, i.e., repository A, receivesahédce request (Step (1)).
The repository performs an EASY local service discovery to find loifias that semantically
match the capabilities of the requested service (Step (2)). Servicdiaduants providing these
capabilities are returned to the requester. If some capabilities havearofdaand locally, another
request is sent to remote repositories that are likely to store relevaatiitips according to their
summarized description, i.e., Boom filters (Step (3)). These repiesitperform an EASY local
service discovery (Step (4)), and return the corresponding seadeertisements (Step (5)),
which are sent back to the requester.

The deployment of EASY on top of Ariadne has required the introducticfight changes
in the implementation of Ariadne, among which the update of the hashingguee, i.e., hash-
ing information from EASY-L instead of hashing WSDL descriptions, a8l agextending the
API of Ariadne in order to support the advertisement and matching mmbséc descriptions.
Nevertheless, introducing these slight changes in Ariadne enablesmarg efficient, rich, se-
mantic, context- and QoS-aware service discovery and has furtheased the scalability of
Ariadne as discussed in Section 5.2.2.

30

Ontology | Classes| Max Ancestors || Caseau | Krall | Prime Max/Avg

MR Food gg@%' %g 'i ﬁ%%' ;§§| e%%éé%

%%;gology

Table 1: Comparison of encoding length of a single classts bi

5.2 Performance evaluation

For evaluating our solution we performed two main experiments. Theekseriment aims
at evaluating our solution for encoding multiple inheritance hierarchiegysime numbers.
This evaluation is described is Section 5.2.1. The second experimsgtioid in Section 5.2.2
evaluates the impact of introducing EASY on top of Ariadne.

5.2.1 Performance evaluation of the encoding algorithm

We have tested our proposed encoding mechanisms and subsumpiisti¢gon a set of multi-
ple inheritance hierarchies, including: the Suggested Upper Mergedo@n{d 7]; the OpenCyc
upper ontologlf; several well-known ontology tutorial examptés®; the Gene Ontolody,
which provides a vocabulary of genes from any organism; and the 180 types hierarchy,
which is part of a subtyping benchm&fkTable 1 provides an overview of the encoding lengths
achieved by various existing algorithms (see Section 2.4.1) and ouithfgo The results for
existing algorithms show the largest encoding length for a class in the dhigraxpressed in
bits. For the binary matrix method, this is equal to the size of the hierarcnyouf prime-based
algorithm, the last column shows: the largest encoding lengths for théstiethat minimizes
the largest encoding length; and the average encoding length for thistieethat minimizes
the total encoding length. Besides achieving conflict-free incrementaldam, the encoding
lengths produced by our algorithm are comparable if not better than e afrexisting algo-
rithms. A complete description of our encoding and subsumption algoritalmsg with other
heuristic-based optimizations, and comparison of performance resthitsther techniques are
discussed in detail in [20].

5.2.2 Performance of EASY-Ariadne

We have implemented a prototype of EASY-Ariadne for evaluating the itrgddistroducing se-

mantic service matching in Ariadne, which originally uses basic WSDL ébagetactic match-
ing of Web services. We have performed our evaluations on a Toshifedli®® notebook with

a 1.6 GHz Intel Centrino processor and 512 MB of RAM. In all the expents that we per-
formed, we increased the number of services from 1 to 100. Théeetescriptions given in
EASY-L are using 22 different ontologies, and each service desarigtatains a single pro-
vided capability. Note that for all our experiments each value is calculabed &n average of
five runs. Figure 13 shows the results of our first experiment, whialuates the time to cre-
ate graphs of services in an empty repository. A scenario for this iex@et would be realized
when a repository leaves the network and when another one is electbasitm host the set of
service descriptions available in its vicinity. Figure 13 shows three maasumts: (1) the time

160penCyc: http://iwww.opencyc.org/

170OWL Guide: http://iwww.w3.org/TR/owl-guide/

18pizza Ontology: http://www.co-ode.org/ontologies/pizz

19Gene Ontology: http://www.geneontology.org/

20Java subtyping benchmarks: http://www.zibin.net/sulitggoenchmarks.html

31

500

Time to parse services —+—

Time to create graphs -—-----
Total time -

400 |

e .

300 -

Time (ms)

200 -]

0 L—xeeeeeeee S e e Xoee S S

0 20 40 60 80 100
No. of Services

Figure 13: Time to create graphs

to parse the service descriptions; (2) the time to organize the servichilizgminto graphs;
and (3) the total time, i.e., time to parse and create the graphs. From this, fige notice that
the time to create the graphs is negligible compared to the time to parse segs@@tions,
i.e., XML parsing time, which is mandatory due to the use of Web servicdsSemantic Web
technologies.

The results given by the second experiment that we performed piete in Figure 14.
This experiment shows the time to insert a new service advertisemergfiository. This figure
shows 3 measurements: (1) the time to parse the EASY-L description oktheservice; (2)
the time to classify the service capabilities within the repository graphs; gritig3otal time,
i.e., the time to parse and classify the service capabilities. Results shatlvehahe to classify
service capabilities in a set of existing graphs is negligible compared to Xai&ing time of
the service description. We also notice that this time is nearly constant. Thig i®dhe fact
that the number of semantic matchings performed in the repository intardesert a capability
depends neither on the total number of services on the repository rtbe arumber of graphs.
The time to insert a capability depends on the number of root and leaériodiee repository
graphs as well as the number of capabilities contained in the graph in wieidagability will
be inserted. This is due to the fact that graphs are indexed using thegiesotbat are being
used in the capabilities’ descriptions, which allows pre-selecting a subgeths that are likely
to be appropriate for the insertion of the new capability. Thus, only a fewbeu of semantic
matches are performed in order to insert a capability in a repository.

The results of the third experiment that we performed are depicted ind=ifat In this
experiment, we evaluate the time to match a service request with servites by a repository.
Furthermore, we compare the time to match a request in an organizesitoep with the time
to match a request in an unorganized repository. Results are givenuivttieo XML parsing
time of the request description. In this figure, we notice that without iepgsorganization,
the average overhead for matching is around 50% of the time to match twbeapository is
organized. Moreover, we notice that the time to match a request in théfieldsepository is
nearly constant, which is due to the graphs indexing and the repositopiusing. We also
notice that the response time to match a required capability, excluding Xkiingatime, is in
the order of few milliseconds.

32

180

T T T
Time to insert a service in the graphs ——

160 - Time to parse the service request e

140 -

120 - b

100 - b

80 b

Time (ms)

60 [b

40 t 1

20 - b

0 20 40 60 80 100
No. of Services

Figure 14: Time to publish a service advertisement

5 T T T
Time to matching in a structured directory ——
Time to match in an unstructured directory ----x----
4l]
______ N
X
/X/
% 3r]
E .
o x
E
E ol —_— 1
1 L 4
0
0 20 40 60 80 100

No. of Services

Figure 15: Time to match a service request: Organized vsdgamized repository

33

400 T T T

T
Ariadne —+—
S-Ariadne ---x---

350

250

200 |

Time (ms)

150

100 1

50 - Bl

No. of Services

Figure 16: Time to match a service request: Ariadne vs EAS#dhe

The last experiment that we performed is a comparison of the respione given by the
classical syntactic-based matching performed by Ariadne and the optirsgmantic match-
ing performed by EASY-Ariadne. The results are given in Figure 1Bis Tigure shows that
the response time given by Ariadne is increasing with the number of ssraiailable in the
repository, while EASY-Ariadne has an almost stable response timehvididue to the fol-
lowing reasons: (1) using EASY-Ariadne, the services are parseel anthe publishing phase
and their capabilities are classified, which avoids matching a request witteaervices of the
repository; (2) due to the numeric encoding of ontologies, the semantahing performed by
EASY-Ariadne reduces to a numeric comparison of codes, while usiiegide the matching is
performed by syntactically comparing the WSDL descriptions. We coedloal, using EASY-
Ariadne, semantic matching, which allows to leverage the opennesswafspgr computing en-
vironments, can be performed more efficiently than classical syntaetichimg. Furthermore,
thanks to repository indexing and structuring, EASY-Ariadne is morkabtathan Ariadne.

6 Conclusion

The pervasive computing vision is increasingly enabled by the largessiof wireless networks
and devices. In pervasive environments, heterogeneous sofimaiteardware resources may be
discovered and integrated transparently towards assisting the penfeerofiusers’ daily tasks.
An essential requirement towards the realization of such a vision is thilelality of mecha-
nisms enabling the discovery of resources that best fit the client applisaneeds among the
heterogeneous resources that populate the pervasive envirodasat on the Service Oriented
Architecture (SOA) paradigm, which allows the abstraction of the hetesmes software and
hardware resources as services described using structurecesigsription languages, a num-
ber of service discovery protocols (SDPs) have emerged. Howinse protocols rely on the
syntactic conformance of service interfaces, which requires a conagi@ement on the syntax
underlying the specification of such interfaces world-wide; this is hactijezable in open per-
vasive environments. Furthermore, these SDPs provide limited dupipservice context and
QoS properties, which is a key requirement towards the realization ofstiecentric vision

34

aimed at by the pervasive paradigm. Building upon semantic Web tedjiesjand particu-
larly ontologies, allows the unambiguous semantic, context and QoS spéoiii of services in
pervasive computing environments. However, such rich specificatemuire the use of costly
semantic reasoning on the employed ontologies in order to assess toentame of service
capabilities against client requests.

Considering the large number of SDPs already deployed in pervasir@ements, the ob-
jective of this article was not to propose yet another SDP, but to introduo@mprehensive
solution to efficient, semantic, context- and QoS-aware service diggavhich can easily be
deployed on top of existing SDPs. We first introduced EASY-Langusiger{ly EASY-L), a lan-
guage for the semantic, context and QoS specification of serviceitigsband its correspond-
ing set of conformance relations (EASY-Matching, shortly EASY-MASY-L is a simple and
extensible language specified in OWL, which captures the essential miormmecessary for
matching functional and non-functional properties of pervasiveises. Furthermore, EASY-
M defines three relations for matching service functional capabilities bmdsarating services
with respect to their suitability for a specific request. Moreover, EASYsbvjaes the means
for selecting the service that best fits the non-functional requiremésés\ice clients by taking
into account client preferences among the various, heterogenespesies. Based on EASY-L
and EASY-M, EASY performs efficient service discovery on top exis@DPs thanks to two
main optimizations. First, EASY relies on the offline encoding of classifiédlogy hierarchies,
which allows reducing the costly semantic reasoning on ontologies to a rtucoenparison of
codes. Our encoding algorithm, which relies on prime numbers, stgpiperemental, conflict-
free encoding, which allows freely reusing and extending existing orisod/ioreover, com-
pared to existing encoding algorithms, our solution proved satisfactorynstef the employed
code lengths. Second, contrary to existing approaches to efficiernsierservice discovery
that opt for overloading the service advertisement phase in ordemefj@iency in the service
request phase, EASY performs both efficient service advertiseanerservice request. Indeed,
EASY benefits from the aforementioned encoding technique for effigierganizing semantic
service specifications in service repositories or caches. This orgjanizd service registries
(caches) enables considerably reducing the number of semanticimgat@erformed to add a
new service advertisement, as well as the number of matches pedftomesolve a service re-
guest. To evaluate the flexibility and scalability of EASY, we further elabdra#sSY-Ariadne, a
prototype implementation of EASY on top of Ariadne, which is a scalable skstibuted Web
service discovery protocol for MANETS. Experimental results shat with slight changes in-
troduced in Ariadne, EASY-Ariadne service providers and clients eveigied with support for
efficient rich, context- and QoS-aware service discovery enabl&8)Y. Moreover, thanks to
the encoding and organizing of semantic service specifications, EAfMi#e performs better
than its ancestor Ariadne, and is further more scalable. Our future inolkde the deploy-
ment of EASY on top of MUSDAE, a middleware for multi-network, multi-protocol service
discovery and access, in order to enable efficient semantic matchitog @f the various SDPs
supported by MUSDAC (e.g., UPnP, SLP).

Acknowledgments

This research is partially supported by the European IST AMIGO pr3jéeU-1ST-004182).

21IMUSDAC: http://iwww-rocqg.inria.fr/arles/download/uleis/
22Amigo Project: http://www.hitech-projects.com/euprogamigo/

35

References

(1]

(2]

(3]

[4]

5]

[6]

[7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

R. Agrawal, A. Borgida, H. V. Jagadish, Efficient manageméittamsitive relationships in
large data and knowledge bases, in: Proceedings of the 1989 ACM SGikternational
conference on Management of data(SIGMOD '89), 1989.

H. Ait-Kaci, R. S. Boyer, P. Lincoln, R. Nasr, Efficient implementatiaf lattice operations,
Programming Languages and Systems 11 (1) (1989) 115-146.

Amigo Consortium, Detailed design of the amigo middleware core, Br@eliverable
D3.1b. (2005).

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F.[fSatleneider (eds.), The
Description Logic Handbook: Theory, Implementation, and Applicati@asnbridge Uni-
versity Press, 2003 (2003).

S. Ben Mokhtar, A. Kaul, N. Georgantas, V. Issarny, Efficiesnantic service discovery
in pervasive computing environments, in: Proceedings of ACM/IFIENKX 7th Interna-
tional Middleware Conference (Middleware’06), 2006.

S. Ben Mokhtar, A. Kaul, N. Georgantas, V. Issarny, Towarftisient matching of seman-
tic web service capabilities, in: Proceedings of the workshop of Webic&sriviodeling
and Testing (WS-MATE’06), 2006.

T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Sfitef\imerican, 2001.

Y. Caseau, Efficient handling of multiple inheritance hierarchies,Hroceedings of the
eighth annual conference on Object-oriented programming systemgsidges, and appli-
cations (OOPSLA93), 1993.

Y. Caseau, M. Habib, L. Nourine, O. Raynaud, Encoding of multipteeritance hierar-
chies and partial orders, Computational Intelligence 15 (1999) 50-62.

I. Constantinescu, B. Faltings, Efficient matchmaking and dirgcervices, in: Proceed-
ings of the IEEE/WIC International Conference on Web Intelligence Q8j)l' 2003.

A. K. Dey, G. D. Abowd, Towards a better understanding of cardad context-awareness,
in: Workshop on The What, Who, Where, When, and How of Contextréness, Confer-
ence on Human Factors in Computer Systems (CHI'01), 2001.

J. G. P. Filho, M. van Sinderen, Web service architectures - strsaand context-
awareness issues in web services platforms, Tech. rep., Telenmmstiitaut (2003).

J. M. Hellerstein, J. F. Naughton, A. Pfeffer, Generalizeddeaees for database systems,
in: Proceedings of the 21st International Conference of Very LBaga Bases, VLDB’95,
1995.

A. Krall, J. Vitek, N. Horspool, Near optimal hierarchical encagliof types, in: 11th
European Conference on Object Oriented Programming (ECOQRB#vinger, 1997.

J. Liu, V. Issarry, QoS-aware service location in mobile ad-hetwvorks, in: IEEE Inter-
national Conference on Mobile Data Management (MDM’'04), 2004.

S. Majithia, D. W. Walker, W. A. Gray, A framework for automatesh&ce composition in
service-oriented architecture, in: 1st European Semantic Web Syumpdz004.

I. Niles, A. Pease, Towards a standard upper ontology, in:d@dings of the international
conference on Formal Ontology in Information Systems(FOIS’'00),12

M. Paolucci, T. Kawamura, T. R.Payne, K. Sycara, Semanticiniag of Web services
capabilities, Lecture Notes in Computer Science 2342 (2002) 333-347.

36

[19] M. P. Papazoglou, D. Georgakopoulos, Special section in Carmations of the ACM,
chap. Service-oriented computing, ACM Press, 2003.

[20] D. Preuveneers, Y. Berbers, Prime numbers consideredfuluse On-
tology encoding for efficient subsumption testing, Tech. Rep. CWA464.
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW464.abs.html, pafment of
Computer Science, Katholieke Universiteit Leuven, Belgium (Octob86R0

[21] D.Preuveneers, J.V.den Bergh, D. Wagelaar, A. GeoRy&igole, T. Clerckx, Y. Berbers,
K. Coninx, V. Jonckers, K. D. Bosschere, Towards an extensibieegbontology for am-
bient intelligence., in: EUSAI, 2004.

[22] F. Sailhan, V. Issarny, Scalable service discovery for MANHT, Proceedings of the
3rd IEEE International Conference on Pervasive Computing andn@onitations (Per-
Com’05), 2005.

[23] M. Satyanarayanan, Pervasive computing: Vision and chaliehg&E Personal Commu-
nications 08 (4) (2001) 10-17.

[24] L. K. Schubert, M. A. Papalaskaris, J. Taugher, Determining,tyart, color, and time
relationships, IEEE Computer 16 (10) (1983) 53—-60.

[25] E. Sirin, B. Parsia, J. Hendler, Template-based compositionméstc web services, in:
AAAI Fall Symposium on Agents and the Semantic Web, 2005.

[26] N. Srinivasan, M. Paolucci, K. Sycara, Adding owl-s to uddi, innpémtation and through-
put, in: Proceedings of the Workshop on Semantic Web Service and ¥Webd3 Compo-
sition, 2004.

[27] K. Sycara, J. Lu, M. Klusch, S. Widoff, Matchmaking among hegeneous agents on the
internet, in: Proceedings of the 1999 AAAI Spring Symposium on Inteltigegents in
Cyberspace, 1999.

[28] K. Sycara, M. Paolucci, A. Ankolekar, N. Srinivasan, Autonaedéscovery, interaction and
composition of semantic web services, Web Semantics: Science, SeavideAgents on
the World Wide Web, 2003.

[29] The DAML Services Coalition, Bringing semantics to web services dWwl-s approach,
in: Proceedings of the First International Workshop on Semantic Welkicgs and Web
Process Composition (SWSWPC’04), 2004.

[30] D. Trastour, C. Bartolini, J. Gonzalez-Castillo, A semantic web apgh to service de-
scription for matchmaking of services, in: Proceedings of the firstedimWeb Working
Symposium, (SWWS), 2001.

[31] L.-H. Vu, M. Hauswirth, K. Aberer, Towards p2p-based setimweb service discovery
with gos support., in: Business Process Management Workshdps, 20

[32] A. M. Zaremski, J. M. Wing, Specification matching of software paments, ACM Trans-
actions on Software Engineering and Methodology, 1997.

[33] A. M. Zaremski, J. M. Wing, Signature matching: a tool for usinfwsare libraries, ACM
Transactions on Software Engineering and Methodology 4 (2) (1995}1170.

[34] F. Zhu, M. W. Mutka, L. M. Ni, Service discovery in pervasivengouting environments,
Pervasive Computing, IEEE 4 (4) (2005) 81-90.

[35] Y. Zibin, J. Gil, Efficient subtyping tests with PQ-encoding, in: Caefee on Object-
Oriented, 2001.

37

A Proofs

We recall the definitions of the three matching relations used hereafter imphéndix:

ExactCapabilityMatch (Adv, Regj=
Vin € Reqln, 3in’ € Adv.In: ConceptMatch(in’, in) = exact and
V out € ReqOut, 3 out’ € Adv.Out: ConceptMatch(out’, out) = exact and
ConceptMatch(Adv.Category, Req.CategQry exact

InclusiveCapabilityMatch (Adv, Rej=
Vin € ReqlIn, 3in’ € Adv.In: ConceptMatch(in’, in) = exactplugin and
V out € ReqOut, 3 out’ € Adv.Out: ConceptMatch(out’, out) = exactplugin and
ConceptMatch(Adv.Category, Req.CategQry exactplugin

WeakCapabilityMatch (Adv, Red =
Y in € Reqln, 3in’ € Adv.In: ConceptMatch(in’, in) # fail and
¥ out € ReqOut, 3 out’ € Adv.Out: ConceptMatch(out’, out) # fail and
ConceptMatch(Adv.Category, Req.CategQrs fail

Note that by definition:
Prop 0: ExactCapabilityMatch (Adv, Re§j= InclusiveCapabilityMatch (Adv, Reyj= Weak-
CapabilityMatch (Adv, Red;

A.1 Proof of property (Prop 1)

Prop 1. — InclusiveCapabilityMatch (Root, Ady): Root € RootyG) =
V C € SuccessorfRoot): — InclusiveCapabilityMatch (C, Ady

We prove (Prop 1) by contradiction. AssuméProp 1), i.e.:

= InclusiveCapabilityMatch (Root, Ady): Root € RootyG) and (1)
= (V C € SuccessorRoot): — InclusiveCapabilityMatch (C, Ady) (2)

(2) & 3 C € SuccessorRoot): InclusiveCapabilityMatch (C, Ady
On the other handC € Successor&Root) = InclusiveCapabilityMatch (Root, C) from the
definition of the functiorSuccessor§; thus:

(2) & 3 C € Successor&root): InclusiveCapabilityMatch (Root, C) andInclusiveCapabili-
tyMatch (C, Ady

From the transitivity property of the functidnclusiveCapabilityMatch (), we have: (2= In-
clusiveCapabilityMatch(Root, Adv)

Replacing (2) in the list of our assumptions with this equivalence results into:

= InclusiveCapabilityMatch (Root, Ady) and InclusiveCapabilityMatch (Root, Ady). This
can never be true, and therefore, the assumption is false and (Fisoppub.

38

A.2 Proof of property (Prop 2)

Prop 2: — InclusiveCapabilityMatch (Adv, Leaf): Leaf € LeavegG) =
V C € Predecessord_eaf): — InclusiveCapabilityMatch (Adv, O

We prove (Prop 2) by contradiction. AssuméProp 2), i.e.:

= InclusiveCapabilityMatch (Adv, Leaf): Leaf € LeavegG) and 1)
= (V C € Predecessor@ eaf): — InclusiveCapabilityMatch (Adv, Q) (2)

(2) & 3 C € Predecessord eaf): InclusiveCapabilityMatch (Adv, Q
On the other handC € Predecessor@ eaf) < InclusiveCapabilityMatch (C, Leaf) from the
definition of the functiorPredecessorg; thus:

(2) & 3 C € Predecessor@.eaf): InclusiveCapabilityMatch (Adv, Q andInclusiveCapabil-
ityMatch (C, Leaf)

From the transitivity property of the functidnclusiveCapabilityMatch (), we have: (2)= In-
clusiveCapabilityMatch(Adyv, Leaf)

Replacing (2) in the list of our assumptions with this equivalence results into:
= InclusiveCapabilityMatch (Adv, Leaf) andinclusiveCapabilityMatch (Adv, Leaf). This can
never be true, and therefore, the assumption is false and (Prop 2.is tru

A.3 Proof of property (Prop 3)

Prop 3: V Root € RootqG): - WeakCapabilityMatch (Root, Req =
V C € G: = WeakCapabilityMatch (C, Req
We prove (Prop 3) by contradiction. AssuméProp 3), i.e.:

¥V Root € RootqG): — WeakCapabilityMatch (Root, Req and(1)
= (V C € G: = WeakCapabilityMatch (C, Req) 2

(2) & 3 C € G: WeakCapabilityMatch (C, Req. On the other hand:

(C € G) & (3R e RootyG): C € Successor®R)). From the definition oBuccessor§:
< (3 R € RootqG): InclusiveCapabilityMatch (R, ©)). After applying (Prop 0):
< (3 R € RootqG): WeakCapabilityMatch (R, Q)

Thus (2) becomes:

(2) & 3 C € G, 3 R € RootdG): WeakCapabilityMatch(C, Req and WeakCapability-
Match(R, Q

From the transitivity property of the relatialeakCapabilityMatch () we have:

(2) & 3 R € RootyG): WeakCapabilityMatch (R, Reg, which contradicts (1). Thus the as-
sumption is false and (Prop 3) is true.

39

