
HAL Id: inria-00370430
https://inria.hal.science/inria-00370430

Submitted on 24 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Searching Pareto-optimal solutions for the problem of
forming and restructuring coalitions in multi-agents

systems
Philippe Caillou, Samir Aknine, Suzanne Pinson

To cite this version:
Philippe Caillou, Samir Aknine, Suzanne Pinson. Searching Pareto-optimal solutions for the problem
of forming and restructuring coalitions in multi-agents systems. Group Decision and Negotiation,
2010, 19 (1), pp.7-37. �10.1007/s10726-009-9183-9�. �inria-00370430�

https://inria.hal.science/inria-00370430
https://hal.archives-ouvertes.fr

SEARCHING PARETO OPTIMAL SOLUTIONS
FOR THE PROBLEM OF FORMING AND

RESTRUCTURING COALITIONS IN MULTI-AGENT
SYSTEMS

Philippe Caillou1

— Samir Aknine

2
— Suzanne Pinson

3

1LRI, Université Paris Sud 11, Bat 490, F-91405 Orsay
caillou@lri.fr

2LIP6, Université Paris 6, 8, rue du Capitaine Scott, 75015 PARIS Cedex 15, France,
Samir.Aknine@lip6.fr

3LAMSADE, Université Paris IX Dauphine, 1 place du Maréchal de Lattre de Tassigny, F-
75775 Paris

pinson@lamsade.dauphine.fr

2

ABSTRACT. Coordination is one of the fundamental research issues in
distributed artificial intelligence and multi-agent systems. Current multi-agent
coalition formation methods present two limits: First, computation must be
completely restarted when a change occurs. Second, utility functions of the
agents are either global or aggregated. We present a new algorithm to cope with
these limits. The first part of this paper presents a coalition formation method
for multi-agent systems which finds a Pareto optimal solution without
aggregating the preferences of the agents. This protocol is adapted to problems
requiring coordination by coalition formation, where it is undesirable, or not
possible, to aggregate the preferences of the agents. The second part of this
paper proposes an extension of this method enabling dynamic restructuring of
coalitions when changes occur in the system.

KEY WORDS: multi-agent system, coalitions, preferences, aggregation,
reorganization.

 3

1 Introduction

The search for economic efficiency has led to the division of labor between
specialists. Today, similar reasoning explains the success of agent-oriented
programming and multi-agent systems. Programs are increasingly complex and have
multiple functions which must sometimes be updated or improved. Using a set of
specialized agents which coordinate their complex tasks gives more flexibility,
efficiency and evolutivity to programs. To perform complex tasks, agents need to
coordinate, either because tasks require many resources if they are to be performed by
a single agent, or because certain sub-tasks can be carried out more efficiently by
specialized agents (Binmore, 1999, Ossowski, 2000, Wooldridge, 1999).

Agents have specific capabilities and are programmed to carry out certain tasks.
For a given agent complexity, the search for more sophisticated capabilities leads to a
higher number of agents. Since agents are more and more specialized, they are not
able to perform complex tasks alone and must necessarily coordinate their tasks with
others. More generally, a multi-agent system is made up of several homogeneous or
heterogeneous agents which communicate between themselves(Wooldridge, 2001).

How can autonomous agents be coordinated efficiently? One solution is to look for
groups of agents which are able to perform the desired tasks better than one agent.
This means that agents may form coalitions, a coalition being a temporary association
between agents in order to carry out joint projects. The aim is a better distribution of
capabilities in order to achieve a complex project, but this is not the only method of
coordination. It can be imposed by a hierarchy, carried out by bilateral
contracts(Smith and Davis, 1981), etc.(Sandholm, 1999)

The choice of solving a problem using the coalition model depends really on the
type of problem under study. Coalitions are well adapted when there are strong
externalities (when completing a task influence the utility involved in the resolution
of an other task) and/or when interactions between agents are such that the
contribution of an agent within a coalition depends on which agents the coalition
contains, in which case a bilateral contract would be difficult to negotiate. For
instance, if the payoff of an agent is the marginal utility it brings into the project, the
given payoff envisaged would vary during negotiations according to the members
joining the coalition or leaving it.

Once coalition formation is chosen as a coordination method, the definition of the
corresponding protocol remains problematic. A coalition formation protocol is
strongly dependent of the type of problem studied. The fact that the agents do or do
not have the same objective, do or do not trust each others, are examples of
parameters which may generate different protocols of coalition formation.

To enable the agents to form coalitions, all current protocols make the assumption
that the utility functions of agents, which measure their degree of satisfaction for each
suggested solution, must be comparable or identical. This means that agents must be
able to agree on a common utility function, either of all the agents as in (Shehory and
Kraus, 1998), or of their coalition as in (Aknine, Pinson, and Shakun, 2000) and
(Vauvert and El Fallah-Seghrouchni, 2001). This assumption seems acceptable for

4

most multi-agent systems, in particular for productive projects where all utilities can
often be calculated in terms of profit. However, in many cases, to compare the utilities
of agents, and even more to aggregate them, is difficult. The numerical evaluation of
an agent utility is already a strong assumption compared to the simple classification of
available choices (Pareto has already shown the many advantages of ordinal utility
compared to cardinal utility in economics in the XIX century). To compare the
utilities of two individuals is stronger. Why should a solution weighted 8 by one agent
and 6 by another be preferred to one weighted respectively 4 and 7? Our model does
not suppose that the utilities of agents must be aggregated or compared(Caillou,
Aknine, and Pinson, 2002a).

A second limitation of current models lies in assuming that all calculations are
recomputed as one condition changes (an agent joins or leaves a coalition, a task is
added or canceled, etc.). However these protocols are very complex and these changes
can be very frequent. Using the information obtained in a previous execution of the
protocol, i.e. a dynamic reorganization of the coalitions formed, could reduce
calculations. This is the second aim of our model(Caillou, Aknine, and Pinson,
2002b).

This article is organized as follows. Section 2 describes the application used to

illustrate our model. Section 3 introduces some definitions. Section 4 details our
methods of coalition formation and dynamic reorganization of coalitions. Our model
gives a wide choice of agent behavior. Section 5 proposes a set of behavior models in
order to improve the computation time. Section 6 presents an application example of
the protocol and discusses the implementation of our model. The results obtained with
our models are discussed in section 7. Section 8 analyzes related work. Section 9
draws a general conclusion from this work and proposes some perspectives.

2 Application

The suggested protocol is particularly suitable for problems with complex tasks
(where there is a need for several agents and for coalitions) and for dynamic problems
(tasks may be added, others canceled or modified constantly) with different utility
functions of agents. We assume that agents are cooperative, i.e. they trust each other
in searching for and applying the solutions. Their utility functions are unknown by the
other agents and do not need to be cardinal, an ordinal utility is enough. Agents just
need to be able to choose between two situations (or to be indifferent), they can thus
be self-interested.

A good example of this problem is a distributed teaching schedule at university.

This application illustrates the dynamic evolution of the coalitions, as often a course
may be added or removed, or a professor or a group of students may join the
establishment. In this example we consider two types of agent: professors and
students. Student agents represent homogeneous groups of students with a common
utility function and with the same classes. Of course, it is possible to have an agent

 5

for each student and thus to enable him or her to have its own utility function.
However, the computational complexity will be greatly increased.

The classes correspond to the tasks to be carried out. Thus, agents form a coalition

for each class. Most coalitions are formed of two agents: a professor agent and a
student agent (having more agents in a coalition is also possible, for instance for
lectures with several groups of students). Each (student or professor) agent defines the
utility it assigns to each schedule. Since its utility function is ordinal, it just needs to
be able to compare two schedules and to say which one it prefers or if it is indifferent.
Agents are free to choose their parameters while computing their utility. A professor
can thus prefer the morning, refuse Mondays, prefer certain classes, like a stable
schedule, etc.

In a general way, the choice of an agent depends on the members of the coalitions
in which it will take part, but its appreciation of a coalition may also change
according to the other coalitions. This introduces externalities or an ordered
processing of tasks. Thus, if a task Ti must be carried out before Tj, the utility that the
agent will associate to Tj will be null if no agent takes part in the coalition which
performs Ti (task Ti is then not performed, and Tj is of no interest). The agent choice
may also depend on parameters which are related to its preferences and which vary in
time. Thus, it can be against change. For instance, a professor may prefer one
schedule to another because it is closer to the current situation. The only constraint is
that these external parameters need to be stable during a negotiation step.

3 Definitions

This section presents some definitions necessary to understand our model and
which we use in the rest of this article.

Coalition: a coalition is formed for each task to be performed. It contains zero, one

or more agents which will carry out actions in order to achieve this task. Each action
and its parameters are defined (for instance, the parameters of the action “taking a
class” are: the week, the day and the time).

Coalition set: a coalition set represents a solution to the problem of coalition

formation. It contains as many coalitions as tasks to be performed at a given moment
(in our application, a set corresponds to one schedule).

Group of coalition sets: a group of coalition sets corresponds to several sets of

coalitions brought together in order to be computed and transmitted collectively (for
instance, several possible schedules). In the rest of this article, it will be referred to as
a group of sets or simply a group. When an agent computes a group of equivalent sets,
this means that it is indifferent regarding all the sets of coalitions in this group (for
instance, it computes a group with those schedules that it prefers to others and that it
cannot classify).

6

Context: a set of unspecified parameters which must be stable during a negotiation

step. For instance, it may concern a date or any external parameter.

Utility function: the utility function may be ordinal or cardinal. If it is cardinal, it

associates a utility with a set of coalitions within a given context. If it is ordinal, it
compares two sets in a given context. In this case, measuring the utility of a set means
comparing it with a reference situation which will be the same one throughout the
negotiation.

Reference situation: In order for the agents to know if they have to accept a set of

coalitions as a solution, they need to be able to compare it with what they are sure to
obtain during the negotiation. This minimum is the reference situation. If no coalition
has yet been formed, the reference situation is the situation where nobody does
anything. If there are already coalitions, it is the current situation, with possibly some
changes in order to take into account new information (cf. section 4.3.2). To be sure
to find a solution after a negotiation, the reference situation needs to be feasible and to
be the same for all the agents (a demonstration is proposed in section 4.3.3).

Acceptable set: we consider that a set is acceptable for an agent if it is preferred or

equivalent to the current reference situation.

Pareto optimum: a Pareto optimum is a situation where it is not possible to

improve the situation of an agent without deteriorating that of at least one other.
Graphically, for two agents a situation is optimal if no other situation exists at the top
right position of the situations considered.

Figure 1. Example of Pareto optimal solutions

4 Coordination methods

 7

Our first aim in defining this protocol is to solve the agent coalition formation
problem without having to aggregate the preferences of the agent . Then, we extend
this protocol to allow a dynamic and fast reorganization of these coalitions according
to new changes in the multi-agent system.

4.1 Presentation

As we do not intend to aggregate the utilities of the agents, we seek a solution
which is "objectively good", i.e. which may not be contested by any agent. A logical
criterion likely to be accepted by all the agents is that we cannot increase the utility of
an individual without deteriorating that of at least one other. If this does not happen,
i.e. there is a situation such that we can increase the utility of an individual without
deteriorating that of another, there is no reason not to prefer this situation. The
solution we seek must thus be a Pareto optimum.

Which Pareto optimum should we choose? Now the problem is to compare the

utilities of different agents. How should we choose between a schedule which is the
first choice of a professor and another which is the first choice of a student? One
solution is to avoid making a choice but to find a Pareto optimum. This offers the
advantage of reducing computations as agents do not have to compute all possible
schedule. The only constraint is that it should be in the interest of each agent to accept
this solution, therefore to prefer this solution to the initial situation. The first aim of
our protocol is thus to find a Pareto optimum likely to be accepted by all the agents
and as early as possible. To find a Pareto optimal situation is a first step. Extensions
of this protocol to find a more equitable solution are under study (see for
example(Aknine and Caillou, 2004)). But this is a necessary step, because finding a
distributed way to compute a Pareto optimum without transferring or aggregating
preferences is not trivial.

4.1.1 Principle

How is a Pareto optimum obtained?

• The agent which initiates a negotiation seeks one or more sets of
coalitions it prefers (cf. section 5) and chooses an agent to which it sends
them (cf. section 4.2.1). Then it seeks the set(s) that it would choose as a
second choice and sends them to that agent, and so on, until there are no
more sets at least equivalent to the current situation.

• When an agent receives a group of sets, it evaluates them and sends them
to the next agent sorted in decreasing order of preference.

• When an agent receives a group of sets, if there is at least one set which is
preferable or equivalent to the current situation and if all the agents have
already taken part in the negotiation, the set of this group that it prefers is
a Pareto optimum and may be used as a solution set for the negotiation.

8

For instance, let us consider two agents and seven sets of possible coalitions. Let
E(U1;U2) be the relative utilities of agents a1 and a2 for the set E. Having E0 as the
initial situation, the seven possible sets are: E0(0;0); E1(0;10); E2(2;8); E3(4;8);
E4(4;5); E5(-2;2); E6(10;-1) (cf. figure 1). Of these seven sets, three are Pareto optima
(E1, E3 and E6). We represent these solutions on a plan according to the utility that
they bring to each agent (cf. figure 2).

Figure 2. Describing all possible solutions in a utility space

Agent a1 initiates the negotiation. It sorts all the acceptable sets for it into

equivalent groups of sets (cf. figure 3): G1(E6); G2(E4;E3); G3(E2); G4(E0;E1). E5 is not
sorted as the reference situation (E0) is better.

Figure 3. Group of sets of agent 1

Groups G1, G2, G3 et G4 are acceptable for agent a1 as they correspond to a

situation which is as satisfactory as the initial reference situation, or better. G1, G2, G3
et G4 are sent in this order to the next agent. Thus, agent a2 starts by receiving G1 and
evaluates it (cf. figure 4). Set E6 is unacceptable for the agent because it would bring a
less satisfactory situation than the initial situation (figure 4). The agent does not send
this set and waits for the rest.

 Sub-optimal solution

 Optimal solution

U1

U2

E1
E2 E3

E4

E5

E6
E0

U
1

E0 E2

E3

E4 E5 E6

U1=
0

G2 G1 G3 G4

E1

 9

Figure 4. First group for agent a2

It receives G2 and sorts it into two sets (figure 5) in two groups G21(E3) and

G22(E4). G21 is acceptable. As all the other agents have already participated in the
negotiation, agent a2 cannot send it. All the sets of G21 can thus be a solution. The
agent must choose E3, which is Pareto optimal. It sends this set to agent a1 in order to
inform it of the result of the negotiation.

Figure 5. Second group for agent a2

4.1.2 Algorithm

The negotiation process is based on three phases: initialization of the negotiation

and transfer of tasks, negotiation, transmission of the solution. We can distinguish the
behavior of the agent which initiates the negotiation from the intermediate and final
agents which take part in the negotiation. The order of the agents can differ from one
negotiation to another and each agent can be in any position. However, the order must
be stable during a given negotiation. The importance and influence of this order will
be discussed in section 4.2. In short, this protocol can be seen as a distributed
lexicographic search in a virtual common preference space (this problem is not trivial

U
2

E6

U2

=0

U
2

E3

U2=
0

E4

G21

G22

10

since no agent has a complete knowledge of this space, because the preferences are
not transmitted between agents).

4.1.2.1 Phase 1. Initialization of the negotiation and transfer of tasks

Any agent can initiate the negotiation. This action can be initiated when a new task

appears or when an agent modifies its preferences. The initiator agent informs the
others that it begins a new negotiation and any agent which wants to begin another
negotiation must wait until the end of the negotiation in progress. To avoid conflicts
between two simultaneous requests, each agent sends a confirmation. Each agent asks
the other agents to send it their tasks, deduces the set of tasks to be performed and
associates each one with a coalition. The initiator agent computes all possible sets of
coalitions (cf. sections 4.1.3. and 5. regarding complexity), gathers them in a group of
sets and sends this group to the agent which would initiate the negotiation.

4.1.2.2 Phase 2 : Negotiation

When an agent receives a group of sets, it sorts the sets in order of preference into

homogeneous new groups of sets. In these groups, all sets are equivalent in terms of
agent utility. The agent sorts only those sets that are at least equivalent to the
reference situation and the others sets are not considered.

If the agent is not the last agent, it sends its new groups to the next agent in
decreasing order of preference. If it is the last agent, and if this agent has created new
groups because it has found acceptable sets, it considers that all the sets of the best
new group are Pareto optima. It can thus choose one of them randomly and this will
be the solution for the negotiation

4.1.2.3 Phase 3: Transmission of the solution.
Once the last agent has identified a Pareto optimal solution, it sends this set to the

other agents which accept it as the solution of the negotiation (Remind that the goal of
the distributed negotiation was to find a Pareto optimal solution).

4.1.3 Importance of the choice of the next agent

The order in which agents negotiate influences the result. The first agent is the one

which has the strongest impact on the final solution as it is the first to choose the sets
it prefers from among all the possible sets, and to send them to the following agents.
The choice of the next negotiator agent is also very important.

The first solution is to choose randomly among those which have not yet
participated in the negotiation. However, to improve the computation time of the
protocol, it is preferable to take the agent which appears the most often in the

 11

computed sets. We assume that, since it takes part in many coalitions, this agent will
be more interested in the alternatives which will be proposed than an agent which is
less involved. It will thus sort the sets into several groups (it will possibly reject some
of them if it considers them as unacceptable). The next negotiator agent will receive
smaller groups which means that it will have less computing to do.

The second solution consists in choosing the agents in a predefined order. This
makes it possible to favor agents with high priority. This solution is very practical in
many real applications, such as in drawing up schedules, where professors have
priority over their students.

A third solution is to let the agent choose the next agent which will maximize its
utility. This optimization may be complex (each agent ignores preferences of others)
but it gives more freedom to the agent who has to make a strategic decision.

4.1.4 Parallel computation

One advantage of the protocol is that agents evaluate and rank coalition sets in

parallel (once first group of coalition sets is transferred). They do not rank the same
group at the same time, but they work on different groups at the same time.

For example, consider four agents A1, A2, A3 and A4. A1 computes groups in
preference order G1 to Gn and sends them in this order to A2. A2 first receives G1. It
evaluates acceptable sets in G1 and rank them in G11.. G1m. It sends them in this order
to A3. While A3 is evaluating G11 (it builds groups G111 to G11k with acceptable sets of
G11 and sends them to A4), A2 can work in parallel on G2 (and build G21 to G2m).

Let us say that no coalition set in G11 is acceptable for A3. It will consider G12 and
compute G121 to G12p. Note that the groups are received by each agent in a
lexicographic order (for A3: G11, G12, …, G1m, G21, G22, …). As mentioned in section
4.1.2, the selected Pareto optimum is chosen thru a distributed lexicographic search in
a virtual common preference space.

This example also illustrates the importance of cooperative agents: if an agent
makes the strategic choice to “lie”, which here would mean to consider and evaluate a
group Gi while a group Gj has been received before, there is no assurance to obtain a
Pareto optimum anymore. Agents may have opposite objective, but they have to
respect the order required by the protocol.

4.1.5 Using undeveloped coalitions to improve the computation time of the
algorithm

As the first agent starts by computing all the possible combinations for all the

tasks, this process implies a huge the computation time of and volume of data sent to
the following agents. A way to improve the computation time without decreasing
information quality, and thus the result and the properties of the algorithm, is to use
and transmit undeveloped coalitions, i.e. the tasks for which all possible coalitions
have not yet been computed. If an agent receives an undeveloped coalition in a set
and this coalition does not affect its utility (if it joins the coalition or not), it leaves it
aside and does not compute it. If it does affect the utility, it computes all possible

12

combinations for the corresponding task. Considering our assumption, the result of
this computation is the same whatever the agent which does it.

For instance, in drawing up schedules, a professor agent which begins the

negotiation will only develop coalitions related to classes it is likely to give, because
they are the only ones which can modify its utility. More precisely, let us assume that
there are two classes c1 and c2 (c1 can be only given by professor p1 and c2 can only be
given by professor p2); two possible time slots; a group of students (s1) and let us also
consider that the utility of each professor depends only on their own classes. If p1
begins the negotiation without using the undeveloped coalitions, it must compute and
evaluate all 9 possible sets (3 possible coalitions for c1 (s1 and p1 with two possible
time slots, plus the course not given) multiplied by 3 possible coalitions for c2). It
classifies them in groups and then sends them to the following agent (let us say p2).
By using the undeveloped coalitions, p1 has only 3 sets to evaluate (made up each
time of one of the three possibilities for c1 and not specifying anything for c2), that it
classifies in groups and sends to p2 which is asked to develop c2 (see another example
in section 5.2.1)

This method produces better results if the agent’s utility depends only of few tasks.

However, if an agent’s utility depends on all the tasks, it will be asked to develop all
possible sets when it takes part in a negotiation.

In our protocol, only a few changes are necessary in order to use undeveloped
coalitions. At the end of the first phase, the initiator agent sends to the agent which
will begin the negotiation a group of sets containing one set of undeveloped
coalitions. In the second phase, when the agent receives a group, for each set of this
group and for each undeveloped coalition of this set, the agent checks if the
corresponding task can influence its utility. If so, it computes all possible coalitions
corresponding to this task, adds the new sets of coalitions to the sets it must evaluate
and removes the set which contained the undeveloped coalition.

4.2 Formal analysis of our model

4.2.1 Why is the solution Pareto optimal?

How can we be sure that the first set received by the last negotiator agent is Pareto

optimal, as all possible sets have not yet been evaluated by all the agents? A
demonstration is necessary.

Proposition 1.

When an agent receives a group of sets, if:
- all other agents have already participated in the negotiation,

 13

- at least one of the received sets is acceptable, i.e. it is at least equivalent to the
reference situation,

- none of the sets previously received during the negotiation satisfies the two
conditions below,

the acceptable set(s) S that it prefers in the received group is/are Pareto optimal and

can be used as a solution for the negotiation.

Demonstration.

If S is not Pareto optimal, this would mean that there is a set S’ which is preferable

for one of the agents that shall be called (ai). S’ is at least equivalent to S for all the
other agents. In this case, all the agents which were before ai in the negotiation have
transmitted S’ either in the same group as S (if they are indifferent), or in a previous
group (if there is at least one agent which prefers S’ to S).

If ai receives S’ before S, it had necessarily sent it (since S is a solution, S is

acceptable for all agents, therefore S’, which is at least equivalent to S, is also
acceptable for all agents). As the groups are computed completely before starting with
the next group, ai returns S’ before computing S. The following agents should thus
receive S’ before S. Since S’ is also acceptable, they send it to the following agent
and so on until the last one which will therefore find it acceptable and thus select it as
a solution, which is impossible since S has been selected.

If ai receives S and S’ in the same group (all previous agent have considered S
equivalent to S’), ai should send S’ before S as it prefers S’ to S. As in the previous
case, agents following ai should receive S’ before S. Since S’ is acceptable, they
should then send it to the next negotiator agent, until the last agent which should also
find it acceptable and should therefore select it as a solution for the negotiation, which
is also impossible since S has been selected.

Consequently, it is impossible for a set S’ to exist such that an agent prefers S’ to S

and that all the other agents find it at least equivalent to S. Therefore S is Pareto
optimal.

4.2.2 Why are agents sure to find a solution?

The first optimum S found is the first set which is received by the last negotiator

agent and that this agent considers acceptable. Why is there always an optimum? A
demonstration is thus necessary.

Proposition 2.
The protocol always provides at least one solution to the problem.

Demonstration.

14

For each agent, the acceptability criterion is that the set is at least as satisfactory as
the reference situation. However this reference situation is the same for all and
belongs to the possible sets. Therefore all the agents necessarily find this situation
acceptable and will forward it. Thus, there will always be at least one acceptable set
which will reach the last negotiator agent. If the reference situation is the first set to
arrive, it is an optimum and also the solution for the negotiation. If another acceptable
set had arrived first, this one would provide the solution.

We can note that reference situation is here considered as “acceptable” for all the

agents. If it is not (i.e. if the initial situation is not acceptable for at least one agent),
the protocol is still working: the agents just have to consider the reference situation as
the “worse acceptable situation”, and if the final solution of the negotiation is this
reference situation, this means that there is no solution to the problem.

4.3 Dynamic restructuring of coalitions

4.3.1 Principle

Our protocol provides a solution, i.e. a set of coalitions with the initial conditions

(utility functions, a set of tasks and a context). What happens if a change occurs in
one of these conditions, for instance if a task is added or removed, or if an agent
modifies its utility function? In current protocols (Aknine, Pinson, and Shakun,
2004b, Sandholm and others, 1999, Shehory and Kraus, 1998), all the computation
must be redone to find a new solution to the problem. We propose a more efficient
solution which use the results obtained in the current situation. It adds new
information to the previous conditions, instead of completely replace them.

A simple means to use earlier computation is to start from the current solution.
Instead of evaluating the different sets compared to the initial situation where no
agent does anything, the agents will evaluate the new solutions compared to the
current solution. As this solution is at least equivalent to the initial situation for all the
agents (since it is Pareto optimal), it is difficult to find a similar or better one. Thus,
fewer sets and groups of sets will be forwarded and evaluated. This will accelerate the
problem-solving process.

The change which has initiated the renegotiation may of course affect the utility of

the agents, this is why those agents must reevaluate the sets that they have computed.
Computation time is lower because the new reference situation has a higher utility
level, which implies less acceptable sets to compute..

The new reference situation must remain feasible and identical for all agents in
spite of the new information. Thus it is not the current situation which is used as the
reference situation but the modified current situation, in which all the changes have
been taken into account. For instance, for an agent which leaves, the reference
situation will be the current set of coalitions without this agent. For a removed task, it

 15

will be the current set of coalitions minus the coalition corresponding to the task. If it
is impossible to obtain a new reference situation that is feasible, the initial reference
situation (no one does anything) is used (and agents come back in the non-dynamic
configuration).

4.3.2 Why is the solution Pareto optimal?
The demonstration of the first proposition (cf. section 4.4.1) is still valid: when the

last agent receives a group of sets, if it has not yet received an acceptable set and the
best set S of the received group is acceptable, set S is a solution of the negotiation.
Moreover, there is no other set S’ which is at least equivalent to S for all the agents,
and preferable for at least one of them, otherwise the last agent would have received it
before receiving S and this set would have been selected as a solution.

4.3.3 Why do the agents always find a solution?

The demonstration of the second proposition (cf. section 4.4.2) is still valid: the

reference situation is the same for all agents, acceptable by all agents (as it is
compared with itself) and also feasible. Thus, there is at least one set (the reference
situation) which will be sent by each agent to the next agent and which will be the
solution if it is the first to be received by the last agent.

5 Behavior models of the agents

How do the agents process to find the sets of coalitions to send to the other agents?

The answer to this question has a great impact on the computational computation time
of the solution. It is appropriate to analyze in detail the various possible methods in
order to select the most appropriate one with the minimum computation.

5.1 Objective

The aim of each agent is to build new groups of homogeneous coalitions from a

group of sets received from the previous negotiator agent and to classify these new
groups in order of preference. This means that the agent must be indifferent to all the
sets of the group, it must prefer these sets to all the sets of the lower groups and prefer
all the sets of the higher groups to them. Heuristics can be used to find the best group
according to the context and the application. This improves the computation time of
the algorithms.

16

The simplest solution is that the first negotiator agent computes all the possible sets
and then each agent makes an exhaustive classification of all the possible sets. The
advantage of this solution is that it is simple, but it leads to a high computation time,
especially for the first agent. Other search methods can serve to improve the
computation time and to distribute the calculations among the various agents. Even if
the theoretical worst-case complexity remains the same, experimentations shows a
much better average case (see section 7).

5.2 Using heuristics to reduce the computation time of the behavior of the
agents

To illustrate these heuristics, we will use a simple example with one teacher-agent

(P1), two student-agents (E1, E2), two classes for each student (four coalitions in each
coalition set), and four time slots (H1, H2, H3, H4). The total number of possible
coalition sets is 54=625 (5 for the four time slots and the not-given case).

5.2.1 First heuristic: Using undeveloped coalitions
The method proposed using undeveloped coalitions (presented in section 4.1.3)

reduces the calculations and the volume of the information transferred while
preserving the ease of calculation by the agents.

Applied to our example, the first student begins the negotiation. It simply evaluates
coalitions sets by adding the hours of its classes (for example if it has a class at H2
and one at H4, it evaluate each set with these parameters with a value of 2+4=6) and 0
if a course is not given. Using undeveloped coalitions, agent E1 has only to develop
coalitions corresponding to its classes. It will have a total of 5*5=25 sets to send to
the next agent. Figure 6 represents these sets and their evaluation. It first develops
coalition corresponding to its first class and obtain the 5 partially developed sets
EnsPart1 to EnsPart5. Then, it develops coalition 2 and obtains the 25 coalitions sets
Ens1 to Ens25. It evaluates them and places them into groups. The first group G1
contains its preferred sets, Ens14 and Ens18, both with a utility of 7. Next group
contains Ens9 and Ens17. Last group will contains all sets with a utility of 0,
equivalent to the situation where no course is given.

 17

((nd)(nd)(nd)(nd)) ((P1,E1,H1)(nd)(nd)(nd)) ((P1,E1,H1)(P1E1H1)(nd)(nd))

((P1,E1,H1)(P1E1H2)(nd)(nd))

((P1,E1,H1)(P1E1H3)(nd)(nd))

((P1,E1,H1)(P1E1H4)(nd)(nd))

((P1,E1,H1)(-)(nd)(nd))

U(Ens1)= -1

U(Ens2)= 3

U(Ens3)= 4

U(Ens4)= 5

U(Ens5)= 0

Umax(EnsPart1)= 5

Uest(EnsPart1)= 1

((P1,E1,H2)(nd)(nd)(nd)) ((P1,E1,H2)(P1E1H1)(nd)(nd))

((P1,E1,H2)(P1E1H2)(nd)(nd))

((P1,E1,H2)(P1E1H3)(nd)(nd))

((P1,E1,H2)(P1E1H4)(nd)(nd))

((P1,E1,H2)(-)(nd)(nd))

U(Ens6)= 3

U(Ens7)= -1

U(Ens8)= 5

U(Ens9)= 6

U(Ens10)= 0

Umax(EnsPart2)= 6

Uest(EnsPart2)= 2

((P1,E1,H3)(nd)(nd)(nd)) ((P1,E1,H3)(P1E1H1)(nd)(nd))

((P1,E1,H3)(P1E1H2)(nd)(nd))

((P1,E1,H3)(P1E1H3)(nd)(nd))

((P1,E1,H3)(P1E1H4)(nd)(nd))

((P1,E1,H3)(-)(nd)(nd))

U(Ens11)= 4

U(Ens12)= 5

U(Ens13)= -1

U(Ens14)= 7

U(Ens15)= 0

Umax(EnsPart3)= 7

Uest(EnsPart3)= 3

((P1,E1,H4)(nd)(nd)(nd)) ((P1,E1,H4)(P1E1H1)(nd)(nd))

((P1,E1,H4)(P1E1H2)(nd)(nd))

((P1,E1,H4)(P1E1H3)(nd)(nd))

((P1,E1,H4)(P1E1H4)(nd)(nd))

((P1,E1,H4)(-)(nd)(nd))

U(Ens16)= 5

U(Ens17)= 6

U(Ens18)= 7

U(Ens19)= -1

U(Ens20)= 0

Umax(EnsPart4)= 8

Uest(EnsPart4)= 4

((-)(nd)(nd)(nd)) ((-)(P1E1H1)(nd)(nd))

((-)(P1E1H2)(nd)(nd))

((-)(P1E1H3)(nd)(nd))

((-)(P1E1H4)(nd)(nd))

((-)(-)(nd)(nd))

U(Ens21)= 0

U(Ens22)= 0

U(Ens23)= 0

U(Ens24)= 0

U(Ens25)= 0

Umax(EnsPart5)= 4

Uest(EnsPart5)= 0

Figure 6. Development of all coalition sets for student-agent E1 using undeveloped

coalitions (nd) for the two student-agent E2 classes

5.2.2 Second heuristic: Tests of intermediate acceptability
In order to reduce the number of iterations, a complementary solution would be to

test if an (incompletely developed) set can be potentially preferred to the reference
situation. If this is not the case, it will not be necessary to develop it and this branch
of the exploration tree can be pruned. These tests are especially useful during the
restructuring of coalitions. The reference situation would then be the current situation
that is likely to be very acceptable for the agent. This agent can easily set aside many
sets which will not give a better solution, especially if the agent prefers not to change
its situation. All the solutions which begin to move away from the current solution are
thus quickly dropped because the agent will necessarily prefer the reference situation
to them.

In the example, the student agent will use the intermediate evaluation
Umax(EnsPart) which evaluates the maximum utility reachable by the set. In this

18

case, if the reference situation is evaluated 7, the agent will know it is useless to
develop EnsPart1, EnsPart2 and EnsPart5 and it will just concentrate on the two other
situations, computing only 5 intermediate evaluations instead of 15 final evaluations.

5.2.3 Third heuristic: Search limited to the best group
The aim of an agent is to send to the next negotiator agent groups of sets sorted in

decreasing order of satisfaction. If the solution is in group Gi, all groups Gj with j>i
have been evaluated, classified and probably developed unnecessarily. It would be
useful to only evaluate the sets of G1, then those of G2, and so on. The problem is
that agents do not know in advance what will be the degree of satisfaction associated
with the best group. However, in order to evaluate only the members of G1, it is
necessary to know the satisfaction associated to them, and therefore to have already
evaluated them! Even if it is impossible to compute only the sets of the group G1, we
can try to gradually limit computations to the useful sets. To do so, the agent needs a
lower limit, which is the best evaluated set at the current computation time, and it will
only develop the sets which are at least equal to this limit. Each time a set, even an
incompletely developed one, is evaluated and the evaluation is higher than the limit, it
becomes the new limit. On the contrary, when an evaluated set does not reach the
limit but is nevertheless acceptable in a weaker group, it is kept and added to a group
which will be used as a starting group to compute the following groups.

In the example, the agent first develops the first coalition and obtains the 5
partially developed sets EnsPart1 to EnsPart5. It chooses one randomly, say EnsPart3
and develops it. It obtains Ens11 to Ens15. The best set is Ens14, rated 7. The best
group has so a minimum rating of 7 and the agent searches only sets with a minimum
rating of 7. It uses the intermediate evaluation Umax for each remaining partial set
and consider only those which have a potential rating of 7, in this case only EnsPart4
(Umax(EnsPart4)=8). It develops EnsPart4, adds Ens18 to the actual best group G1
and has terminated to create this group. It can thus send it to the next agent who can
begin its evaluation. In parallel, first agent continues its search with remaining sets to
find the second best group.

5.2.4 Fourth heuristic: limited search using intermediate evaluation
In the previous case, the order in which the coalitions are developed is of great

importance. The faster the best set is reached, the faster it becomes the reference
situation and the less the other sets are developed (because the reference situation
becomes rarely reached). This is thus useful to set up an intermediate evaluation
procedure of the sets to be developed in order to compute first of all the set which
seems most likely to generate sets bringing great satisfaction.

In the example, This means that instead of choosing randomely between partially
developed sets, the agent uses an evaluation function (Uest) to choose the best set
considering its information at this time. Here, it will choose to develop in first
EnsPart4, which has the best evaluation because the only developed class is in H4,
which is its preferred slot. It will then find the best group rating quicker than having
chosen randomly for example the EnsPart5 set.

 19

5.2.5 Prospective search.
In order to better use the utility function, instead of starting from an empty set and

developing it, an agent may immediately use the knowledge of its utility function and
the tasks to be achieved in order to deduce the best sets. If the number of possible sets
is high, this solution can be advantageous since in this case the complexity does not
depend of the number of possible sets but depends of the type of utility function of the
agent. This method can give far more effective results but the procedure for each type
of utility function needs to be rewritten.

5.2.6 Non-exhaustive methods
Using the utility function or developing the possible coalitions, the agent can make

approximations in order to have much faster results, even if it is not certain to obtain
the best possible results. Using this method to develop the coalitions, the agent can
decide not to explore the undeveloped sets - which do not offer very interesting
prospects −even if one of their developments may theoretically give the best solution.
The final solution will thus be obtained quicker, but this solution would not be proved
to be Pareto optimal.

6 Implementation and tests

To illustrate our model, we have implemented a teaching scheduling application

system using the utility function of the professors and the students. The utility
function has different variables: for each day, the time of the first class, the time of
the last class, the number of hours per day, the number of classes not given, the
number of compulsory classes not given for each agent, the number of changes
compared to the current schedule, the total number of hours per week. Given the
number of parameters, three profiles have been defined to simplify the choices:
morning, afternoon and grouped (it prefers to group its classes on a minimum number
of days). These profiles correspond to values of arbitrary parameters used for the
tests. Because it is easier for implementation purposes, we have chosen to compute a
utility function in order to valuate the preferences. Even so we get cardinal values, our
proposed protocol only needs ordinal utility functions.

6.1 Description of the multi-agent system

6.1.1 Architecture of the system

The multi-agent system is composed of two principal object-oriented classes: the

agent and the environment. The environment aims at identifying the newcomers, at

20

carrying out a total follow-up of the system and at enabling the user to intervene if
needed. During their creation, the agents obtain the IP addresses of the other agents
which they then use to communicate directly with them. Our aim is to build a generic
multi-agent system that can be used easily to redefine an environment and agents
adapted to the field to which we want to apply them, and to define tasks, actions or
behaviors of the agents (maximization of collective utility, individual utility, etc.).
The system is made up of several executable programs. The goal is to make the
environment and each individual agent really autonomous entities.

6.1.2 Communications

The agents and the environment communicate by TCP/IP. The various agents can

thus be distributed on different computers and communicate in a local area network or
by Internet. This distribution of the resources allows a greater speed and a real
parallelism between actions and deliberations. Agents subscribe to the environment,
which IP address must be known by all. At the time of their subscription, the
environment sends the agents the addresses of the other agents in the multi-agent
system and informs the others of the presence of the newcomers. All the agents thus
have all the addresses and can communicate with each other. To communicate, the
agents and the environment use object messages, which are structured vectors so that
they can be created, sent and received. All the agents and the environment have a
message processing program permanently on standby so that these messages can be
received and processed immediately.

6.1.3 Description of the environment

At the beginning, the environment agent is activated and then the agents start the

negotiation process. This allows:
• The user to intervene in the system as a whole.
• To inform the user of the global state of the system.
• To register the entrance of a new agent, to provide it with information

concerning the current state of the multi-agent system (addresses of the
other agents) and to inform the other agents of its arrival by providing
them with its address.

6.2 Description of the agents

We assume that an agent is an autonomous program which behaves for its own

interest. It is mainly characterized by its action and reasoning mechanisms and by its
knowledge structure. The agent has knowledge about the various types of task that
exist in the domain considered and about the various types of action. In addition to

 21

this knowledge about itself, the agent has knowledge about the other agents. This
knowledge is provided to it by the other agents when they join the system (or when
this agent itself joins the group, if the others were in the system before it) or when
they modify one of their characteristics (like adding a course to or withdrawing a
course from the list of capabilities of a professor, in the case of our application). The
action mechanisms (the behavior) are free. Just like the environment, the agent uses a
process which allows it to wait for possible communications from the other agents or
from the environment.

6.2.1 Negotiation process of the agent

Although this part of the agent is always reusable for other applications, this

module knows the coalition formation protocol and can thus negotiate so as to reach a
Pareto-optimal situation.

6.2.1.1 Structure

The agent is made up of three processes, all of which are activated during

initialization:
• An action process, which carries out the actions that the agent planned.
• A negotiation process, which is activated as soon as a new negotiation

starts.
• A communication process, which waits to receive messages from the

other agents or the environment, and consequently communicates with the
other processes.

6.2.1.2 Managing communications

The negotiation process of the agent manages the negotiations in order to form

coalitions. For that, it knows a certain number of specific messages: “Initialization”
and “Update” are messages sent by the user or by an agent. “Initialization” message
starts a new coalition formation process, “Update” enables to modify current
coalitions. The agent starts by warning the other agents of the new negotiation (with
the message “New Negotiation”, to which they answer by “Confirmation New
Negotiation”). Then it begins the negotiation and gradually sends the groups of sets of
coalitions to the following agent (message “Negotiation in Progress” to which the
agent answers “Evaluation Ended” each time that it has finished processing a group).

6.2.1.3 Initializing a new negotiation

22

When an agent receives a group of sets from another agent, it saves these sets in a
vector of sets which will be analyzed with the process used for analyzing the group.
When the agent initializes a new negotiation, it places, in the same vector a single
initial set in which no coalition is developed and it fires the same analysis procedure.
In order to initialize a negotiation it is sufficient to receive an empty set from the
others. In all cases, the agent initializes the groups where it will classify the sets
according to the satisfaction that these sets provide it.

6.2.1.4 Searching for coalitions

To classify the sets in groups, the agent has several methods which are described in

section 5.2. The first, the basic method, has been improved thanks to the addition of
intermediate tests and by developing only necessary coalitions. The second, the search
method limited to the best group, means major modifications to the algorithm while
moving from breadth search to an in-depth search. This is because the agents must
obtain completely developed sets as quickly as possible in order to be able to evaluate
them. However, in the basic method such sets are only obtained at the end, when the
agent simultaneously develops the last coalition, for all the intermediate sets. The
third method, which limits itself to the best group with intermediate tests, improves
the preceding method by carrying out intermediate tests more quickly to find a set of
the best group.

6.2.2 Student and professor agents

The utility function returns a complete result which relates, however, to the

reference situation, the utility of which (absolute, measured by the Ucomp variable) is
computed at the beginning of each negotiation.

The various parameters of the utility function are as follows:

• The time the day starts: for each day, the agent allots a utility to the time
of the first class.

• The time the day ends: for each day, the agent allots a utility to the time
the last class ends.

• Numbers of hours of the day: for each day, the agent allots a utility to the
number of classes are given.

Each of these partial utility functions is of the following form:

1

0

valmin optmin optmax valmax

 23

Valmin: value below which the utility is null
Optmin and optmax: limits between which the utility is maximum
Valmax: value above which the utility is null
Criterion: time the day starts, time the day ends, Numbers of hours of the day

Figure 6. Partial utility according to the value of the selected criterion

For each day, the agent computes the weight of these three functions (d(j,s), f(j,s),

n(j,s)) according to its own coefficients (pd, pf, pn) based on the criteria it considers
more important. The agent computes the average of these daily utilities. The professor
agent has a fourth criterion: the total number of hours of classes in a week. It
computes the weekly average of this criterion (t(s)), which is then weighted using (Pt)
with the preceding daily average. The agent then seeks the number of classes nbtt
which are not given in the evaluated sets. It uses an aversion coefficient ct for the
classes which are not given. It multiplies the intermediate utility by this coefficient to
the power nbtt. In the same way, the agent seeks the number of classes it must attend
(tasks which are allocated to it at the beginning) but which are not given nbtp. It uses
a second coefficient cp to the power nbtp and that it multiplies by the preceding result.
Lastly, the agent seeks the number of classes nbch which have moved compared to
the initial situation in its timetable. It uses a third coefficient cc to the power nbch and
that it multiplies by the preceding result. It then uses an absolute result from which it
subtracts the utility of the current reference situation Ucomp in order to obtain a
relative result.

For the student agent, the formula corresponding to these calculations is:

Equation 1. The relative utility of a student agent associated with a set of coalitions

The utility function of the professor agent is defined as:

()
() () ()()

comp

nbs

s

nbj

j

nfd

nbch
c

nbtp
p

nbtt
t U

nbsnbj

sjnpsjfpsjdp
cccstudentU −×

++
=

∑∑
= =1 1

,,,

()
() () () ()()

comp

nbs

s

nbj

j

tnfd

nbch
c

nbtp
p

nbtt
t U

nbsnbj

stpsjnpsjfpsjdp
cccprofessorU −×

+++
=

∑∑
= =1 1

,,,

24

Equation 2. The relative utility of a professor agent associated with a set of coalitions

At the end, the agent checks if there are incompatibilities in the timetable (for

instance, two classes programmed at the same time) or some violated constraints (a
class starting before the minimum value or after the maximum value, etc.). If it is the
case, it returns the value –1. If not, it returns the computed utility. All these
parameters can be modified individually by each agent. Given their number, three
profiles have been defined to simplify the choices by default: morning, afternoon and
grouped (the agent prefers to group its classes on a minimum number of days).

6.3 Operational process

The first step consists in executing the environment agent. Professor and student

agents can then be added, either directly with the assistance of the environment, or by
a separate program, possibly on another computer on the network.

The various functions available for each agent are:
• Redefinition of capabilities and utility function. For both professors and

students, all the parameters of the utility function can be modified. For the
professors, the courses in which they are qualified to teach can also be
defined.

• Modification of the search method. For each agent, its model can be
chosen by defining the method that it will use to search for the sets of
coalitions.

• Addition or deletion of classes. For the students, new classes can be added
and the existing ones can be removed.

Once all the agents are created and utility functions are defined, an agent can starts

the initialization phase of the negotiation in order to obtain a set of timetables, i.e. a
solution. Other agents or other tasks may then be added and utility functions may be
modified. An agent may then start the update step will seek a new solution starting
from the current situation.

7 Evaluation results

The proposed solutions were tested through simulation. To understand these tests,
remind the objectives of this work:

• To propose a protocol in order to form Pareto optimal coalitions.
• To propose a protocol which enables a dynamic reorganization of

coalitions.
• To propose heuristics to search for coalition groups so as to accelerate the

negotiation.

 25

7.1 Coalition formation and optimality of the result

How should such a protocol be evaluated? We cannot check if the utility function

is maximal, as we assume that the multi-agent system has several utility functions that
are incomparable. We have checked that during the tests we always obtain a result
and that this result is a Pareto optimum (as proved in sections 4.4.3 and 4.4.2). We
have analyzed the performance of the protocol by observing several parameters: the
number of messages exchanged, the size of these messages (the number of coalition
sets they contain) and the number of coalition sets that have been evaluated. The
number of messages exchanged between the agents is independent of the search
method strategy. However, their size depends on the use of undeveloped coalitions.
As for the number of evaluated sets, it depends very much on the search method used.
The basic method systematically evaluates all the possible sets whereas the heuristics
proposed seeks to reduce the number of these sets in order to obtain the result quicker.
Four of these heuristics have been implemented. The heuristics which gave the best
results and which are used in the experiments described consists in seeking only the
best group by doing intermediate tests as soon as possible in order to identify the
value of the best group.

In the following, we will analyze these factors on a simple example using 4 agents

(2 professors, 2 groups of students) and 2 classes. Each group attends two classes, i.e.
there are four tasks in the system). Several experiments have been done with more
agents (for more details see (Caillou, 2000)). In this example, we consider the
schedule for two days, with eight possible time slots per day. We vary the profile of
each agent (morning, afternoon, grouped) to obtain the average, maximum and
minimum of the results. Students attends two classes, each one must be placed in one
of the 16 time slots (or not to be placed if it is not given, so we have 16+1 cases to
consider) with only one possible professor for each class. Thus, there are 174, i.e.
83,521 possible schedules. The order in which the negotiations proceed is as follows:
student s1 starts the negotiation, then student s2, professor p1 and professor p2 ends the
negotiation. The last agent does not send any message as it just waits to receive a set
which is appropriate for it and then sends it to the other agents as the solution for the
negotiation.

Only messages related to groups are counted (they are more frequent and

especially voluminous as they contain the sets which will be evaluated). The number
of messages sent depends very much on the precision of the utility function of the
agents. If agents have very precise preferences, they will distribute the sets among
many small-sized groups and will send many messages. We choose agent utilities
with one hundred levels, therefore there is a maximum of 100 messages sent by the
first agent (the second can thus send a maximum of 10,000 because it can divide each
group received into 100 other groups). The number of messages sent is summarized in
figure 7.

26

Figure 7. Number of messages exchanged during a negotiation with 4 agents and 4

tasks

The number of messages sent varies considerably according to the incompatibility

of the preferences of the agents. For instance, a morning profile student will seek
morning classes in priority. If the professor has an afternoon profile, it will consider
these schedules unacceptable. Consequently, the student will have to send other
propositions which it finds less appropriate. On the contrary, if all agents accept the
first propositions, only one message per agent is necessary (minimal case). The total
size of the messages sent (figure 8) makes it possible to measure network obstruction.
This size, measured with the number of sets, must be compared with the 83,521
possible sets.

Figure 8. Total size of messages sent (measured by number of sets) during a negotiation

with 4 agents and 4 tasks

The agent which sends most sets and messages is student s2 for two reasons: (1)

student s1 sends it the sets corresponding to its two classes according to its
preferences; (2) student s2 computes all the possible combinations of its own classes
in each of these sets. Then it sends these combinations in decreasing order of
preference to professor a1 until there are no more acceptable sets to send and if no
solution has been found. At this moment, student s1 sends it a second message and the
negotiation continues.

The number of evaluated sets makes it possible to measure the effectiveness of the

heuristic search of the best group. If the basic method is used, the first agent would
simply evaluate all 83521 possible sets and would send them classified to the

- 10 20 30

student 1

student 2

prof 1
max

average

min

- 1 000 2 000 3 000

student 1

student 2

prof 1
max

average

min

 27

following agent. Figure 9 shows that the maximum number evaluated set il less than
15000 and the average number is less than 5000.

Figure 9. Number of evaluated sets of coalitions during a negotiation with 4 agents and 4

tasks

7.2 Dynamic restructuring of coalitions

The purpose of dynamic restructuring of the coalitions is to give a result that is as

satisfactory as the basic protocol but faster, which is possible because the algorithm
uses information drawn from the preceding negotiation by taking the previous
solution as a new reference situation. The result will probably not be the same than
the results obtained, if the initial protocol had been applied, but the result is always a
Pareto optimum.

We have studied the effect of adding new classes to the previous situation in terms

of the number of sets evaluated and transmitted. We gradually added 4 classes to
students 1 and 2. The size of the messages sent during a negotiation is indicated in
figure 10.

- 5 000 10 000 15 000

student 1

student 2

prof 1

prof 2

max

average

min

-

500

1 000

1 500

4 5 6 7 8

prof 1

Group 2

Group 1

28

Figure 10. Number of evaluated sets (i.e. size of message sent) during a negotiation with 4

agents and classes varying from 4 to 8

The first negotiation (4 classes) used the basic protocol, whereas the other four are
restructurings from the previous situation. The number of sets sent and evaluated must
be compared with the total number of possible sets. It varies between 80,000 for 4
classes to 7.109 for 8 classes. The average size of the messages sent during these
additions is indicated in figure 12.

During the formation of the coalitions corresponding to the four initial tasks, we

showed that the total number of sets sent was on average 1,308 which implies that the
total number of evaluated sets corresponds to 5.5% of the total number of sets of
possible coalitions (83,521). During the dynamic restructuring of coalitions, due to
the addition of the 6th class, we observed that the total number of evaluated sets is 40
which gives the total number of evaluated sets corresponds to 0.00085% of the total
number of possible coalitions.

The number of sets sent and the number of sets evaluated is related not to the total
number of tasks carried out but to two parameters: the number of tasks the agents fail
to perform (because of incompatible preferences) and the number of new tasks. The
effect is cumulative, which explains why the number of sets sent gradually increases.
For instance, if the 6th class has not been assigned, this affects the number of sets sent
after the addition of the 7th and the 8th classes because agent 1 tries again each time to
assign the 6th class (which is useful, as it may happen that in future negotiations a new
class may modify the utility of the agents).

7.3 Comparison of the agent heuristics

The number of sets evaluated (figure 10) is here very low compared to the number

of possible sets (on average 1% of the basic protocol and between 4.10-4% and 6.10-
6% for the restructurings (figure 11 and 12)). However, the use of the basic protocol
would have led to the computation and evaluation of all the possible sets before
sending the groups of acceptable sets. The choice of a good heuristics to search for
the best group is thus fundamental so that the search time is acceptable. The heuristics
which gave the best results are described in section 5.2 and consist in seeking only the
best group by carrying out intermediate tests as soon as possible in order to identify
the value of the best group. Using this heuristics enables to obtain the following
number of evaluations (cf. figure 11) during the reorganizations carried out previously
by the agents:

-

1 000

2 000

3 000

4 000

5 000

4 5 6 7 8

prof 2

prof 1

Group 2

Group 1

 29

Figure 11. Number of evaluated sets of coalitions during a negotiation with 4 agents and

classes varying from 4 to 8

Related to the total number of possible sets, we obtained the results presented in
figure 12.

Figure 12. Percentage of valuated sets of coalitions for 4 agents and classes varying from 4

to 8 (logarithmic scale)

8 Related work

8.1 Theoretical origins

The use of coalition formation models is highly adapted to complex projects

requiring the intervention of several agents selected from among a set of available
ones. All the characteristics, even those related to the concept of an agent (an
autonomous system with needs which can be represented in the form of a utility
function), are such that scientific research in many fields deals with problems
referring more or less directly to the coalition formation problem. Some of these

Forming

0,00001%
0,00010%
0,00100%
0,01000%
0,10000%
1,00000%

10,00000%
100,00000%

4 5 6 7 8
Restructuring

30

fields, such game theory, are already being used intensively in recent developments of
multi-agent systems. Considering these different fields gives an overview of the
problem and the various analytical approaches, which leads to original methods for
coalition formation adapted to software and hardware agents.

Game theory has already addressed the question of coalition formation. It has

provided the concepts used in MAS for the analysis of this problem (typology of the
problems, solutions, equilibrium, utility functions). Through power indices, it is
possible to compute the real influence of an agent in a coalition. Game theory
provides methods of calculation to define the best coalitions in various types of
problem. A good synthesis of the analysis of coalitions in game theory can be found
in (Kahan and Rapoport, 1984). Its application to multi-agent systems has been
originally studied by Sandholm (Sandholm, 1996). Game theory has been at the origin
of the majority of recent developments (Sandholm and others, 1999, Sen and Dutta,
2000). The limits of its use are related both to the underlying assumptions (the agents
are generally considered as perfectly rational) and to its aim (game theory focuses
generally on the value of the optimal solution and not on the most efficient method to
reach that solution, never on the most efficient distributed method).

Economic theory, especially microeconomic theory, is concerned with a research

topic that is very similar to that of multi-agent systems: autonomous agents,
considered as imperfectly rational and having needs modeled using a utility function.
Many economic concepts can be used to address the coalition formation problem in
MAS: the Pareto optimum, the maximization of the individual utility as a means. Our
proposed protocol is grounded on these economical concepts (Caillou, Aknine, and
Pinson, 2002a).

Sociological theory can also be useful to understand the coalition formation

problem. Coalitions are groups of agents and these groups are not formed
independently of their environment. The “Society”, in which they move plays a
significant role in their choices: the presence of a third party (gendarme, state or
program) may guarantee confidence. In the same way, the presence of social
standards can accelerate or improve the formation of coalitions. Work like that of
Shoham and Tennenholz (Shoham and Tennenholz, 1998) studied the influence of
social standards and their emergence in a multi-agent system.

8.2 Multi-agent coordination models

The coalition formation problem has been studied in multi-agents domain since

1994 (Ketchpel, 1994). This model does not solve however the problem in all cases.
Even in the cases where this algorithm finds coalitions, it does not always find
coalitions of the desired size (Aknine, Pinson, and Shakun, 2004b). (Shehory and
Kraus, 1998) proposed a model which is now considered by the community as the
“basic model”.

 31

Since then, most current protocols address the same problem while making
improvements from this basic model at different levels of their solution. The main
distinction is between improvements made to the methods, by preserving agents with
limited rationality but by changing the objectives, and improvements made to the
agents using more realistic or effective agents. In the following, we present the most
relevant protocol of coalition formation, keeping in mind that unlike our protocol,
these current protocols are based on aggregation of agent preferences or on a common
utility function.

8.2.1 Forming overlapping coalitions with multiple tasks

The basic model proposed by (Shehory and Kraus, 1998) has the following

characteristics:
- The game is not necessarily super-additive or sub-additive.
- The agents can take part in several coalitions simultaneously.
- Each agent has a list of capabilities and each task requires a list of capabilities.
- The tasks can be partially ordered.
- The agents cooperate and seek to maximize a single and total utility function.

The problem of distribution thus does not arise.

The protocol is based on two phases. Initially, the values of all the possible

coalitions are computed in a distributed way. The value of a coalition corresponds to
the value of the task minus the cost of coordination related to the coalition and minus
the cost of the capabilities used. In the second phase, the coalitions are formed
gradually. In each sub-stage, the coalition which has the lowest cost per participant is
formed and the value of all the remaining coalitions is recomputed so as to take into
account the modifications generated by the use of capabilities related to the formation
of coalitions.

The algorithm ends when there are no more tasks or agents. This algorithm remains
very greedy in terms of time. In order to decrease its complexity, the authors
recommend limiting the coalitions available, for instance, computing only thoses
coalitions with less than k agents. The number of possible coalitions decreases then

from
n2

to
)(knO

. The complexity of the protocol per agent is around
)(TnO k×

(with
T

 the number of tasks).

This algorithm is promising especially because it is the first to propose a functional

method for coalition formation within a general framework: several coalitions by
agent. The protocol is simple and the simulations show that the results obtained are
close to the optimal results. However, this protocol has several limits. (1) It focuses
on the problem of coalition formation and the problems of distribution of the profits
and of optimizations are not addressed. (2) A global utility function is supposed to be
known and shared by all the agents. (3) The value of the set of all coalitions
considered as acceptable is calculated. This calculation can become too complex to be
done in reasonable time if the number of agents is too high as it could be the case in a

32

real application. (4) Each time that a condition changes (a new coalition, but also the
addition of a task or of an agent, etc.), all the calculations for evaluating the values of
the coalitions must be computed again. This constraint prevents the algorithm from
being useful in open or dynamic environments. If agents constantly enter and leave of
the system, if they build temporal preferences or if tasks are added progressively, the
method cannot be used.

8.2.2 Search for a minimum solution
Sandholm, Larson, Andersson, Shehory and Tohmé (Sandholm and others, 1999)

have proposed a protocol that provides a final solution which is at least equal to a
certain proportion of the optimal solution, in term of value of the common objective
function. This protocol can be applied under the following usual conditions. There are
no externality between tasks, tasks are not necessarily super-additive or sub-additive,
each agent belongs to only one coalition at a time. It is thus a problem of distributing
the set of agents. The agents cooperate and seek to maximize a common and social
utility function. This protocol reasons on the different levels of possible sets of
coalitions represented in a lattice. For instance, for 4 agents there are 14 possible
coalitions and 15 possible sets. This protocol shows that it is possible to obtain a
result that is relatively close to the optimum by calculating a small proportion of the
total number of nodes. It has been extended in (Sen and Dutta, 2000). We can,
however, observe that when the number of agents become relatively high, the
minimum guaranteed is very low compared to the optimum whereas the number of
nodes to be computed and the calculation complexity increase rapidly (because of the
number of agents).

8.2.3 Heterogeneous agents

8.2.3.1 Constraints on agents computation
The limits of the rationality of the agents can be addressed at several levels.

Sandholm and V. Lesser (Sandholm and others, 1999) propose a protocol based on
agents which are limited in their computation capabilities. Calculating the
optimization necessary for coordination and negotiation is expensive. Compared to
the calculating time, the agents minimize the total cost of the coalition, which is the
difference between the cost of negotiation and the profit resulting from the
negotiation for a given calculating time. This cost serves to compute the value of the
coalition. The negotiation is expensive. However, the agents are supposed to be
perfectly rational when they evaluate this cost. This means that they perfectly
consider the profits resulting from a negotiation for a certain period of time and that
each coalition is really optimized and at no cost. The principal interest of this article
lies in the formalism which is presented. This formalism is adapted to agents limited
in computing time. They have also proposed a relevant classification of the problems
related to this case.

8.2.3.2 Agents with multi-criteria preferences
All the current models are based on the same assumption: the agents try to

maximize a global utility function which was defined, either directly in the agents, or

 33

by an agreement between the agents which will then distribute their payoffs. The
coalition formation problem is considered as a distributed optimization problem.
Though limited by the constraints of a decentralized multi-agent system (nevertheless
the agents seek their personal interest and, unless all the agents seek the collective
interest, there will be some constraints on distributing the payoff in order to ensure the
stability of the solution), these methods propose a centralization of the problem
(handling a collective utility function, often calculating the value of all the possible or
desirable coalitions). This involves a strong complexity of the algorithms (even per
agent), and coordination problems and social negotiation on the utility functions and
on the final distribution.

A decentralized approach to the coalition formation problem would seem to
comply both with the agent-oriented approach (independence) and with economic
reality (a large number of agents). The self-interested case can also be considered.
This approach was chosen by (Aknine, Pinson, and Shakun, 2004a, Aknine, Pinson,
and Shakun, 2004b). They consider the preferences of the agents and not a global
utility function. When a coalition is formed, agents consider the aggregated
preferences of the coalition, but never a global aggregate such as the global utility
which is neither necessary nor calculated.

The model presented here is based on two fundamental concepts: the Choquet
integral as an aggregation operator and the ESD (Evolutionary System Design)
methodology for coalition formation. The Choquet integral makes it possible to carry
out multi-criteria aggregations by taking into account the collective weights of several
criteria which are different from their sum. The agents are characterized by a multi-
criteria utility function which assigns to each agent a vector representing its
preferences with respect to each criterion. The Choquet integral is used to:

• aggregate the preferences of an agent with respect to another agent,
• aggregate the preferences of an agent with respect to several other agents

and obtain its preference for a coalition,
• aggregate the preferences of several agents with respect to another agent

in order to obtain the preference of a coalition for an agent.

To form the coalitions, agents use the ESD methodology to restructure a problem.

This method has been developed by Shakun (Shakun, 1998). Two types of protocol
are proposed, depending on how the agents do or do not share their preferences.
Sharing the preferences is realistic in a cooperative situation; it provides a more
comfortable situation and so a more effective solution. Forbidding the sharing of
preferences makes it possible to handle non-cooperative situations with self-interested
agents. The two protocols can be viewed as protocols for making contracts (such as
the Contract-Net Protocol) with broader coalitions. When preferences are not shared,
each agent concerned announces that it is seeking to form a coalition, receives
alternative proposals, studies these proposals on its own behalf or as a representative
of its coalition. If the preferences are shared, the agent which wants to form a
coalition saves time by looking in its knowledge base the preference structures which
are compatible with its own structure. (Vauvert and El Fallah-Seghrouchni, 2001)
studies the case of overlapping coalitions which are formed gradually through
alliances and progressive adaptation of the preferences of the agents (the agent
interest it is to adapt so as not to be excluded from the coalitions).

34

8.2.3.3 Other models

Several coalition formation models have been suggested to date, for instance

(Rahwan and Jennings, 2005) which extend earlier work of (Shehory and Kraus,
1998) and which provides some heuristics to improve the complexity of their
mecanism.

(Tsevovat and others, 2000) proposed an algorithm based on the principle of
electing a leader for coalition formation. This algorithm has been applied to electronic
commerce processes. This approach is similar to the one proposed in (Aknine, Pinson,
and Shakun, 2000). (Lerman and Shehory, 2000) have proposed an alternative,
physics-motivated mechanism for coalition formation that treats agents as randomly
moving, locally interacting entities. They consider that a new coalition may form
when two agents meet randomly, and it may grow when a single agent randomly
meets the coalition. The aim of this work was to define a mathematical model,
formalized as a series of differential equations. These equations have steady state
solutions that describe the equilibrium distribution of coalitions, but the authors have
not given any details of the autonomous agent behaviors and how they concretely use
this mathematical model. No algorithmic specifications have been proposed and the
convergence of this model has not been addressed.

(Zlotkin and Rosenschein, 1994, Zlotkin and Rosenschein, 1996) have proposed a

mechanism for coalition formation that uses cryptography techniques for sub-additive
task-oriented domains. This mechanism is based on a Shapley value. A Shapley value
for an agent is a weighted average of all the utilities of the agent which contributes to
all possible coalitions. The weight of each coalition is the probability that this
coalition will be formed in a random process that starts with the first agent, and in
which this coalition grows by one agent at a time such that each agent that joins the
coalition is credited with its contribution to the coalition. The Shapley value is the
expected utility that each agent will have from such a random process . However, this
mechanism can only be applied to small-sized multi-agent systems because of its
combinatorial complexity due to the calculation of all possible coalitions.

Recently, a solution that suggests that agents compromise their gains to promote
coalition formation was suggested (Kraus, Shehory, and Taase, 2003a, Kraus,
Shehory, and Taase, 2003b). However, this work assumes that the value at which
compromise is beneficial is known, or can be derived experimentally. In many real
applications where coalitions are necessary, this assumption does not hold. In our
solution to the coalition formation problem, we do not assume that the optimal
solution points are known in advance. Rather, we provide agents with means to
gradually arrive at an agreed solution via a series of discussions.

9 Conclusion and future work

In this paper, we have proposed a distributed protocol adapted to problems
requiring coordination through the formation of coalitions where it is not desirable, or
possible, to aggregate, or share, the preferences of the agents. The protocol provides

 35

optimal Pareto-type solutions. One of the advantages of this protocol is that, if
changes occur in the multi-agent system, it enables agents to compute a new solution,
which is always Pareto-optimal, dynamically and quickly, on the basis of the current
solution.

It is difficult to compare our protocol to current protocols since it does not have the

same objectives. In current protocols, utility functions of the agents are either global
for all agent or systematically aggregated. On the contrary, the utilities here are
neither aggregated nor transmitted. The results cannot thus be compared because they
relate to different problems. However, if all the agents have an identical utility
function at the beginning, our suggested protocol should obtain the same result as that
of (Shehory and Kraus, 1998) or (Aknine, Pinson, and Shakun, 2000).

For the considered problem, which is formation and restructuring of coalitions

without aggregation of agent preferences, we have shown in this paper that the
protocol allow to obtain a solution which is a Pareto optimum. Moreover, the tests
have shown that the average complexity remained low compared to the total number
of possible cases. In spite of these encouraging results, many improvements are still
possible and are currently being addressed.

Regarding the protocol, a logical extension would be to send sets with constraints

on the coalitions instead of sending several independent sets of coalitions. For
instance, in our application of drawing up schedules, instead of transmitting three sets
of coalitions with the three alternatives time 1, time 2, time 3, one agent could send:
"time ranging between 1 and 3". This would reduce the number of sets of coalitions to
be computed and would enable the agent which receives them to make an intelligent
search instead of having to evaluate all the sets without seeking links between them.

10 References

Aknine, S., and Caillou, P., 2004, Agreements without disagreements: a coalition formation

method, ECAI04: Valencia, IOS Press, p. 3-7.
Aknine, S., Pinson, S., and Shakun, M. F., 2000, Coalition Formation Methods for Multi-Agent

Coordination Problems, International Conference on Group Decision and
Negotiation.

-, 2004a, An Extended Multi-Agent Negotiation Protocol: International Journal on Autonomous
Agents and Multi-Agent Systems, v. 8, p. 5-45.

-, 2004b, A Multi-Agent Coalition Formation Method Based on Preference Models: Group
Decision and Negotiation, v. 13, p. 513-538.

Binmore, K., 1999, Jeux et théorie des jeux: Bruxelles, De Boeck.
Caillou, P., 2000, Pareto Optimality Method for Coalition Formation and Dynamic

Restructuring of Agent Coalitions: Paris, Université Paris 9.
Caillou, P., Aknine, S., and Pinson, S., 2002a, A Multi-Agent Method for Forming and

Dynamic Restructuring of Pareto Optimal Coalitions, in Castelfranchi, C., and
Johnson, W. L., editors, AAMAS 02: Bologna, Italy, ACM Press, p. 1074-1081.

36

-, 2002b, Multi-Agent Models for Searching Pareto Optimal Solutions to the Problem of
Forming and Dynamic Restructuring of Coalitions, in Harmelen, F. v., editor, ECAI
2002: Lyon, France, IOS Press, p. 13-17.

Kahan, J. P., and Rapoport, A., 1984, Theories of coalition formation: Hillsdale, LEA.
Ketchpel, S., 1994, Forming coalitions in the face of uncertain rewards, National Conference

on Artificial Intelligence (AAAI): Seattle, p. 414-419.
Kraus, S., Shehory, O., and Taase, G., 2003a, The Advantages of Compromising in Coalition

Formation with Incomplete Information, AAMAS 2003: Melbourne, ACM Press, p.
588-595.

-, 2003b, Coalition formation with uncertain heterogeneous information, AAMAS 2003:
Melbourne, ACM Press, p. 1-8.

Lerman, K., and Shehory, O., 2000, Coalition Formation for Large-Scale Electronic Markets,
ICMAS.

Ossowski, S., 2000, Co-ordination in Artificial Agent Societies: Berlin, Springer.
Rahwan, T., and Jennings, N. R., 2005, Distributing Coalitional Value Calculations Among

Cooperating Agents, AAAI 2005: Pittsburgh, USA, AAAI Press, p. 152-157.
Sandholm, T. W., 1996, Negotiation among Self-Interested Computationally Limited Agents:

Amherst, University of Massachusetts.
-, 1999, Distributed Rational Desicion Making, in Weiss, G., editor, Multiagent Systems, MIT

Press, p. 121-164.
Sandholm, T. W., Larson, K., Andersson, M., Shehory, O., and Tohmé, F., 1999, Coalition

Structure Generation with Worst Case Guarantees: Artificial Intelligence, v. 111, p.
209-238.

Sen, S., and Dutta, P. S., 2000, Searching for Optimal Coalition Structures, ICMAS, IEEE
Press.

Shakun, M. F., 1998, Evolutionary Systems Design: Policy Making Under Complexity and
Group Decision Support Systems: Oakland, Holden-Day.

Shehory, O., and Kraus, S., 1998, Methods for task allocation via agent coalition formation:
Artificial Intelligence, v. 1998, p. 165-200.

Shoham, Y., and Tennenholz, M., 1998, On the Emergence of Social Conventions: Modelling,
Analysis and Simulation: Artificial Intelligence, v. 97, p. 139-166.

Smith, R. G., and Davis, R., 1981, Frameworks for co-operation in distributed problem solving:
IEEE Transaction on System, Man and Cybernetics, v. 11.

Tsevovat, M., Sycara, K., Chen, Y., and Ying, J., 2000, Customer Coalitions in the Electronic
Marketplace, Agents: Barcelona.

Vauvert, G., and El Fallah-Seghrouchni, A., 2001, Coalition Formation among Strong
Autonomous and Weak Rational Agents, MAAMAW 2001: Annecy, France.

Wooldridge, M. J., 1999, Intelligent Agents, in Weiss, G., editor, Multiagent Systems, MIT
Press, p. 27-78.

-, 2001, An Introduction to Multiagent Systems, Wiley & Sons.
Zlotkin, G., and Rosenschein, J., 1994, Coalition, Cryptography and Stability: Mechanisms for

Coalition Formation Task Oriented Domains, AAAI: Seattle.
-, 1996, Mechanisms for Automated Negotiation in State Oriented Domains: Journal of

Artificial Intelligence Research, v. 5.

