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ABSTRACT. Coordination is one of the fundamental aesk issues in
distributed artificial intelligence and multi-agesystems. Current multi-agent
coalition formation methods present two limits: sEircomputation must be
completely restarted when a change occurs. Seadilitly functions of the
agents are either global or aggregated. We preseet algorithm to cope with
these limits. The first part of this paper presentwalition formation method
for multi-agent systems which finds a Pareto optimalution without
aggregating the preferences of the agents. Thiegubis adapted to problems
requiring coordination by coalition formation, wkeit is undesirable, or not
possible, to aggregate the preferences of the sg@&he second part of this
paper proposes an extension of this method enabiigmic restructuring of
coalitions when changes occur in the system.

KEY WORDS: multi-agent system, coalitions, preferesy aggregation,
reorganization.



1 Introduction

The search for economic efficiency has led to thésidn of labor between
specialists. Today, similar reasoning explains theccess of agent-oriented
programming and multi-agent systems. Programsrareasingly complex and have
multiple functions which must sometimes be updatedmproved. Using a set of
specialized agents which coordinate their complasks gives more flexibility,
efficiency and evolutivity to programs. To perforomplex tasks, agents need to
coordinate, either because tasks require many reseif they are to be performed by
a single agent, or because certain sub-tasks cararied out more efficiently by
specialized agents (Binmore, 1999, Ossowski, 2008pldridge, 1999).

Agents have specific capabilities and are prograthtoecarry out certain tasks.
For a given agent complexity, the search for moghssticated capabilities leads to a
higher number of agents. Since agents are moreramd specialized, they are not
able to perform complex tasks alone and must nad@ssoordinate their tasks with
others. More generally, a multi-agent system is enap of several homogeneous or
heterogeneous agents which communicate betweerséhess(Wooldridge, 2001).

How can autonomous agents be coordinated effigiei@ne solution is to look for
groups of agents which are able to perform theredésiasks better than one agent.
This means that agents may form coalitions, a toalbeing a temporary association
between agents in order to carry out joint projette aim is a better distribution of
capabilities in order to achieve a complex projéct, this is not the only method of
coordination. It can be imposed by a hierarchy,riedr out by bilateral
contracts(Smith and Davis, 1981), etc.(Sandholrf9)9

The choice of solving a problem using the coalitrnadel depends really on the
type of problem under study. Coalitions are welh@ateéd when there are strong
externalities (when completing a task influence dtibty involved in the resolution
of an other task) and/or when interactions betwegents are such that the
contribution of an agent within a coalition deperais which agents the coalition
contains, in which case a bilateral contract woh# difficult to negotiate. For
instance, if the payoff of an agent is the margirtdity it brings into the project, the
given payoff envisaged would vary during negotiasicaccording to the members
joining the coalition or leaving it.

Once coalition formation is chosen as a coordimatieethod, the definition of the
corresponding protocol remains problematic. A dmadi formation protocol is
strongly dependent of the type of problem studigie fact that the agents do or do
not have the same objective, do or do not trush eathers, are examples of
parameters which may generate different protocot®alition formation.

To enable the agents to form coalitions, all curmotocols make the assumption
that the utility functions of agents, which measiireir degree of satisfaction for each
suggested solution, must be comparable or idenfl¢tas means that agents must be
able to agree on a common utility function, eitbkall the agents as in (Shehory and
Kraus, 1998), or of their coalition as in (Akninginson, and Shakun, 2000) and
(Vauvert and El Fallah-Seghrouchni, 2001). Thisuags#tion seems acceptable for



most multi-agent systems, in particular for producprojects where all utilities can
often be calculated in terms of profit. Howevermany cases, to compare the utilities
of agents, and even more to aggregate them, iswtffThe numerical evaluation of
an agent utility is already a strong assumptionpaned to the simple classification of
available choices (Pareto has already shown they rmdmantages of ordinal utility
compared to cardinal utility in economics in theXXtentury). To compare the
utilities of two individuals is stronger. Why shduk solution weighted 8 by one agent
and 6 by another be preferred to one weighted ctispéy 4 and 7? Our model does
not suppose that the utilities of agents must bgrexated or compared(Caillou,
Aknine, and Pinson, 2002a).

A second limitation of current models lies in assugnthat all calculations are
recomputed as one condition changes (an agent guitsaves a coalition, a task is
added or canceled, etc.). However these protocelseay complex and these changes
can be very frequent. Using the information obtdine a previous execution of the
protocol, i.e. a dynamic reorganization of the itmals formed, could reduce
calculations. This is the second aim of our modail{Qu, Aknine, and Pinson,
2002b).

This article is organized as follows. Section 2atibgs the application used to
illustrate our model. Section 3 introduces somenitéins. Section 4 details our
methods of coalition formation and dynamic reorgation of coalitions. Our model
gives a wide choice of agent behavior. Sectiondppses a set of behavior models in
order to improve the computation time. Section €spnts an application example of
the protocol and discusses the implementation ofreadel. The results obtained with
our models are discussed in section 7. Sectionadyzes related work. Section 9
draws a general conclusion from this work and psegsome perspectives.

2 Application

The suggested protocol is particularly suitable gooblems with complex tasks
(where there is a need for several agents andofditions) and for dynamic problems
(tasks may be added, others canceled or modifiedtantly) with different utility
functions of agents. We assume that agents areccaiiye, i.e. they trust each other
in searching for and applying the solutions. Tluiity functions are unknown by the
other agents and do not need to be cardinal, anabrdtility is enough. Agents just
need to be able to choose between two situatiant® (oe indifferent), they can thus
be self-interested.

A good example of this problem is a distributedctéag schedule at university.
This application illustrates the dynamic evolutiointhe coalitions, as often a course
may be added or removed, or a professor or a gafugtudents may join the
establishment. In this example we consider two sypé agent: professors and
students. Student agents represent homogeneougsgodistudents with a common
utility function and with the same classes. Of eeurit is possible to have an agent



for each student and thus to enable him or heratee hts own utility function.
However, the computational complexity will be ghgatcreased.

The classes correspond to the tasks to be camied bus, agents form a coalition
for each class. Most coalitions are formed of twgerds: a professor agent and a
student agent (having more agents in a coalitionl$® possible, for instance for
lectures with several groups of students). Eacldéstt or professor) agent defines the
utility it assigns to each schedule. Since itsitytfunction is ordinal, it just needs to
be able to compare two schedules and to say wimetitgrefers or if it is indifferent.
Agents are free to choose their parameters whitepeiting their utility. A professor
can thus prefer the morning, refuse Mondays, preéstain classes, like a stable
schedule, etc.

In a general way, the choice of an agent dependheomembers of the coalitions
in which it will take part, but its appreciation @& coalition may also change
according to the other coalitions. This introducesternalities or an ordered
processing of tasks. Thus, if a taskmiust be carried out beforg, The utility that the
agent will associate to; Will be null if no agent takes part in the coaliti which
performs T (task T is then not performed, and i of no interest). The agent choice
may also depend on parameters which are relatisl poeferences and which vary in
time. Thus, it can be against change. For instaacg@rofessor may prefer one
schedule to another because it is closer to theusituation. The only constraint is
that these external parameters need to be stabifggydunegotiation step.

3 Definitions

This section presents some definitions necessaryntterstand our model and
which we use in the rest of this article.

Coalition: a coalition is formed for each task to be perfedmit contains zero, one
or more agents which will carry out actions in artteachieve this task. Each action
and its parameters are defined (for instance, #rampeters of the action “taking a
class” are: the week, the day and the time).

Coalition set: a coalition set represents a solution to the lerabof coalition
formation. It contains as many coalitions as taskise performed at a given moment
(in our application, a set corresponds to one adie¢d

Group of coalition sets: a group of coalition sets corresponds to seveetd of
coalitions brought together in order to be compwad transmitted collectively (for
instance, several possible schedules). In theofdhis article, it will be referred to as
a group of sets or simply a group. When an agemipctes a group of equivalent sets,
this means that it is indifferent regarding all g&ts of coalitions in this group (for
instance, it computes a group with those schedbbssit prefers to others and that it
cannot classify).



Context: a set of unspecified parameters which must bHaestduring a negotiation
step. For instance, it may concern a date or atgreal parameter.

Utility function: the utility function may be ordinal or cardinal.itl is cardinal, it
associates a utility with a set of coalitions witld given context. If it is ordinal, it
compares two sets in a given context. In this cas@suring the utility of a set means
comparing it with a reference situation which wik the same one throughout the
negotiation.

Reference situation: In order for the agents to know if they have toegt@a set of
coalitions as a solution, they need to be ableotopare it with what they are sure to
obtain during the negotiation. This minimum is teéerence situation. If no coalition
has yet been formed, the reference situation isstheation where nobody does
anything. If there are already coalitions, it is tturrent situation, with possibly some
changes in order to take into account new inforoma{cf. section 4.3.2). To be sure
to find a solution after a negotiation, the ref@esituation needs to be feasible and to
be the same for all the agents (a demonstratiprojgsosed in section 4.3.3).

Acceptable set: we consider that a set is acceptable for an afins preferred or
equivalent to the current reference situation.

Pareto optimum: a Pareto optimum is a situation where it is nossiae to
improve the situation of an agent without detetiog that of at least one other.
Graphically, for two agents a situation is optinfalo other situation exists at the top
right position of the situations considered.

A

Figure 1. Example of Pareto optimal solutions

4  Coordination methods



Our first aim in defining this protocol is to soltbe agent coalition formation
problem without having to aggregate the prefererdebe agent . Then, we extend
this protocol to allow a dynamic and fast reorgatian of these coalitions according
to new changes in the multi-agent system.

4.1 Presentation

As we do not intend to aggregate the utilities i igents, we seek a solution
which is "objectively good", i.e. which may not bentested by any agent. A logical
criterion likely to be accepted by all the agestthat we cannot increase the utility of
an individual without deteriorating that of at lease other. If this does not happen,
i.e. there is a situation such that we can incrélaseutility of an individual without
deteriorating that of another, there is no reasohto prefer this situation. The
solution we seek must thus be a Pareto optimum.

Which Pareto optimum should we choose? Now the lpnolis to compare the
utilities of different agents. How should we chods#ween a schedule which is the
first choice of a professor and another which s finst choice of a student? One
solution is to avoid making a choice but to findPareto optimum. This offers the
advantage of reducing computations as agents ddanct to compute all possible
schedule. The only constraint is that it shouldrbtie interest of each agent to accept
this solution, therefore to prefer this solutionthe initial situation. The first aim of
our protocol is thus to find a Pareto optimum lijkéd be accepted by all the agents
and as early as possible. To find a Pareto optsitadtion is a first step. Extensions
of this protocol to find a more equitable soluti@re under study (see for
example(Aknine and Caillou, 2004)). But this isec@ssary step, because finding a
distributed way to compute a Pareto optimum withtvahsferring or aggregating
preferences is not trivial.

41.1 Principle

How is a Pareto optimum obtained?

e The agent which initiates a negotiation seeks onemore sets of
coalitions it prefers (cf. section 5) and choosesgent to which it sends
them (cf. section 4.2.1). Then it seeks the sé@) it would choose as a
second choice and sends them to that agent, and,amtil there are no
more sets at least equivalent to the current situat

* When an agent receives a group of sets, it evadhtan and sends them
to the next agent sorted in decreasing order dépece.

« When an agent receives a group of sets, if themélesast one set which is
preferable or equivalent to the current situatiod & all the agents have
already taken part in the negotiation, the sehisf group that it prefers is
a Pareto optimum and may be used as a solutidorsie negotiation.



For instance, let us consider two agents and ssetnof possible coalitions. Let
E(U3;U,) be the relative utilities of agents and a for the set E. Having Eas the
initial situation, the seven possible sets arg(0PB); E(0;10); E(2;8); E(4;8);
E4(4;5); B5(-2;2); E5(10;-1) (cf. figure 1). Of these seven sets, ttaeePareto optima
(E1, Es and E). We represent these solutions on a plan accordirte utility that
they bring to each agent (cf. figure 2).
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Figure 2. Describing all possible solutions in a utility spac

Agent a initiates the negotiation. It sorts all the acede sets for it into
equivalent groups of sets (cf. figure 3)i(E); Go(E4Ez); Gs(Ez); Ga(EgEy). Es is not
sorted as the reference situatiog) (& better.
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Figure 3. Group of sets of agent 1

Groups G, G,, G; et G, are acceptable for agenf as they correspond to a
situation which is as satisfactory as the initeference situation, or better;,&,, G
et G, are sent in this order to the next agent. Thusniag starts by receiving Gand
evaluates it (cf. figure 4). SetE unacceptable for the agent because it wouldytain
less satisfactory situation than the initial sitoit(figure 4). The agent does not send
this set and waits for the rest.



Figure 4. First group for agent a2

It receives G and sorts it into two sets (figure 5) in two groupg(Es) and
Go(Es). Gy is acceptable. As all the other agents have alrgagiticipated in the
negotiation, agent,acannot send it. All the sets of,(Gcan thus be a solution. The
agent must choose;Bwhich is Pareto optimal. It sends this set tonagein order to
inform it of the result of the negotiation.

Figure 5. Second group for agent a2

41.2  Algorithm

The negotiation process is based on three phasgalization of the negotiation
and transfer of tasks, negotiation, transmissiothefsolution. We can distinguish the
behavior of the agent which initiates the negaiiatirom the intermediate and final
agents which take part in the negotiation. The oodéhe agents can differ from one
negotiation to another and each agent can be ipasiyion. However, the order must
be stable during a given negotiation. The importaaied influence of this order will
be discussed in section 4.2. In short, this prdt@mzm be seen as a distributed
lexicographic search in a virtual common preferespgace (this problem is not trivial
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since no agent has a complete knowledge of thisesgzecause the preferences are
not transmitted between agents).

4.1.2.1 Phase 1. Initialization of the negotiatenmd transfer of tasks

Any agent can initiate the negotiation. This actiam be initiated when a new task
appears or when an agent modifies its prefererfes.initiator agent informs the
others that it begins a new negotiation and anyntagdich wants to begin another
negotiation must wait until the end of the negatiatin progress. To avoid conflicts
between two simultaneous requests, each agent aezw¥irmation. Each agent asks
the other agents to send it their tasks, deduaseh of tasks to be performed and
associates each one with a coalition. The initiagent computes all possible sets of
coalitions (cf. sections 4.1.3. and 5. regardinggiexity), gathers them in a group of
sets and sends this group to the agent which wiaitidte the negotiation.

4.1.2.2 Phase 2 : Negotiation

When an agent receives a group of sets, it scetsebs in order of preference into
homogeneous new groups of sets. In these grodpsgtalare equivalent in terms of
agent utility. The agent sorts only those sets Hiat at least equivalent to the
reference situation and the others sets are ncidenred.

If the agent is not the last agent, it sends itw meoups to the next agent in
decreasing order of preference. If it is the laggtra, and if this agent has created new
groups because it has found acceptable sets, sidmms that all the sets of the best
new group are Pareto optima. It can thus chooseobtieem randomly and this will
be the solution for the negotiation

4.1.2.3 Phase 3: Transmission of the solution.

Once the last agent has identified a Pareto optsmiaition, it sends this set to the
other agents which accept it as the solution ohtigotiation (Remind that the goal of
the distributed negotiation was to find a Parettinagl solution).

4.1.3 Importance of the choice of the next agent

The order in which agents negotiate influenceséselt. The first agent is the one
which has the strongest impact on the final sofutie it is the first to choose the sets
it prefers from among all the possible sets, ansgeted them to the following agents.
The choice of the next negotiator agent is alsg iraportant.

The first solution is to choose randomly among ¢hashich have not yet
participated in the negotiation. However, to imgothe computation time of the
protocol, it is preferable to take the agent whappears the most often in the
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computed sets. We assume that, since it takesrparany coalitions, this agent will
be more interested in the alternatives which wallgroposed than an agent which is
less involved. It will thus sort the sets into sagroups (it will possibly reject some
of them if it considers them as unacceptable). fidve negotiator agent will receive
smaller groups which means that it will have lessputing to do.

The second solution consists in choosing the agengs predefined order. This
makes it possible to favor agents with high prjorithis solution is very practical in
many real applications, such as in drawing up selesd where professors have
priority over their students.

A third solution is to let the agent choose thetragent which will maximize its
utility. This optimization may be complex (each aggnores preferences of others)
but it gives more freedom to the agent who hasdkera strategic decision.

414 Parallel computation

One advantage of the protocol is that agents etelaad rank coalition sets in
parallel (once first group of coalition sets isngéerred). They do not rank the same
group at the same time, but they work on diffeggoups at the same time.

For example, consider four agents, A,, Az and A. A; computes groups in
preference order {20 G, and sends them in this order tg. A, first receives @ It
evaluates acceptable sets indhd rank them in G.. G, It sends them in this order
to As. While A; is evaluating G, (it builds groups @1 to G, with acceptable sets of
G1; and sends them tojA A, can work in parallel on &and build G, to G,,).

Let us say that no coalition set in;@ acceptable for A It will consider G, and
compute G; to Gy, Note that the groups are received by each agena i
lexicographic order (for & Gii Gio .. Gim, Ga1, Gy, ...). As mentioned in section
4.1.2, the selected Pareto optimum is chosen thlistabuted lexicographic search in
a virtual common preference space.

This example also illustrates the importance ofpemative agents: if an agent
makes the strategic choice to “lie”, which here ldamean to consider and evaluate a
group G while a group Ghas been received before, there is no assurarmgtam a
Pareto optimum anymore. Agents may have opposijectibe, but they have to
respect the order required by the protocol.

415 Using undeveloped coalitions to improve the computation time of the
algorithm

As the first agent starts by computing all the pwsscombinations for all the
tasks, this process implies a huge the computétiom of and volume of data sent to
the following agents. A way to improve the compigtattime without decreasing
information quality, and thus the result and theparties of the algorithm, is to use
and transmit undeveloped coalitions, i.e. the tdskswhich all possible coalitions
have not yet been computed. If an agent receivesndeveloped coalition in a set
and this coalition does not affect its utility tifjoins the coalition or not), it leaves it
aside and does not compute it. If it does affeet alility, it computes all possible
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combinations for the corresponding task. Consideonr assumption, the result of
this computation is the same whatever the agentwihoes it.

For instance, in drawing up schedules, a profesgmnt which begins the
negotiation will only develop coalitions relateddlasses it is likely to give, because
they are the only ones which can modify its utili¥jore precisely, let us assume that
there are two classesand ¢ (¢; can be only given by professorand ¢ can only be
given by professor4; two possible time slots; a group of students 4ad let us also
consider that the utility of each professor depeoily on their own classes. If,p
begins the negotiation without using the undevedopealitions, it must compute and
evaluate all 9 possible sets (3 possible coalitiong; (s; and g with two possible
time slots, plus the course not given) multiplied 3 possible coalitions for,g It
classifies them in groups and then sends themedaltowing agent (let us say)p
By using the undeveloped coalitions, lp|as only 3 sets to evaluate (made up each
time of one of the three possibilities forand not specifying anything fop)¢ that it
classifies in groups and sends toatich is asked to develop (see another example
in section 5.2.1)

This method produces better results if the agentiisy depends only of few tasks.
However, if an agent’s utility depends on all thekis, it will be asked to develop all
possible sets when it takes part in a negotiation.

In our protocol, only a few changes are necessargrder to use undeveloped
coalitions. At the end of the first phase, theiatdr agent sends to the agent which
will begin the negotiation a group of sets contagnione set of undeveloped
coalitions. In the second phase, when the ageefwes a group, for each set of this
group and for each undeveloped coalition of thig see agent checks if the
corresponding task can influence its utility. If, ®ocomputes all possible coalitions
corresponding to this task, adds the new sets aftimms to the sets it must evaluate
and removes the set which contained the undevelopalition.

4.2 Formal analysis of our model

421 Why isthesolution Pareto optimal?

How can we be sure that the first set receivechbyldst negotiator agent is Pareto
optimal, as all possible sets have not yet beerluated by all the agents? A
demonstration is necessary.

Proposition 1.

When an agent receives a group of sets, if:
- all other agents have already participated imggotiation,
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- at least one of the received sets is acceptableit is at least equivalent to the
reference situation,

- none of the sets previously received during tegotiation satisfies the two
conditions below,

the acceptable set(s) S that it prefers in theiwvedegroup is/are Pareto optimal and
can be used as a solution for the negotiation.

Demonstration.

If S is not Pareto optimal, this would mean tha&tréhis a set S’ which is preferable
for one of the agents that shall be callejl @& is at least equivalent to S for all the
other agents. In this case, all the agents whiale Wwefore ain the negotiation have
transmitted S’ either in the same group as S @¥/tare indifferent), or in a previous
group (if there is at least one agent which pre®it® S).

If a; receives S’ before S, it had necessarily sensiitcé S is a solution, S is
acceptable for all agents, therefore S’, which tideast equivalent to S, is also
acceptable for all agents). As the groups are ceadpcompletely before starting with
the next group,;aeturns S’ before computing S. The following ageshould thus
receive S’ before S. Since S’ is also acceptabkey send it to the following agent
and so on until the last one which will therefaredfit acceptable and thus select it as
a solution, which is impossible since S has betatt.

If a; receives S and S’ in the same group (all previmgent have considered S
equivalent to S’), ashould send S’ before S as it prefers S’ to SinAthe previous
case, agents following; ahould receive S’ before S. Since S’ is acceptatbiey
should then send it to the next negotiator agenrtt tne last agent which should also
find it acceptable and should therefore selecs & aolution for the negotiation, which
is also impossible since S has been selected.

Consequently, it is impossible for a set S’ to egigch that an agent prefers S’ to S

and that all the other agents find it at least egjent to S. Therefore S is Pareto
optimal.

422 Why areagentssureto find a solution?

The first optimum S found is the first set whichréxeived by the last negotiator
agent and that this agent considers acceptable. igvthere always an optimum? A
demonstration is thus necessary.

Proposition 2.
The protocol always provides at least one solutibotihe problem.

Demonstration.
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For each agent, the acceptability criterion is thatset is at least as satisfactory as
the reference situation. However this referenceatiin is the same for all and
belongs to the possible sets. Therefore all thentageecessarily find this situation
acceptable and will forward it. Thus, there willvalys be at least one acceptable set
which will reach the last negotiator agent. If tiederence situation is the first set to
arrive, it is an optimum and also the solutiontfee negotiation. If another acceptable
set had arrived first, this one would provide tbkigon.

We can note that reference situation is here censitlas “acceptable” for all the
agents. If it is not (i.e. if the initial situatide not acceptable for at least one agent),
the protocol is still working: the agents just haweconsider the reference situation as
the “worse acceptable situation”, and if the fisalution of the negotiation is this
reference situation, this means that there is hdisea to the problem.

4.3 Dynamicrestructuring of coalitions

431 Principle

Our protocol provides a solution, i.e. a set oflitioas with the initial conditions
(utility functions, a set of tasks and a conteXthat happens if a change occurs in
one of these conditions, for instance if a taslkdsled or removed, or if an agent
modifies its utility function? In current protocol@dknine, Pinson, and Shakun,
2004b, Sandholm and others, 1999, Shehory and Ki&@8), all the computation
must be redone to find a new solution to the prmobl&/e propose a more efficient
solution which use the results obtained in the entrrsituation. It adds new
information to the previous conditions, insteactompletely replace them.

A simple means to use earlier computation is tot stam the current solution.
Instead of evaluating the different sets comparedhe initial situation where no
agent does anything, the agents will evaluate # Bolutions compared to the
current solution. As this solution is at least eglént to the initial situation for all the
agents (since it is Pareto optimal), it is diffictd find a similar or better one. Thus,
fewer sets and groups of sets will be forwardederaduated. This will accelerate the
problem-solving process.

The change which has initiated the renegotiatiog ofecourse affect the utility of
the agents, this is why those agents must reeeathatsets that they have computed.
Computation time is lower because the new referesitceation has a higher utility
level, which implies less acceptable sets to comput

The new reference situation must remain feasibtk identical for all agents in
spite of the new information. Thus it is not thareat situation which is used as the
reference situation but the modified current sitmgtin which all the changes have
been taken into account. For instance, for an agéicth leaves, the reference
situation will be the current set of coalitions gt this agent. For a removed task, it



15

will be the current set of coalitions minus the lt@m corresponding to the task. If it
is impossible to obtain a new reference situathat ts feasible, the initial reference
situation (no one does anything) is used (and agemine back in the non-dynamic
configuration).

4.3.2 Why isthesolution Pareto optimal?

The demonstration of the first proposition (cf.tgmt 4.4.1) is still valid: when the
last agent receives a group of sets, if it hasypbreceived an acceptable set and the
best set S of the received group is acceptableS seta solution of the negotiation.
Moreover, there is no other set S’ which is attlempiivalent to S for all the agents,
and preferable for at least one of them, otherttisdast agent would have received it
before receiving S and this set would have beerctsd as a solution.

433 Why do the agents always find a solution?

The demonstration of the second proposition (oftiee 4.4.2) is still valid: the
reference situation is the same for all agentsgmatable by all agents (as it is
compared with itself) and also feasible. Thus, @hisrat least one set (the reference
situation) which will be sent by each agent to tiext agent and which will be the
solution if it is the first to be received by tlest agent.

5 Behavior models of the agents

How do the agents process to find the sets of tomradi to send to the other agents?
The answer to this question has a great impadi@wcdamputational computation time
of the solution. It is appropriate to analyze inailethe various possible methods in
order to select the most appropriate one with themum computation.

5.1 Objective

The aim of each agent is to build new groups of bgemeous coalitions from a
group of sets received from the previous negotiagent and to classify these new
groups in order of preference. This means thatgent must be indifferent to all the
sets of the group, it must prefer these sets tthalkets of the lower groups and prefer
all the sets of the higher groups to them. Hewsstan be used to find the best group
according to the context and the application. Timgroves the computation time of
the algorithms.
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The simplest solution is that the first negotiegent computes all the possible sets
and then each agent makes an exhaustive classificat all the possible sets. The
advantage of this solution is that it is simplet hleads to a high computation time,
especially for the first agent. Other search methedn serve to improve the
computation time and to distribute the calculatian®ong the various agents. Even if
the theoretical worst-case complexity remains thenes experimentations shows a
much better average case (see section 7).

5.2 Using heurigtics to reduce the computation time of the behavior of the
agents

To illustrate these heuristics, we will use a sienpkample with one teacher-agent
(P1), two student-agents (E1, E2), two classegdich student (four coalitions in each
coalition set), and four time slots (H1, H2, H3,)HZhe total nhumber of possible
coalition sets is %625 (5 for the four time slots and the not-givese).

5.21  First heuristic: Using undeveloped coalitions

The method proposed using undeveloped coalitionssémted in section 4.1.3)
reduces the calculations and the volume of therimédion transferred while
preserving the ease of calculation by the agents.

Applied to our example, the first student begires nlegotiation. It simply evaluates
coalitions sets by adding the hours of its claggasexample if it has a class at H2
and one at H4, it evaluate each set with thesenpteas with a value of 2+4=6) and O
if a course is not given. Using undeveloped caaldi agent E1 has only to develop
coalitions corresponding to its classes. It willéa total of 5*5=25 sets to send to
the next agent. Figure 6 represents these setshairdevaluation. It first develops
coalition corresponding to its first class and abtthe 5 partially developed sets
EnsPartl to EnsPart5. Then, it develops coalitiam@ obtains the 25 coalitions sets
Ensl to Ens25. It evaluates them and places thémgimups. The first group G1
contains its preferred sets, Ensl4 and Ensl18, witha utility of 7. Next group
contains Ens9 and Ensl7. Last group will contaithssets with a utility of O,
equivalent to the situation where no course ismive
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((nd)(nd)(nd)(nd) (PLEL Hl)(nd)(nd)(nd)j—» ((P1E1H1)(P1ELHL)(nd)(nd)) UENS1)= -1

Umax(EnsPartl)= 5 ((Pl,El,H1)(P1E1H2)(nd)(nd ) U(ENns2)=3
Uest(EnsPartl)=1 . » ((Pl,E1,H1)(P1E1H3)(nd)(nd ) U(Ens3)=4
» ((P1,E1,H1)(PLELH4)(nd)(nd)) U(Ens4)=5
»> ((P1,E1,H1)(-)(nd)(nd)) U(Ens5)=0

] (PLELH2)(nd)(nd)(nd)}——— (PLELH2)(PIEIH1)(nd)(nd)) U(Ens6)=3

Umax(EnsPart2)=6 ’ - ((Pl,El,H2)(P1E1H2)(nd)(nd ) UENS7)=-1
Uest(EnsPart2)=2 . » ((Pl,E1,H2)(P1E1H3)(nd)(nd ) U(Ens8)=5
» ((P1,E1,H2)(PLEL1H4)(Nnd)(nd)) U(ENns9)=6
»> ((P1,E1,H2)(-)(nd)(nd)) U(Ens10)=0

4% ((P1,E1,H3)(nd)(nd)(nd)j—> ((PLELH3)(PLELH1)(nd)(nd)) UENs11)=4

Umax(EnsPart3)=7 ‘ » ((Pl,El,H3)(PlE1H2)(nd)(nd ) U(Ens12)=5
Uest(EnsPart3)=3 . R ((Pl,El,H3)(P1E1H3)(nd)(nd ) U(Ens13)=-1
» ((P1,E1H3)(PLELHA)(nd)(nd)) U(Ens14)=7
b ((P1,E1,H3)(-)(nd)(nd)) U(Ens15)=0

4% ((Pl,El,HA)(nd)(nd)(nd)i—b ((PLE1H4)(PLELH1)(nd)(nd)) UENs16)=5

Umax(EnsPart4)=8 ‘ » ((Pl,El,H4)(PlE1H2)(nd)(nd ) U(Ens17)=6
Uest(EnsPart4)=4 4 | ((Pl,El,H4)(P1E1H3)(nd)(nd ) U(ENsS18)=7
> ((P1,E1,H4)(PLEIHA)(nd)(nd)) U(Ens19)= -1
> ((P1,E1,H4)(-)(nd)(nd)) U(Ens20)=0

4" (()(nd)(nd)(nd)) }—P ((-)(PLE1H1)(nd)(nd)) U(Ens21)=0

Umax(EnsPart5)=4 ‘ > ((-)(PLE1H2)(nd)(nd)) U(Ens22)=0
Uest(EnsPart5)=0 4 - (()(PLE1H3)(nd)(nd)) U(Ens23)=0
»> ((-)(PLE1H4)(nd)(nd)) U(Ens24)=0
> (()()(nd)(nd)) U(Ens25)=0

Figure 6. Development of all coalition sets for student-ag&i using undeveloped
coalitions (nd) for the two student-agent E2 classe

5.2.2  Second heuristic: Tests of inter mediate acceptability

In order to reduce the number of iterations, a dempntary solution would be to
test if an (incompletely developed) set can be mi@thy preferred to the reference
situation. If this is not the case, it will not hecessary to develop it and this branch
of the exploration tree can be pruned. These ®stsespecially useful during the
restructuring of coalitions. The reference situaticould then be the current situation
that is likely to be very acceptable for the agdihtis agent can easily set aside many
sets which will not give a better solution, esplgid the agent prefers not to change
its situation. All the solutions which begin to neoaway from the current solution are
thus quickly dropped because the agent will neciggaefer the reference situation
to them.

In the example, the student agent will use the rim¢gliate evaluation
Umax(EnsPart) which evaluates the maximum utilégahable by the set. In this
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case, if the reference situation is evaluated &,abent will know it is useless to
develop EnsPartl, EnsPart2 and EnsPart5 and ijustliiconcentrate on the two other
situations, computing only 5 intermediate evaluaimstead of 15 final evaluations.

5.23 Third heuristic: Search limited to the best group

The aim of an agent is to send to the next negotegent groups of sets sorted in
decreasing order of satisfaction. If the solutisrini group Gi, all groups Gj with j>i
have been evaluated, classified and probably dpedlainnecessarily. It would be
useful to only evaluate the sets of G1, then thafs€2, and so on. The problem is
that agents do not know in advance what will bedbgree of satisfaction associated
with the best group. However, in order to evaluatdy the members of G1, it is
necessary to know the satisfaction associatedaim,ttand therefore to have already
evaluated them! Even if it is impossible to compamy the sets of the group G1, we
can try to gradually limit computations to the udefets. To do so, the agent needs a
lower limit, which is the best evaluated set at¢herent computation time, and it will
only develop the sets which are at least equahi®limit. Each time a set, even an
incompletely developed one, is evaluated and tlhéuation is higher than the limit, it
becomes the new limit. On the contrary, when arluated set does not reach the
limit but is nevertheless acceptable in a weakeupy it is kept and added to a group
which will be used as a starting group to comphgefollowing groups.

In the example, the agent first develops the faséalition and obtains the 5
partially developed sets EnsPartl to EnsPartthdbses one randomly, say EnsPart3
and develops it. It obtains Ensll1 to Ensl5. The &efsis Ensl14, rated 7. The best
group has so a minimum rating of 7 and the agearches only sets with a minimum
rating of 7. It uses the intermediate evaluationadrfor each remaining partial set
and consider only those which have a potentiahgatif 7, in this case only EnsPart4
(Umax(EnsPart4)=8). It develops EnsPart4, adds &tslthe actual best group G1
and has terminated to create this group. It cas #aumd it to the next agent who can
begin its evaluation. In parallel, first agent douoes its search with remaining sets to
find the second best group.

5.24  Fourth heuristic: limited sear ch using inter mediate evaluation

In the previous case, the order in which the doalit are developed is of great
importance. The faster the best set is reachedfatter it becomes the reference
situation and the less the other sets are devel@ipechuse the reference situation
becomes rarely reached). This is thus useful toupetin intermediate evaluation
procedure of the sets to be developed in ordeotopate first of all the set which
seems most likely to generate sets bringing gegafaction.

In the example, This means that instead of choosingomely between partially
developed sets, the agent uses an evaluation dan@tlest) to choose the best set
considering its information at this time. Here,wtll choose to develop in first
EnsPart4, which has the best evaluation becausentyedeveloped class is in H4,
which is its preferred slot. It will then find theest group rating quicker than having
chosen randomly for example the EnsPart5 set.
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5.25  Prospective search.

In order to better use the utility function, insdeaf starting from an empty set and
developing it, an agent may immediately use therkadge of its utility function and
the tasks to be achieved in order to deduce theskés If the number of possible sets
is high, this solution can be advantageous sindbigncase the complexity does not
depend of the number of possible sets but depétie dype of utility function of the
agent. This method can give far more effective ltedwt the procedure for each type
of utility function needs to be rewritten.

526  Non-exhaustive methods

Using the utility function or developing the podsilsoalitions, the agent can make
approximations in order to have much faster resalten if it is not certain to obtain
the best possible results. Using this method teldgvthe coalitions, the agent can
decide not to explore the undeveloped sets - whizghnot offer very interesting
prospects-even if one of their developments may theoreticgilye the best solution.
The final solution will thus be obtained quickeut Ithis solution would not be proved
to be Pareto optimal.

6 Implementation and tests

To illustrate our model, we have implemented a hear scheduling application
system using the utility function of the profess@nsd the students. The utility
function has different variables: for each day, tinge of the first class, the time of
the last class, the number of hours per day, thabeu of classes not given, the
number of compulsory classes not given for eacmtagbe number of changes
compared to the current schedule, the total nunalbdrours per week. Given the
number of parameters, three profiles have beemettfito simplify the choices:
morning, afternoon and grouped (it prefers to grivsiglasses on a minimum number
of days). These profiles correspond to values bftrary parameters used for the
tests. Because it is easier for implementation gagp, we have chosen to compute a
utility function in order to valuate the prefereac&ven so we get cardinal values, our
proposed protocol only needs ordinal utility funais.

6.1 Description of the multi-agent system

6.1.1  Architecture of the system

The multi-agent system is composed of two principgject-oriented classes: the
agent and the environment. The environment aimdeattifying the newcomers, at
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carrying out a total follow-up of the system andeatbling the user to intervene if
needed. During their creation, the agents obtanlfhaddresses of the other agents
which they then use to communicate directly witknth Our aim is to build a generic
multi-agent system that can be used easily to meglefn environment and agents
adapted to the field to which we want to apply themd to define tasks, actions or
behaviors of the agents (maximization of collectiudity, individual utility, etc.).
The system is made up of several executable pragrdime goal is to make the
environment and each individual agent really automas entities.

6.1.2 Communications

The agents and the environment communicate by FCHHhe various agents can
thus be distributed on different computers and camioate in a local area network or
by Internet. This distribution of the resourcesoalt a greater speed and a real
parallelism between actions and deliberations. #gysnbscribe to the environment,
which IP address must be known by all. At the tiofetheir subscription, the
environment sends the agents the addresses oftliee agents in the multi-agent
system and informs the others of the presenceeohé&wcomers. All the agents thus
have all the addresses and can communicate with @her. To communicate, the
agents and the environment use object messagesh ate structured vectors so that
they can be created, sent and received. All thetagend the environment have a
message processing program permanently on stardbhatthese messages can be
received and processed immediately.

6.1.3  Description of the environment

At the beginning, the environment agent is actidadad then the agents start the
negotiation process. This allows:

e The user to intervene in the system as a whole.

e To inform the user of the global state of the gyste

e To register the entrance of a new agent, to proitideith information
concerning the current state of the multi-agentesys(addresses of the
other agents) and to inform the other agents ofiit&val by providing
them with its address.

6.2 Description of the agents

We assume that an agent is an autonomous prograan Whhaves for its own
interest. It is mainly characterized by its actaomd reasoning mechanisms and by its
knowledge structure. The agent has knowledge atheuvarious types of task that
exist in the domain considered and about the varigpes of action. In addition to
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this knowledge about itself, the agent has knowdedbout the other agents. This
knowledge is provided to it by the other agents miiey join the system (or when
this agent itself joins the group, if the othersravin the system before it) or when
they modify one of their characteristics (like atylia course to or withdrawing a
course from the list of capabilities of a professonrthe case of our application). The
action mechanisms (the behavior) are free. Justtlik environment, the agent uses a
process which allows it to wait for possible comications from the other agents or
from the environment.

6.2.1  Negotiation process of the agent

Although this part of the agent is always reusdble other applications, this
module knows the coalition formation protocol amaeh ¢hus negotiate so as to reach a
Pareto-optimal situation.

6.2.1.1 Structure

The agent is made up of three processes, all othwhire activated during
initialization:

e An action process, which carries out the actioas tiie agent planned.

* A negotiation process, which is activated as so®ra amew negotiation
starts.

e A communication process, which waits to receive sages from the
other agents or the environment, and consequeotiyranicates with the
other processes.

6.2.1.2 Managing communications

The negotiation process of the agent manages thetiatons in order to form
coalitions. For that, it knows a certain numberspécific messagesiritialization”
and ‘Update are messages sent by the user or by an afjaitialization” message
starts a new coalition formation procesd)ptiaté¢ enables to modify current
coalitions. The agent starts by warning the otlysmés of the new negotiation (with
the message New Negotiatioy to which they answer by Confirmation New
Negotiatiori). Then it begins the negotiation and graduallgdsethe groups of sets of
coalitions to the following agent (messaggefotiation in Progressto which the
agent answersEvaluation Endeteach time that it has finished processing a gyoup

6.2.1.3 Initializing a new negotiation
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When an agent receives a group of sets from anatjent, it saves these sets in a
vector of sets which will be analyzed with the m@eg used for analyzing the group.
When the agent initializes a new negotiation, écgl, in the same vector a single
initial set in which no coalition is developed ahdires the same analysis procedure.
In order to initialize a negotiation it is sufficieto receive an empty set from the
others. In all cases, the agent initializes theugsowhere it will classify the sets
according to the satisfaction that these sets geoii

6.2.1.4  Searching for coalitions

To classify the sets in groups, the agent has akr@thods which are described in
section 5.2. The first, the basic method, has legnoved thanks to the addition of
intermediate tests and by developing only necesszaltions. The second, the search
method limited to the best group, means major natibns to the algorithm while
moving from breadth search to an in-depth seartlis i& because the agents must
obtain completely developed sets as quickly asipless order to be able to evaluate
them. However, in the basic method such sets dyeatrtained at the end, when the
agent simultaneously develops the last coalition, dl the intermediate sets. The
third method, which limits itself to the best growih intermediate tests, improves
the preceding method by carrying out intermediagtst more quickly to find a set of
the best group.

6.2.2  Student and professor agents

The utility function returns a complete result whicelates, however, to the
reference situation, the utility of which (absoluteeasured by thecompvariable) is
computed at the beginning of each negotiation.

The various parameters of the utility function asgfollows:

e The time the day starts: for each day, the agédwmisad utility to the time
of the first class.

e The time the day ends: for each day, the agentsadlaitility to the time
the last class ends.

* Numbers of hours of the day: for each day, the tagkots a utility to the
number of classes are given.

Each of these partial utility functions is of tlwléwing form:
A
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Valmin: value below which the utility is null

Optmin and optmax: limits between which the utilgymaximum

Valmax: value above which the utility is null

Criterion: time the day starts, time the day endsnBers of hours of the day

Figure 6. Partial utility according to the value of the sééetcriterion

For each day, the agent computes the weight oéttiese functionsd(j,s), (j,s),
n(j,s) according to its own coefficientp( p, p,) based on the criteria it considers
more important. The agent computes the averageesetdaily utilities. The professor
agent has a fourth criterion: the total number ofifs of classes in a week. It
computes the weekly average of this critefigg)), which is then weighted usir{@t)
with the preceding daily average. The agent thexkséhe number of classebtt
which are not given in the evaluated sets. It wsesaversion coefficient; for the
classes which are not given. It multiplies the rimediate utility by this coefficient to
the powembtt In the same way, the agent seeks the numbeas$es it must attend
(tasks which are allocated to it at the beginnimgf) which are not givenbtp. It uses
a second coefficierd, to the powenbtp and that it multiplies by the preceding result.
Lastly, the agent seeks the number of clasdeh which have moved compared to
the initial situation in its timetable. It useshérd coefficientc, to the powenbchand
that it multiplies by the preceding result. It theses an absolute result from which it
subtracts the utility of the current reference aitn Ucomp in order to obtain a
relative result.

For the student agent, the formula correspondiribese calculations is:
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Equation 1. The relative utility of a student agent associatétl a set of coalitions

The utility function of the professor agent is defil as:
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Equation 2. The relative utility of a professor agent associatéh a set of coalitions

At the end, the agent checks if there are incorbpiéigs in the timetable (for
instance, two classes programmed at the same timsyme violated constraints (a
class starting before the minimum value or afternraximum value, etc.). If it is the
case, it returns the value —1. If not, it returhe tcomputed utility. All these
parameters can be modified individually by eachnag&iven their number, three
profiles have been defined to simplify the choibgsdefault: morning, afternoon and
grouped (the agent prefers to group its classesmmimum number of days).

6.3 Operational process

The first step consists in executing the environmaggent. Professor and student
agents can then be added, either directly wittaiséstance of the environment, or by
a separate program, possibly on another computtreonetwork.

The various functions available for each agent are:

* Redefinition of capabilities and utility functiofror both professors and
students, all the parameters of the utility functoian be modified. For the
professors, the courses in which they are qualiftedeach can also be
defined.

* Modification of the search method. For each agéstmodel can be
chosen by defining the method that it will use éarsh for the sets of
coalitions.

« Addition or deletion of classes. For the studenésy classes can be added
and the existing ones can be removed.

Once all the agents are created and utility functiare defined, an agent can starts
the initialization phase of the negotiation in artte obtain a set of timetables, i.e. a
solution. Other agents or other tasks may thendoec and utility functions may be
modified. An agent may then start the update st#lpseek a new solution starting
from the current situation.

7 Evaluation results

The proposed solutions were tested through sinomafio understand these tests,
remind the objectives of this work:

e To propose a protocol in order to form Pareto ogticoalitions.

e To propose a protocol which enables a dynamic esorgtion of
coalitions.

e To propose heuristics to search for coalition geosip as to accelerate the
negotiation.
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7.1 Coalition formation and optimality of theresult

How should such a protocol be evaluated? We carimextk if the utility function

is maximal, as we assume that the multi-agent sybies several utility functions that
are incomparable. We have checked that during ebts twe always obtain a result
and that this result is a Pareto optimum (as pramesections 4.4.3 and 4.4.2). We
have analyzed the performance of the protocol tsenting several parameters: the
number of messages exchanged, the size of thessmagass(the number of coalition
sets they contain) and the number of coalition #eds have been evaluated. The
number of messages exchanged between the agemtdeigendent of the search
method strategy. However, their size depends orusieeof undeveloped coalitions.
As for the number of evaluated sets, it dependg merch on the search method used.
The basic method systematically evaluates all tesiple sets whereas the heuristics
proposed seeks to reduce the number of thesensettdar to obtain the result quicker.
Four of these heuristics have been implemented.hBoeistics which gave the best
results and which are used in the experiments hesticonsists in seeking only the
best group by doing intermediate tests as soonoasile in order to identify the
value of the best group.

In the following, we will analyze these factors asimple example using 4 agents
(2 professors, 2 groups of students) and 2 clagsah group attends two classes, i.e.
there are four tasks in the system). Several exparis have been done with more
agents (for more details see (Caillou, 2000)). his texample, we consider the
schedule for two days, with eight possible timessfoer day. We vary the profile of
each agent (morning, afternoon, grouped) to obth& average, maximum and
minimum of the results. Students attends two clgssach one must be placed in one
of the 16 time slots (or not to be placed if inst given, so we have 16+1 cases to
consider) with only one possible professor for eafess. Thus, there are “17.e.
83,521 possible schedules. The order in which dgbtiations proceed is as follows:
student gstarts the negotiation, then studentpsofessor pand professorends the
negotiation. The last agent does not send any messait just waits to receive a set
which is appropriate for it and then sends it ® tither agents as the solution for the
negotiation.

Only messages related to groups are counted (tmeynere frequent and
especially voluminous as they contain the sets lwhitl be evaluated). The number
of messages sent depends very much on the preasitive utility function of the
agents. If agents have very precise preferencey, whil distribute the sets among
many small-sized groups and will send many messadfeschoose agent utilities
with one hundred levels, therefore there is a marinof 100 messages sent by the
first agent (the second can thus send a maximub® 000 because it can divide each
group received into 100 other groups). The numbenessages sent is summarized in
figure 7.
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prof 1 Omax
student 2 BEaverage
student 1 @min

10 20 30

Figure 7. Number of messages exchanged during a negotiaftbrdvagents and 4
tasks

The number of messages sent varies considerabtydiag to the incompatibility
of the preferences of the agents. For instancepming profile student will seek
morning classes in priority. If the professor hasafternoon profile, it will consider
these schedules unacceptable. Consequently, thenstwill have to send other
propositions which it finds less appropriate. Oa tontrary, if all agents accept the
first propositions, only one message per agenecessary (minimal case). The total
size of the messages sent (figure 8) makes it lplessi measure network obstruction.
This size, measured with the number of sets, mastdmpared with the 83,521
possible sets.

prof 1 F Omax

student 2 — W average
student 1 Bmin

1000 2000 3000

Figure 8. Total size of messages sent (measured by numbsetsf during a negotiation

with 4 agents and 4 tasks

The agent which sends most sets and messagesienstifor two reasons: (1)
student § sends it the sets corresponding to its two clagsEdrding to its
preferences; (2) student computes all the possible combinations of its @hasses
in each of these sets. Then it sends these condrinatn decreasing order of
preference to professog antil there are no more acceptable sets to seddfam
solution has been found. At this moment, studeseads it a second message and the
negotiation continues.

The number of evaluated sets makes it possiblectasare the effectiveness of the
heuristic search of the best group. If the basithogtis used, the first agent would
simply evaluate all 83521 possible sets and wowddsthem classified to the
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following agent. Figure 9 shows that the maximwmber evaluated set il less than
15000 and the average number is less than 5000.

prof 2 '

prof 1 O max
W average

—
student 2 @ min
student 1

- 5000 10 000 15 000

Figure 9. Number of evaluated sets of coalitions during aotiaion with 4 agents and 4

tasks

7.2 Dynamicrestructuring of coalitions

The purpose of dynamic restructuring of the caaiti is to give a result that is as
satisfactory as the basic protocol but faster, tviidcpossible because the algorithm
uses information drawn from the preceding negatiatby taking the previous
solution as a new reference situation. The resilltprobably not be the same than
the results obtained, if the initial protocol hageh applied, but the result is always a
Pareto optimum.

We have studied the effect of adding new classélsetigrevious situation in terms
of the number of sets evaluated and transmitted.gvdelually added 4 classes to
students 1 and 2. The size of the messages sangdumnegotiation is indicated in
figure 10.

1500
1 000 Oprof 1
OGroup 2
500 |:| DOGroup 1
7 8

4 5 6
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Figure 10. Number of evaluated sets (i.e. size of messagé darihg a negotiation with 4

agents and classes varying from 4 to 8

The first negotiation (4 classes) used the bagitopol, whereas the other four are
restructurings from the previous situation. The banof sets sent and evaluated must
be compared with the total number of possible detgaries between 80,000 for 4
classes to 7.f0for 8 classes. The average size of the messagesiseng these
additions is indicated in figure 12.

During the formation of the coalitions correspordio the four initial tasks, we
showed that the total number of sets sent was erage 1,308 which implies that the
total number of evaluated sets corresponds to Sb%e total number of sets of
possible coalitions (83,521). During the dynamistmgcturing of coalitions, due to
the addition of the Bclass, we observed that the total number of etedusets is 40
which gives the total number of evaluated setsesmponds to 0.00085% of the total
number of possible coalitions.

The number of sets sent and the number of setsateal is related not to the total
number of tasks carried out but to two parametbesnumber of tasks the agents fail
to perform (because of incompatible preferenced)tha number of new tasks. The
effect is cumulative, which explains why the numbésets sent gradually increases.
For instance, if the'6class has not been assigned, this affects the ewafitsets sent
after the addition of the™7and the 8 classes because agent 1 tries again each time to
assign the Bclass (which is useful, as it may happen thautare negotiations a new
class may modify the utility of the agents).

7.3 Comparison of the agent heuristics

The number of sets evaluated (figure 10) is herg lav compared to the number
of possible sets (on average 1% of the basic pobtmd between 4.1096 and 6.10
%4 for the restructurings (figure 11 and 12)). Howethe use of the basic protocol
would have led to the computation and evaluatioralbfthe possible sets before
sending the groups of acceptable sets. The chdieegood heuristics to search for
the best group is thus fundamental so that theckdame is acceptable. The heuristics
which gave the best results are described in sebt® and consist in seeking only the
best group by carrying out intermediate tests am & possible in order to identify
the value of the best group. Using this heurisdosibles to obtain the following
number of evaluations (cf. figure 11) during thergannizations carried out previously
by the agents:
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Figure 11. Number of evaluated sets of coalitions during gotiation with 4 agents and

classes varying from 4 to 8

Related to the total number of possible sets, weaindd the results presented in
figure 12.
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Figure 12. Percentage of valuated sets of coalitions for qgend classes varying from 4

to 8 (logarithmic scale)

8 Redated work

8.1 Theoretical origins

The use of coalition formation models is highly pia to complex projects
requiring the intervention of several agents sektdtom among a set of available
ones. All the characteristics, even those relatedhe concept of an agent (an
autonomous system with needs which can be repezbantthe form of a utility
function), are such that scientific research in yndields deals with problems
referring more or less directly to the coalitionrrfation problem. Some of these
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fields, such game theory, are already being usedsively in recent developments of
multi-agent systems. Considering these differeatd§ gives an overview of the
problem and the various analytical approaches, wheads to original methods for
coalition formation adapted to software and hardévagents.

Game theory has already addressed the questiomadtien formation. It has
provided the concepts used in MAS for the analg§ithis problem (typology of the
problems, solutions, equilibrium, utility functionsThrough power indices, it is
possible to compute the real influence of an agena coalition. Game theory
provides methods of calculation to define the bmmslitions in various types of
problem. A good synthesis of the analysis of cmel# in game theory can be found
in (Kahan and Rapoport, 1984). Its application taltragent systems has been
originally studied by Sandholm (Sandholm, 1996)m®aheory has been at the origin
of the majority of recent developments (Sandholm athers, 1999, Sen and Dutta,
2000). The limits of its use are related both ® tinderlying assumptions (the agents
are generally considered as perfectly rational) gmits aim (game theory focuses
generally on the value of the optimal solution @otl on the most efficient method to
reach that solution, never on the most efficiestritiuted method).

Economic theory, especially microeconomic theosyconcerned with a research
topic that is very similar to that of multi-agenysteems: autonomous agents,
considered as imperfectly rational and having needdeled using a utility function.
Many economic concepts can be used to addressotiitian formation problem in
MAS: the Pareto optimum, the maximization of thdiudual utility as a means. Our
proposed protocol is grounded on these economimatepts (Caillou, Aknine, and
Pinson, 2002a).

Sociological theory can also be useful to undetstéme coalition formation
problem. Coalitions are groups of agents and thgsmups are not formed
independently of their environment. The “Societifi, which they move plays a
significant role in their choices: the presenceacthird party (gendarme, state or
program) may guarantee confidence. In the same Wy, presence of social
standards can accelerate or improve the formatfocoalitions. Work like that of
Shoham and Tennenholz (Shoham and Tennenholz, X89@ed the influence of
social standards and their emergence in a multitagyestem.

8.2 Multi-agent coordination models

The coalition formation problem has been studiednuti-agents domain since
1994 (Ketchpel, 1994). This model does not soledver the problem in all cases.
Even in the cases where this algorithm finds coald, it does not always find
coalitions of the desired size (Aknine, Pinson, &fthkun, 2004b). (Shehory and
Kraus, 1998) proposed a model which is now consitldry the community as the
“basic model”.
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Since then, most current protocols address the saroblem while making
improvements from this basic model at differentelevof their solution. The main
distinction is between improvements made to thehous, by preserving agents with
limited rationality but by changing the objectivesd improvements made to the
agents using more realistic or effective agentghénfollowing, we present the most
relevant protocol of coalition formation, keeping finind that unlike our protocol,
these current protocols are based on aggregatiagesft preferences or on a common
utility function.

8.21  Forming overlapping coalitions with multiple tasks

The basic model proposed by (Shehory and Krau88)l@as the following
characteristics:

- The game is not necessarily super-additive oraslditive.

- The agents can take part in several coalitiomsibaneously.

- Each agent has a list of capabilities and easthrequires a list of capabilities.

- The tasks can be partially ordered.

- The agents cooperate and seek to maximize aesargl total utility function.

The problem of distribution thus does not arise.

The protocol is based on two phases. Initially, ttadues of all the possible
coalitions are computed in a distributed way. Thkue of a coalition corresponds to
the value of the task minus the cost of coordimatilated to the coalition and minus
the cost of the capabilities used. In the secondsehthe coalitions are formed
gradually. In each sub-stage, the coalition whiahk the lowest cost per participant is
formed and the value of all the remaining coalisiés recomputed so as to take into
account the modifications generated by the usapélilities related to the formation
of coalitions.

The algorithm ends when there are no more taskgemts. This algorithm remains
very greedy in terms of time. In order to decreétsecomplexity, the authors
recommend limiting the coalitions available, foistance, computing only thoses
coalitions with less than k agents. The numberasfsgble coalitions decreases then

n Kk k
2 O (=T

from . The complexity of the protocol per agent is anbu?

(with |T| the number of tasks).

This algorithm is promising especially becauss ihie first to propose a functional
method for coalition formation within a general rfrawork: several coalitions by
agent. The protocol is simple and the simulatidmsnsthat the results obtained are
close to the optimal results. However, this protdws several limits. (1) It focuses
on the problem of coalition formation and the pesh$ of distribution of the profits
and of optimizations are not addressed. (2) A dlabbty function is supposed to be
known and shared by all the agents. (3) The valughe set of all coalitions
considered as acceptable is calculated. This @dionlcan become too complex to be
done in reasonable time if the number of agentsasigh as it could be the case in a
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real application. (4) Each time that a conditioares (a new coalition, but also the
addition of a task or of an agent, etc.), all thkeglations for evaluating the values of
the coalitions must be computed again. This comst@events the algorithm from
being useful in open or dynamic environments. Hrig constantly enter and leave of
the system, if they build temporal preferenced tasks are added progressively, the
method cannot be used.

8.2.2  Search for a minimum solution

Sandholm, Larson, Andersson, Shehory and Tohméd{®ém and others, 1999)
have proposed a protocol that provides a finaltaoiuwhich is at least equal to a
certain proportion of the optimal solution, in teahvalue of the common objective
function. This protocol can be applied under tHfeing usual conditions. There are
no externality between tasks, tasks are not neglyssaper-additive or sub-additive,
each agent belongs to only one coalition at a tiime.thus a problem of distributing
the set of agents. The agents cooperate and seaekximize a common and social
utility function. This protocol reasons on the dint levels of possible sets of
coalitions represented in a lattice. For instarfoe,4 agents there are 14 possible
coalitions and 15 possible sets. This protocol shdlwat it is possible to obtain a
result that is relatively close to the optimum Iajcalating a small proportion of the
total number of nodes. It has been extended in @weh Dutta, 2000). We can,
however, observe that when the number of agentenbecrelatively high, the
minimum guaranteed is very low compared to thenopth whereas the number of
nodes to be computed and the calculation compléxinease rapidly (because of the
number of agents).

8.2.3 Heterogeneous agents

8.2.3.1  Constraints on agents computation

The limits of the rationality of the agents can &#dressed at several levels.
Sandholm and V. Lesser (Sandholm and others, 1p@fjose a protocol based on
agents which are limited in their computation calitsds. Calculating the
optimization necessary for coordination and negjotiais expensive. Compared to
the calculating time, the agents minimize the totat of the coalition, which is the
difference between the cost of negotiation and ghmefit resulting from the
negotiation for a given calculating time. This cestves to compute the value of the
coalition. The negotiation is expensive. Howevédre tagents are supposed to be
perfectly rational when they evaluate this costisThmeans that they perfectly
consider the profits resulting from a negotiation & certain period of time and that
each coalition is really optimized and at no cdste principal interest of this article
lies in the formalism which is presented. This falism is adapted to agents limited
in computing time. They have also proposed a relegkssification of the problems
related to this case.

8.2.3.2  Agents with multi-criteria preferences
All the current models are based on the same adtumphe agents try to
maximize a global utility function which was deftheeither directly in the agents, or
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by an agreement between the agents which will ttistribute their payoffs. The
coalition formation problem is considered as aritisted optimization problem.
Though limited by the constraints of a decentralipsulti-agent system (nevertheless
the agents seek their personal interest and, ualeske agents seek the collective
interest, there will be some constraints on distiily the payoff in order to ensure the
stability of the solution), these methods proposeeatralization of the problem
(handling a collective utility function, often calating the value of all the possible or
desirable coalitions). This involves a strong coewfiy of the algorithms (even per
agent), and coordination problems and social nagoti on the utility functions and
on the final distribution.

A decentralized approach to the coalition formatipmoblem would seem to
comply both with the agent-oriented approach (irtejfgnce) and with economic
reality (a large number of agents). The self-irgt@@ case can also be considered.
This approach was chosen by (Aknine, Pinson, araki8h 2004a, Aknine, Pinson,
and Shakun, 2004b). They consider the preferentdiseoagents and not a global
utility function. When a coalition is formed, agsentonsider the aggregated
preferences of the coalition, but never a globaragate such as the global utility
which is neither necessary nor calculated.

The model presented here is based on two fundameateepts: the Choquet
integral as an aggregation operator and the ESDl({Eonary System Design)
methodology for coalition formation. The Choqueteral makes it possible to carry
out multi-criteria aggregations by taking into agabthe collective weights of several
criteria which are different from their sum. Theeats are characterized by a multi-
criteria utility function which assigns to each agea vector representing its
preferences with respect to each criterion. ThegGhbintegral is used to:

e aggregate the preferences of an agent with retpeciother agent,

e aggregate the preferences of an agent with respesetveral other agents
and obtain its preference for a coalition,

* aggregate the preferences of several agents vgfiece to another agent
in order to obtain the preference of a coalitiongo agent.

To form the coalitions, agents use the ESD methagoto restructure a problem.
This method has been developed by Shakun (Shalk@8)1Two types of protocol
are proposed, depending on how the agents do arotichare their preferences.
Sharing the preferences is realistic in a cooperasituation; it provides a more
comfortable situation and so a more effective $mtutForbidding the sharing of
preferences makes it possible to handle non-cotipesituations with self-interested
agents. The two protocols can be viewed as pradoolmaking contracts (such as
the Contract-Net Protocol) with broader coalitiovihen preferences are not shared,
each agent concerned announces that it is seekirfgrin a coalition, receives
alternative proposals, studies these proposalssammin behalf or as a representative
of its coalition. If the preferences are shared #gent which wants to form a
coalition saves time by looking in its knowledgeséahe preference structures which
are compatible with its own structure. (Vauvert d@fdFallah-Seghrouchni, 2001)
studies the case of overlapping coalitions whick &rmed gradually through
alliances and progressive adaptation of the prefe® of the agents (the agent
interest it is to adapt so as not to be excludenhfthe coalitions).
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8.2.3.3  Other models

Several coalition formation models have been sugde$o date, for instance
(Rahwan and Jennings, 2005) which extend earliatkved (Shehory and Kraus,
1998) and which provides some heuristics to improve complexity of their
mecanism.

(Tsevovat and others, 2000) proposed an algoritlased on the principle of
electing a leader for coalition formation. This@ighm has been applied to electronic
commerce processes. This approach is similar torkeproposed in (Aknine, Pinson,
and Shakun, 2000). (Lerman and Shehory, 2000) lpeposed an alternative,
physics-motivated mechanism for coalition formattbat treats agents as randomly
moving, locally interacting entities. They considbat a new coalition may form
when two agents meet randomly, and it may grow waesingle agent randomly
meets the coalition. The aim of this work was tdirde a mathematical model,
formalized as a series of differential equationeede equations have steady state
solutions that describe the equilibrium distribatiof coalitions, but the authors have
not given any details of the autonomous agent hetmand how they concretely use
this mathematical model. No algorithmic specificat have been proposed and the
convergence of this model has not been addressed.

(Zlotkin and Rosenschein, 1994, Zlotkin and Roskest 1996) have proposed a
mechanism for coalition formation that uses crypaplpy techniques for sub-additive
task-oriented domains. This mechanism is based$imaaley value. A Shapley value
for an agent is a weighted average of all thetig#iof the agent which contributes to
all possible coalitions. The weight of each coatitiis the probability that this
coalition will be formed in a random process th@rts with the first agent, and in
which this coalition grows by one agent at a timehsthat each agent that joins the
coalition is credited with its contribution to tlwealition. The Shapley value is the
expected utility that each agent will have fromtsaadandom process . However, this
mechanism can only be applied to small-sized nagént systems because of its
combinatorial complexity due to the calculatioraifpossible coalitions.

Recently, a solution that suggests that agents momipe their gains to promote
coalition formation was suggested (Kraus, Shehawyd Taase, 2003a, Kraus,
Shehory, and Taase, 2003b). However, this workrmassuthat the value at which
compromise is beneficial is known, or can be de&rieaperimentally. In many real
applications where coalitions are necessary, thg@i@mption does not hold. In our
solution to the coalition formation problem, we dot assume that the optimal
solution points are known in advance. Rather, wavide agents with means to
gradually arrive at an agreed solution via a sexfetiscussions.

9 Conclusion and futurework

In this paper, we have proposed a distributed podt@dapted to problems
requiring coordination through the formation of kiti@ns where it is not desirable, or
possible, to aggregate, or share, the prefererfcé® @agents. The protocol provides
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optimal Pareto-type solutions. One of the advargtagk this protocol is that, if
changes occur in the multi-agent system, it enadiests to compute a new solution,
which is always Pareto-optimal, dynamically andcglyi, on the basis of the current
solution.

It is difficult to compare our protocol to currgmtotocols since it does not have the
same objectives. In current protocols, utility ftions of the agents are either global
for all agent or systematically aggregated. On d¢batrary, the utilities here are
neither aggregated nor transmitted. The resultaatathus be compared because they
relate to different problems. However, if all thgeats have an identical utility
function at the beginning, our suggested protobolfl obtain the same result as that
of (Shehory and Kraus, 1998) or (Aknine, Pinsom 8hakun, 2000).

For the considered problem, which is formation aestructuring of coalitions
without aggregation of agent preferences, we hawewvs in this paper that the
protocol allow to obtain a solution which is a Rareptimum. Moreover, the tests
have shown that the average complexity remainedclompared to the total number
of possible cases. In spite of these encouragisgltee many improvements are still
possible and are currently being addressed.

Regarding the protocol, a logical extension wouddtd send sets with constraints
on the coalitions instead of sending several inddpet sets of coalitions. For
instance, in our application of drawing up schesluiestead of transmitting three sets
of coalitions with the three alternatives time ilnd 2, time 3, one agent could send:
"time ranging between 1 and 3". This would reddeeriumber of sets of coalitions to
be computed and would enable the agent which resghem to make an intelligent
search instead of having to evaluate all the sétout seeking links between them.
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