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Markov Models and Extensions for Land Cover
Mapping in Aerial Imagery

Mohamed El Yazid Boudaren, IAENG member, Abdel B&la

labels. In term of probability, the contextual cooamts are

Abstract— Markov models are well-established stochastic expressed through local conditional probabilities.

models for image analysis and processing since thaljow one to
take into account the contextual relationships beteen image
pixels. In this paper, we attempt to methodically eview the use
of Markov models and their extensions for Land Covemapping
problem in aerial imagery according to available fierature and
previous research works. A new Markov model combimg
Markov random fields and hidden Markov models and nspired
from the NSHP-HMM model, initially introduced for
Handwritten Words Recognition is defined. New learmg and
labeling procedures are derived.

Index Terms—Aerial Images, Land Cover Mapping, Markov

models, Markov Random Fields MRF, Hidden Markov Mockls
HMM.

I. INTRODUCTION

Availability of accurate and up-to-date terrain epv
to many military and public

information is crucial
applications. For instance, land cover maps arentiss
inputs for Combat simulators and agricultural medel

Due to their synoptic view and map like format, ialer

images are viable sources for producing effectwel lcover
classification.

In non-context situation (when independence assompt
holds) the image observation joint probability he {product
of local label observation probability.

Markov models were widely used in aerial image
interpretation and segmentation: land cover mapfing, 8],
remote sensing [9], Coast Line detection [7] andeBb
Change detection [10].

In this paper, we aim to investigate which Markov
modeling could yield best results for the task ejreenting
high-resolution aerial images of rural areas itg@onstituent
cartographic objects (fields, orchards, foresteeda..).

The rest of the paper is organized as follows:icsedt
defines the land cover mapping problem. SectiomeNiews
the use of several Markov models for land coverpimap In
Section IV we remind the basics of the NSHP-HMM mod
we defined in [3]. In section V, we define a nowrkov
model combining Dependency Tree Hidden Markov Model
(DT-HMM) and NSHP-MRF. Conclusion remarks and fetur
work are discussed in the last section.

Il. LAND COVER MAPPING INAERIAL IMAGERY
In this section, we formally define the so calladd cover

Land cover mapping in aerial pictures can be sseana Mapping problem.

image labeling problem since we need to assigadth pixel
a missing label.

Image labeling is a topic of great importance faanm
computer vision systems. In general, three maincgghes

Let us consider an aerial ima§ef sizeT = m x n pixels,
where m and n represent the image length and width
respectively. Each pixe$ [0 S is described by an observable
parametery 0V . The symbol sev ={v, ...v,, } may

are used to solve computer vision problems: stdithas correspond to a color space or any other charatitavi

structural and neural approaches.
Stochastic modeling is of a great importance teesivhage

The problem under consideration in this sectiontas
allocate each of the image pixesOS a missed

labeling problem; especially when there is no direqunobservable) labet, (0 E whereE :{el __,eN}. All e

deterministic link between labels and observabkelpi(two
pixels sharing the same characteristics may begraedi
different labels) [12]. Consequently, there is evide that
stochastic modeling is the most suited to land cavapping
task given the large variations in aerial image}.[1

Most stochastic systems incorporate Markov modaistw
provide a basis for modeling contextual constraimtgisual
processing and interpretation.

are supposed beforehand known so that training bean
performed on each of them taken alone. In thisecdnthey
correspond to natural object classes (fields, ferdakes...).
The problem solution consists in deriving a
class-max 0 E' from a given aerial image observatipn
We assume that aerial images of a resolution enough high
that each pixe$ belongs to only one natural object class.
The problem can be seen as a segmentation prciitem

The use of contextual information within image péxe neighboring pixels tend to belong to the same @red he
means to go beyond the independence assumptioredretwonly difference is that besides segmenting theahémage
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into distinguishable regions, we need to identdgleregion.

I1l. MARKOV MODELS FORLAND COVER MAPPING

A. Bayesian Naive Segmentation

The problem resolution of the aerial image mapping
described in section Il can be achieved througlelpise



naive Bayesian segmentation. This method consieach
pixel taken lonely.

Let us consider a grey level aerial image of a aegi
containing five classes: forest, grass, stone, mattd arena
which we denote ,e, ... g, respectively. Thus, for each

pixel sOS y, and X, take their

inv ={01... 255} andE = {e, ... e, } respectively.
In the following formulae, we will simply useinstead

of x,andy instead ofy_since we assign a label to each pixe

values

regardless of its location.
The natural object clasg of pixel x is chosen so that it
maximizes the MAP probability.
P(x,y)}
P(y)

Sincep( y) is constant while estimating we only need to
evaluateP (x, y).

x" = arg max P(x/y)= arg max{
xOE xOE

1)

X = arg max P(x,y) )
For this, we have recourse to Bayes rule.
x* =argmax P(y/x)P(x) 3)
XOE

The probability distributionsP(x) and P(y/x) can be

estimated from aerial images samples of the samene
P(x)represents the proportion of the objgdnh the region

under consideration whereg@{y/x)reflects the variability

within the object class.

The criterion adopted here assures a minimal assdied
pixels number when the aerial image is enough big.

However, the resulting mapping when using such thook
contains a lot of discontinuities. This is majodye to noise
within the image and the nature of object clasBemselves.

Therefore, there are justifiable reasons to ththkt
considering grey level values of neighboring pixelsen
achieving the classification would improve clagsifion
accuracy.

Indeed, when analyzing a pixel taken alone, itdaally
impossible even for a human to tell whose class it

B. Local contextual Bayesian Segmentation

To surmount the problem discussed above, one cantit®
estimating the object clasg of each pixes [ S using the

local informationy, whereN _is the neighborhood of pixel

|

Nevertheless, the main limit of this method is hisavy
computational complexity. In fact, even for a vdimited

S.
P(xs‘ yNS)

x, =argmax P(x./y, )= arg max
s/ 0.) P(yy))

%OE X 0E

number of object class@&§ one can not consider larger thanin

an 8-Neighborhood. Since image siz&s usually very big, a
huge amount of local information is then overlookelen
assigning labels.

Another important drawback of the previous Bayesia
methods is that they do not take account of theailglass
repartition within the aerial image.

C. MRF Bayesian Segmentation

account of the geographical repartition of natuslject
classes while segmenting an aerial picture.
The class-map associated to the aerial image is supposed
to be the realization of an MRF.
OsOS:P(x./x)= P(x,/xy, ) (5)
It is usually computed based on the MAP criterion.
x" = argmax P(x/y)

x0ET 6)
~ As seen before, this is equivalent to:
! x" = argmax P(y/x)P(x) )

xOET
A particular case of Bayesian labeling consistssimg the
Hidden Markov Field (HMF) which assumes the followgi

P(y/x)= |_L P(y./x) @)
P(y./x)=P(y,/x,) 9)

Therefore, the likelihood probability becomes:
P(y/X) = |;L P(ys/xs) (10)

To solve the MAP estimation problem, direct resols
are intractable. For this reason, many approximatio
algorithms have been proposed. One of the mostlaozu
ICM algorithm [11].

In [16], Pieczynski suggests to relax the assumptd
noise independence by replacbqganys in the likelihood

probability.

P(y/x)= il P(y./xy.)

] (12)

However, the main drawback of HMF based classificat
in our opinion is that it ties a lonely pixel obgation
emissiony_ to each statex, whereas one needs usually a

larger observation to decide of the class of alpixe
Indeed, labels can be more accurately associategjitons
than to solely pixels. For this reason, severalkadike [14]
consider region-based labeling and start by segngetiie
image into regions before assigning labels to pixel

D. HMM Based Land Cover Mapping

In [1], we proposed a solution based on a hieraathi
model constituted of two layers of HMM (figure T)he first
layer comprises one unique HMM we called high-level
HMM. It contains as many super states as the nurober
natural object classes. The high-level HMM moddis t
natural objects geographical repartition. It pr@ddis with
the prior probabilityP (x) Each super state is associated to a

low-level HMM that models the corresponding objeless.
The low-level HMMs constitute the lower layer o&tglobal
model that provides wus with the likelihood
probabilityP (y/x) .
This model principle is very similar to that of NBHHMM
the sense that local distributions are tied ighhevel
model states.
The training of our two layered model has been domeo
steps: firstly, the low level HMMs were trained amitextured
ictures. Secondly the high level one was trained o
multitextured pictures using the parameters of HMifishe
first step, according to Baum-Welch algorithm.

The MRF Bayesian segmentation overcomes the prablem

discussed in the previous section and enables @riake



A. NSHP-MRF (Non Symmetric Half Plane) Overview
LetL be a lattice ofi x m sites and leX = {Xij}_  be
(i,i)pL
a random field defined over the lattite In the context of
HWR, mandn correspond to the width and length of the word

image respectively and each site represents a yXx’étands
for the columnj of X andP(X; /X,), ADO L stands

for |:>(xij /X ),(k,l) OA.
Finally, let us define the sets:

Zy={khOoL/i<jor (I =]jk<i}, 0,0%,

? Z; is called thenon-symmetric half-plan@nd ©; the
BorestO) o

support of pixe(i, j) L .

P O Joresd For binarized images, the symbol wet {0,1}. A word
) =2 4 image is then a possible realization of a randefd fi
Fig. 1 Two layered HMM architecture X is an NSHP-MRF if and only if:
P(Xy/X5,)=P(X;/Xe, ) OG0, )0 L (12)

For our experiments, we used real world aerialpéd of a o ! i ]
relatively large area, with a resolution of 50 geeters. Our 1 ne joint field mass probability (X ) is obtained by:

results were then used to generate reconstituttdrps like 2 iy i 1
. s . L P(X)= P{X!/X 17X
depicted in figure 2. This showed that our classifias able () El ( / )
to satisfactorily reproduce the original images. nom
= |_|l | P(Xij/xz” ) (13)
ERR
= s P\X, /X
110 P

Authors usually the same form Giij for all pixels that is:
o={o,}G,HOoL
©, ={(i —i. j —j)/1sk<P, j, >00r (j, =0i, >0} NL
For instance, the pixel support may be equal to:
O, ={(i-1j-1.G,j-D.G-1j)G+1j-D}NL

taEl
& Sl

Fig. 2 Aerial image mapping using two Iayg?ed HMMdsl: )

original aerial image (left) and mapping resuligh). B. NSHP-HMM (Non-Symmetric Half-Plane Hidden
With the permission of "Régie de Données des Pagasieie Markov Model)
RGD73-74" [17] The key idea of NSHP-HMM is to tie the conditional

) ) ) probability distributions within image columns toMi
_ The main weakness of our model is that we scaneBdla giates so that these ones condition the featusitisity of the
images in a linear way. To weaken the repercussicuch a adjacent MRF. For instance, HMM may include spézeal

choice, we considered horizontal scanning withghHevel  ¢i5i05 to detect the presence of an upstroke on-gtake
HMM and vertical one within low-level models. Hoveay |\ hich would be very advantageous for HWR.

numerous researches proved that 2D modeling gieésrb | o 5 rewrite the joint field mass probability terms of

results than 1D one. pattern likelihood with respect to the HMM.
IV. COMBINING MRF AND HMM FORHWR P(x//\):ﬁP(Xi/Xi-l,...xl,/l):ﬁ . P(X; /Xo, ,A) (14)
= =1 1=

In [3], we proposed a particularly interesting Btiti model . _ )
called NSHP-HMM which advantageously combines MRF As columnX 'is associated to a parallel state stochastic
and HMM for handwritten words recognition (HWR).ist Proces€) =, ... d,-
mainly based on the use of MRF at pixel level wéh P(X/A)=Y P(X,Q/1)=3 P(X/Q,AP(Q/A)
switching mechanism between conditional probability Q Q

distributions assured by an HMM: The HMM analyzke t => |‘n| P(a;/a;2)P(X 1/X 1. X1,q;,4) (15)
image columns along the writing axis and an MRHyaes QI m
each column with specific parameters accordinbeactirrent = g ir=|1 P(a;/d-1) n P(Xy/Xo,.0;,4)

HMM state. Tying the MRF probability distributioris the

HMM states enable the model to dynamically detecal

features within the image (strokes of differenteatations

inherent to handwriting) [3]. The results obtain by NSHP-HMM modeling on a real
In the present section, we briefly present the NSHIM  database of unconstrained words are extremelyfeszitisy.

model and show how it is used to model handwrittend However, in opposition to other MRF based models,

images. NSHP-HMM main weakness is the requiring of imagig e

normalization.

Note thatQ is a first order Markov process and that pixel
distributions of columrX ! depend only on the stage .



V. AERIAL IMAGES MAPPINGUSING NSHP-HMF B. NSHP-2D-HMM Modeling of Aerial Images

Our main idea was to adapt the NSHP-HMM modeling to To make aerial image modeling through NSHP-HMF
aerial images mapping. However, unlike words imagesgal possible, we need to define the prior probabgifx /1 ).
pictures do not possess a natural ordering of adum  For this reason, we will resort in a first timea®pecial case
genuine two-dimensional modeling is then required. of HMF models which is 2D-HMM.

The Hidden Markov Fields (HMF) can be seen as an 2D-HMM is a special case defined in a similar way t
extension of MRF. They have long been used to modgb-HMM. The only difference is that each state defseon
problems where the data is two-dimensional. Thécdask one state in both horizontal and vertical directiofhe
of HMF methods in our opinion is that most of thessume causality principle is then maintained.
that pixel conditional observations are indepenaeneach . .
other, this is more commonly called the ‘noise peledence Let us define the stz.ate su.ppér,it..
assumption’. Ay = {(' -1 J)- (I, J ‘1)} nL

P(y/x)= EL P(ys/xs) (16) Then, we derive the joint probability:

whereP(y, /x, ) does not depend on locatien P(v/4)= g P(Y. x/4)

At statex_ level, the observations inter-relationship is then => P(Y/X,A)P(X/A) (20)
ignored and a huge amount of information is thesriooked. v

We believe that this kind of information may be of => |_L P(Yij [Yo, X, A )D(X i/ Xa, )
fundamental importance in the context of aerial gam R BE

mapping and propose to go beyond the noise indepeed  We only need to defin@ij to make the previous formula
assumption by linking the local observation disitibn given fully defined. For instance, we can take:

by an NSHP-MRF to an HMF states like we did in the o, ={(i =06, =16 -1)G+1 ] —1)}ﬂ L

NSHP-HMM.
) _ ) More  explicitly, the elements of NSHP-2D
A. Non-Symmetric Half-Plane Hidden Markov Fields ypmm A(A, B,0)are:
Let L be a lattice of T=nxm sites and O = {@” } (i,j) 0L . In this work, we consider:
letX =X d bey =3, the hidd dth
etX {XIJ}(i,j)DLan & {YIJ}(i,j)DL € hidden and the 0, ={(i-1j-1,6,j-D,(-1]).G+1j-D}NL
observable random fields respectively of HMFdefined Ry, —{v v } the vocabulary ofM possible
- 1 e M )

over the latticd.. .
In the context of images, sites correspond to pixeindm symbols(i, j)UL:Y; OV

are image length and width respectively. For instance, we can tak¢ ={0..255} for
If L is a grey level image, the symbol set grey-level images.

ISV = {0'1" 255}' *E ={el eN}, the set ofN possible states of the
X; stands for pixel state and take their values instaee model. D(i, j)l] L: X, DE.

* A={6\<|rr}1g<,|,msta<|m=P( X; =qn/xi—1j =6, Xj41~8 ) ,
the state transition matrix.
B =1y vo, ) . the

Setg = {e1 . eN}. In the context of aerial images mapping,
states correspond to natural object classes.
Y; stands for pixe(j, j)grey-level value ang v, /Y.):

A [ L stands fop(yi_ /N ),(k,l) OA. 1sks N, (i, j)0L
. ! conditional pixel observation distribution where
Finally, let us consider the sets:

£, ={OL/I<jor (1= k<) B Yo, =P =3/Y, =6, X, =6 ).
Let us now consider the aerial image mapping prabte
9; 02, the NSHP-2D-HMM context: given the observaf¥oof an
A, O % aerial imagd. and a NSHP-ZD-HMI\M(A, B,@), mapping
whereZij is thenon-symmetric half-planand G)ij andAij consists in assigning the correspondiag that maximizes
are the observable and hidden support respectioély he MAP probability.

pixel (i, j)OL . e :argDrEnTax P(Y/X)P(X)
We have: (22)
= arg max P, /Yo , X, A)PIX, /X
P(Y//]):ZP(Y,X//]) T e (J/ 9 j ) ( J/ Au)
Y
17) =argmax []b, Y,.Y, )a
:ZP(Y/X’/])P(X//]) gDET (i,lj_)lm X“(” eu) Xoa X
Y .
(X ,Y) is a Non-Symmetric Half-Plane HMF Where the state sE={el ...eN} is the set of natural
(NSHP-HMF) if and only if: object classes and the symbol Wet {0.. 255} if we
. p(x i /XA ) = p(x i /xAU A ) (18)  consider grey-level aerial images.
_ Finding outX "is an NP-hard problem [15]. In fact, even
. d = : . . 19
P(Y'J /Y’ X ’A) P(YJ /YO- K ’A) (19) for classical 2D-HMM, the optimal decoding proceslis



intractable in practice; contrary to 1D-HMM, the In the following we will adapt the DT-HMMViterbi
factorization of computation is not possible in PIMM. procedure to the DT-NSHP-HMM model.

Fortunately, relaxation methods that yield goodultss In a first time, we assume the dependency treengive
exist in literature [4, 5]. In [5], an interestinggw model  Let T (i, j)be the sub-tree having pixg| j )as a root and
called Dependency Tree Hidden Markov Model (DT-HMM)gt B, ( ) be the maximum probability that ., is
was proposed to overcome the complexity problem of ) ) - 1)
2D-HMM while keeping the two-dimensional aspectlata. 9enerated starting by staen the roo(i, ).

It is mainly based on the idea that each staterdispen only ~ Let us define:
one neighboring state at a time. . maxa,, (k,l),b’ij L0t j+2)=0G,j)

Thereafter, we summarize the main aspects of DT-HMM H k( J)_ e . (29)
Then, we will develop the DT-NSHP-HMM. Finally, well 1 otherwise
derive the training and recognition procedures stralv that maxa, (k,1)B..; 0 if ti+1j)=0(,j)
they exhibit a reasonable computational complexity. ) { I0E _ (30)

_ 1 otherwise

C. DT-HMM Overview Thereafter, let us consider:

The main idea of DT-HMM is that each state depemls DG, i)=H, G, VG j) (31)
only one neighboring state at the time. This nedginly state « «

may be the horizontal or the vertical one dependinga We can compute the values@f( )recurswely as

direction random variabtdi, j ) such that: follows: -
. (i-1, j)with prob 0.5 22 'Bk(l’ J)z b"(yii/yeu ’¢k)Dk(" J) (32)
t(.j)= {(i i Z1)with prob 05 2 Einally, let us define:
The model assume(s the foIIO\)/ving: X)) = arg),B, i (k) (33)
R, (X, /X, )if t(i,§)=0-11) ' , ,
pix /x. )= i/ i (23) Note thaty’ = ar k)is the solution of the
TS S o P O w0 = 29 Auolk)
whereA, ={(i -1 j), (i, i _1)}m L. MAP*Ia_beI*mg defined above.
Let the direction function be: X = Xr(00) (34)
D(i,j)= voif t(i,j)=0-1]j) (24) Thereafter, we show how the previous algorithm ban
h1)= H if t(,j)=(,j-1) used iteratively to produce the image labeling.
Consequently According to the MAP criterion, we have:
' X* =argmax P(Y, X
P(X; /X4, )= Poen(Xy /X)) (25) A B Z( P(Y)X/t) (35)
The variablet defines a tree structure (dependency tree) g(DET T ’
over the latticd with pixel (0,0) as the root. Let us assume:
D. DT-NSHP-HMM Definition 2 PY. X /t)=max P(¥,X /t) (36)
The DT-NSHP-HMM has the same parameters as theConsequentIy,
NSHP-2D-HMM. The only difference is ik matrix.
Horizontal and vertical states transitions are nestied ~arg max max p(Y X /t)} @37
separatelyA matrix is then replaced by two matrices that we ~ arg max max P(Y/X t)P(X/t)}
denoteA,, andA, where:
Ay =8 haaa =P X, =6 /%, 4 =6, ) 26) As P(Y/X ,t)— P(Y/X), therefore:
A =audaeas =P X; =6 /%, =6 X* = arg max{P(Y/X )max P(X /t)} (38)
For the sake of simplicity, we will denote the XDET .
DT-NSHP-HMM i (A, B,0 ) wherea = {A, , A, }. Let us denote” =argmax P(X /1) (39)
The image likelihood calculus given a dependeneg ts We get:
as follows: .~ . 40)
X =argmax P(Y/X ,t)P(X /t (
P(Y/At)=> P(Y,X/4) XOET ( JP(x /)
(27) Which we propose to solve iteratively by maximizongprt
i P(Y/X,A t)P(X//\ t) andX alternatively like follows:
l_)beu i Yo, Jaog (X Xi) =argmax P(v/X )P(X /t") (41)
t =arg max P(X*/t)

E-_ Labeling Procedu.re o Hence, an initialization is required to run theratéve
Given the observatioly of an aerial imagel and a process. We can choose either to start by initiizhe

DT-NSHP-HMM (A, B,® ), mapping consists in assigningdependency tree or the labeling.

the corresponding that maximizes the MAP probability o o
given a dependency tree function « Initialization: Initialize  Dependency tree:

x" = argmax P(y/x)P(x) (28) t(i,j)= arg_rT:in”y(i,;) - yt(i,j)"
T ]

xOE



Where” ” is Euclidian distance.

NSHP-MRF training is performed independently on
unitextured images. Since, this kind of modelingeadly

» Step 1. Achieve adapted Viterbi alignment asgxist, there is no need to analyze its complexity.

described above.
» Step 2: Update Dependency tree as follows:

ti,j)= arg(.m)ax ap i ) X iy X 1))
)

e End

F. Training

To train our model on aerial images, we suggegbpamg
the learning in two steps like we did in [1].

First, to compute the observations conditional philities,
we devote an NSHP-MRF model to each natural olgjass.
We train each model on a natural object class taltene.

Explicitly, we need to have unitextured aerial imaga set of
aerial images per object class). Then, we estiraestate

Step 3: If end criterion not reached go to step 1.

DT-HMM modeling also already exists and it was shamv
[6] that its complexity is linear with the imageaiT.

Accordingly, we only need to analyze our adaptetdNgi
procedure. We will prove that we can convert oudeido a
simple DT-HMM after a set of reasonable-cost corapaons.

If we compute for each pixefi,j)0 L and each

statek [ E the value ob, (y; , Y ) . we will have all thed
ij

matrix elements necessary to apply Viterbi procedura
simple DT-HMM context.

Consequently, the model complexity is tractable in
practice.

VI. CONCLUSION
In this paper, we addressed the problem of lancercov

transition matrixA using the parameters of the preViou’?napping in aerial images

learned NSHP-MRF models.

After reviewing Markov models based previous worke,

Letg, be the NSHP-MRF corresponding to object class Qfyinged the NSHP-HMM formalism that we proposef8in
stateg, . Therefore, the classical emission probabilityegiv for HWR and defined three new NSHP-like models.

byb, (v, , Ve )is computed as follows:

b (y+ Yo, )= Py /Yo, - ) (42)
To estimate the transition matrix, we assume iinsh time
that we have labeled aerial pictures.
Thus, we can simply resort to a frequency-basexing
Let us define the parameters:

Z(k)lsksN = lx =ey
(g( =e)

43
Jy (k'l)lsk,lsN = Z‘,l(xU =6 X,(i1j) =€ ) “3)
(i.i)aL
ZH (k1| )lsk,IsN = %‘, l(xU =g ,xl(,vj_l):ek)
(i,i)oL
We derive then the matrik parameters as follows:
aH(k,|):ZH(k’I),a\/(k,|):ZV(k'I) (44)

¢ (k) ¢ (k)

The computational complexity order of this methediT

First, we defined the NSHP-HMF which is a specéecof
HMF that assumes observations local conditionaéddpnce
within aerial image.

Then, we defined a particular NSHP-HMF that weezhll
NSHP-2D-HMM which can be seen as an extension ef th
NSHP-HMM model since it assign a state to each enmxel
instead of a whole image column.

Like HMF and 2D-HMM, direct inference methods ofrou
new models are intractable in practice. However,
approximation and simulation techniques may be .Usethis
paper, we proposed to approximate the NSHP-2D-HMM b
DT-NSHP-HMM that extends the DT-HMM.

Viterbi algorithm was defined in a similar way to
DT-HMM. The only difference is inB matrix elements
computation. We also defined a new labeling alparibased
on an iterative dependency tree construction.

Note that, contrary to NSHP-HMM and NSHP-HMF
which can be considered as special cases of HMM-AE

since we can compu_te the previous parameters whilgspectively, NSHP-2D-HMM and DT-NSHP-HMM are
analyzing the image pixel by pixel, whereas the ®mM extensions of 2D-HMM and DT-HMM respectively.

complexity is o2N?. T must be enough big to accurately Contrary to handwritten recognition problem, thexeo

model the real relationships between natural object
If labeled images do not exist, we can estimatesthaée
transition matrix in an iterative manner as follows
* |Initialization: Initialize transition
uniformly.

need for image normalization in image labeling lgven the
nature of aerial images.
As future work, we propose to apply DT-NSHP-HMM to

matrix A handwritten problem. Further study can be devoted t

dependency tree training given the nature of wosdsne

. Step 1: Achieve Viterbi alignment. This providesWords have more likely a same dependency tree.

an image labeling.
» Step 2: Re-estimaté matrix as described above.

» Step 3: If end criterion not reached go to step 1.

e End

G. Model Complexity

In this section, we demonstrate that our model lEtshia
reasonable computational complexity.
Let us consider a DT-NSHP-HMM(A,B,®) and an

aerial imagéd. of sizeT. LetN be the number of states auid
the number of symbols.
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