H. Beyer, Evolutionary algorithms in noisy environments: theoretical issues and guidelines for practice, Computer Methods in Applied Mechanics and Engineering, vol.186, issue.2-4, pp.239-267, 2000.
DOI : 10.1016/S0045-7825(99)00386-2

R. A. Brooks, Intelligence without reason, Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-91), pp.569-595, 1991.

S. Elfwing, E. Uchibe, K. Doya, and H. Christensen, Biologically Inspired Embodied Evolution of Survival, 2005 IEEE Congress on Evolutionary Computation, pp.2210-2216, 2005.
DOI : 10.1109/CEC.2005.1554969

D. Floreano, P. Husbands, and S. Nolfi, Evolutionary Robotics, Handbook of Robotics, pp.1423-1451, 2008.
DOI : 10.1007/978-3-540-30301-5_62

J. Montanier and N. Bredeche, Embedde evolutionary robotics: The (1+1)-restart-online adaptation algorithm, IEEE IROS Workshop on Exploring new horizons in Evolutionary Design of Robots (Evoderob09), 2009.

U. Nehmzow, Physically embedded genetic algorithm learning in multi-robot scenarios: The pega algorithm, Proceedings of The Second International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, number 94 in Lund University Cognitive Studies, 2002.

S. Nolfi and D. Floreano, Evolutionary Robotics, 2000.
DOI : 10.1007/978-3-319-32552-1_76

S. Nolfi and D. Parisi, Auto-teaching: networks that develop their own teaching input, 1993.

S. Nolfi, D. Parisi, and J. L. Elman, Learning and Evolution in Neural Networks, Adaptive Behavior, vol.3, issue.1, pp.5-28, 1994.
DOI : 10.1177/105971239400300102

P. Nordin and W. Banzhaf, An On-Line Method to Evolve Behavior and to Control a Miniature Robot in Real Time with Genetic Programming, Adaptive Behavior, vol.26, issue.2, pp.107-140, 1997.
DOI : 10.1177/105971239700500201

A. L. Perez, G. Bittencourt, and M. Roisenberg, Embodied evolution with a new genetic programming variation algorithm. icas, pp.118-123, 2008.

I. Rechenberg, Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des Biologischen Evolution, 1973.

H. Schwefel, Numerical Optimisation of Computer Models, 1981.

J. Urzelai and D. Floreano, Evolution of Adaptive Synapses: Robots with Fast Adaptive Behavior in New Environments, Evolutionary Computation, vol.4, issue.4, pp.495-524, 2001.
DOI : 10.1162/neco.1990.2.1.85

Y. Usui and T. Arita, Situated and embodied evolution in collective evolutionary robotics, Proceedings of the 8th International Symposium on Artificial Life and Robotics, pp.212-215, 2003.

J. H. Walker, S. M. Garrett, and M. S. Wilson, The balance between initial training and lifelong adaptation in evolving robot controllers, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.36, issue.2, pp.423-432, 2006.
DOI : 10.1109/TSMCB.2005.859082

R. A. Watson, S. G. Ficici, and J. B. Pollack, Embodied Evolution: Distributing an evolutionary algorithm in a population of robots, Robotics and Autonomous Systems, vol.39, issue.1, pp.1-18, 2002.
DOI : 10.1016/S0921-8890(02)00170-7

S. Wischmann, K. Stamm, and F. Wörgötter, Embodied Evolution and Learning: The??Neglected Timing of Maturation, Advances in Artificial Life: 9th European Conference on ArtificialLife, pp.284-293, 2007.
DOI : 10.1007/978-3-540-74913-4_29