Benchmarking a BI-Population CMA-ES on the BBOB-2009 Noisy Testbed

Nikolaus Hansen 1, 2
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : We benchmark the BI-population CMA-ES on the BBOB-2009 noisy functions testbed. BI-population refers to a multistart strategy with equal budgets for two interlaced restart strategies, one with an increasing population size and one with varying small population sizes. The latter is presumably of little use on a noisy testbed. The BI-population CMA-ES could solve 29, 27 and 26 out of 30 functions in search space dimension 5, 10 and 20 respectively. The time to find the solution ranges between $100 D$ and $10^5 D^2$ objective function evaluations, where $D$ is the search space dimension.
Document type :
Conference papers
ACM-GECCO Genetic and Evolutionary Computation Conference, Jul 2009, Montreal, Canada. 2009
Liste complète des métadonnées

https://hal.inria.fr/inria-00382101
Contributor : Nikolaus Hansen <>
Submitted on : Thursday, May 7, 2009 - 1:15:36 PM
Last modification on : Thursday, February 9, 2017 - 3:03:21 PM
Document(s) archivé(s) le : Thursday, June 10, 2010 - 8:15:03 PM

File

hansen2009bbn.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00382101, version 1

Collections

Citation

Nikolaus Hansen. Benchmarking a BI-Population CMA-ES on the BBOB-2009 Noisy Testbed. ACM-GECCO Genetic and Evolutionary Computation Conference, Jul 2009, Montreal, Canada. 2009. <inria-00382101>

Share

Metrics

Record views

295

Document downloads

151