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Abstract: The design of inductors in electromagnetic shaping of moattetals con-
sists of looking for the position and the shape of a set oftetewires such that the
induced electromagnetic field makes a given mass of liquichhaequire a predefined
shape. In this paper we formulate an inverse optimizatioblem where the position
and shape of the inductors are defined by a set of design lesidlhe solution of this
problem correspond to the optimal design, i.e., the shapeedfquid metal is as close
as possible to the target shape. In a first formulation ofrikierse optimization prob-
lem we minimize the difference between the target and théilbqum shapes while in
a second approach we minimizes tienorm of a fictitious surface pressure that makes
the target shape to be in mechanical equilibrium. Geometnistraints that prevent
the inductors to penetrate into the liquid metal are comsidlin both formulations. The
optimization problems are solved using FAIPA, a line seantdrior-point algorithm

for nonlinear optimization. Some examples are presentstidw the effectiveness of
the proposed approaches. .
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Optimisation de la forme des inducteurs en
magnétoformage

Résumé : La conception d’inducteurs dans le formage électromagunétide métaux
liquides consiste en chercher la position et la forme d’unde fils électriques tel que
le champ électromagnétique induit fait qu’'une masse dodadwétal liquide acquiére
une forme prédéterminée. Dans ce papier nous formulonsalodépne d’optimisation
inverse ou la position et la forme des inducteurs sont dé&fipee un jeu de variables de
conception. La solution de ce probleme correspond a la @ioceoptimale, c'est-a-
dire, la forme du métal liquide est aussi pres que possikieedforme prédéterminée.
Dans une premiére formulation du probléme d’optimisatim@ise nous réduisons au
minimum la différence entre I'objectif et les formes en dipué tandis que dans une
deuxiéme approche nous réduisons au minimum la ndrhdéune pression superfi-
cielle factice qui fait en sorte que la forme objectif vériféguilibore mécanique. On
considére des contraintes géométriques qui empéchentesteurs de pénétrer dans
le métal liquide dans les deux formulations. Les problémgstiisation sont résolus
utilisant FAIPA, un algorithme de points intérieurs powgdtimisation non-linéaire.
Quelques exemples sont présentés pour montrer I'efficdeg@pproches proposées.

Mots-clés : problémes inverses, optimisation de formes, magnétofgema
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1 Introduction

Electromagnetic Casting (EMC) and Magnetic Suspensiort Riecessing (MSMP)
are important technologies in the metallurgical industiyey are based on the repul-
sive forces that an alternating electromagnetic field pcedwon the surface of some
kind of materials. They make use of the electromagnetic fiefccontactless heat-
ing, shaping and control of solidification of hot melts. Th&IE has primarily been
employed for containerless continuous casting but is maiséd to prepare ingots of
aluminum alloy [I5]. Another important application, exsarely used in aeronautics,
astronautics, energy and chemical engineering, is in theufaaturing of components
of engines made of superalloy materials (Ni,Ti,..[)][14]dvAntages of these tech-
niques are to produce components with high surface quéliy cleanness and low
contamination.
The EMC problem studied here concerns the case of a vertidanm of liquid

metal falling down into an electromagnetic field created éstical inductors. In Fid]1l

RR n° 6733
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Figure 1: EMC problem.

the horizontal cross-section of the inductors is represeby the domain®p, 1 <

p < 4, and the cross-section of the liquid metal is representetie figure by the
domainw. Given the position and shape of the inductors, the magfieliccreated by
them produces a surface pressure on the vertical columguitilimetal. That surface
pressure forces the liquid metal to change its shape unétjailibrium relation on the
boundary between the electromagnetic pressures and suefasions is satisfied. The
boundary shape of the liquid metal such that the equilibisiattained can be found as
the solution of a nonlinear free-surface problem, Eek [2&],for details. Our purpose
is to design suitable inductors such that the equilibriuapghof the liquid metal be as
close as possible to a given target shape.

In a previous work we studied this EMC problem considerirgy¢hse where the
inductors are made of single solid-core wires with a neglegarea of the cross-section
[L3]. Thus, the inductors were represented by points in drizbntal plane. In this pa-
per we consider the more realistic case where each indgcaret of bundled insulated
strands. In this case we represent the inductors by a domdie pplane as depicted by
Fig.[. The electric current density is assumed uniform enethtire cross-section of
the inductor. This is a very reasonable approximation ferdaise where the inductors
are made up of multiple individually insulated strands tadlsor woven together.

Our goal is to determine the position and shape of the don@irtisat represent the
cross-section of the inductors in order to have an horizentgs-section of the molten
metal as close as possible to the prescribed shape. Foutipigge we consider the two
different approaches proposed n][13]. The first one looksfeet of inductors such
that minimizes the distance between the computed shapéamiven target one. The
second approach minimizes the error of the equilibrium gqodor the target shape.

In addition, here we introduce a new technique to considemgric constrains
that prevent the inductors to penetrate the liquid metaleséhconstraints are more
suitable that the box constraints considere@in [13] makiegonsidered formulations
more effective and robust for the solution of the EMC prohlem

In this paper we employ a SAND formulation for both approacaed solve the
optimization problems employing tHeeasible Arc Interior Point AlgorithmFAIPA,

a line search interior-point algorithm for nonlinear optiation. Seel[[32],[133],[142],
[37], [6] for a general discussion of the SAND formulatioB],[[34], [12], [13] for
some other issues and applications [20], [84], [21] &taits about FAIPA.

INRIA



Inductor shape optimization 5

2 The mathematical model of the electromagnetic shap-
ing problem

We assume that the frequency of the imposed current is vgtyda that the magnetic
field does not penetrate into the metal. In other words weatethe skin effect. More-
over, we assume that a stationary horizontal section i©ezbso that the 2-dimensional
model is valid. The equilibrium of the system is insured by #tatic balance on the
surface of the metal between the surface tension forceareléctromagnetic forces.
This problem and other similar ones have been considereeMaya authors, we refer
the reader to the following papers for the physical analgbthe simplifying assump-
tions that the above model requires: dée (18] [19]],[p0], [24,[10].

We denote byQ the exterior in the plane of the compact and simply connected
domainw occupied by the cross-section of the metal column; sedT-ig. 1

The exterior magnetic field can be found as the solution ofdhewing boundary
value problem:

OxB = poJ inQ, (1)
0B = 0 inQ, 2)
Bv = 0 onr, (3)
Bl = O(x|™") as|x| —winQ. (4)

Here the fields'= (0,0,J) andB = (By, B,,0) represent the mean square values of the
current density vector and the total magnetic field, respalgt The constanty is the
vacuum permeabilityy the unit normal vector to the bounddryand|| - || denotes the
Euclidean norm. We assume tlidhas compact support @ and satisfies:

/Q Jdx=0. ®)

On the other hand, the magnetic field produces a surfaceypeettmat acts on the
liquid metal, changing the shape until the equilibrium isiaed. This equilibrium is
characterized by the following equatidn[24].]25]:

1 -
—||B|>+ 0% = onl, 6
2#0” | Po (6)

where% is the curvature of seen from the metaly is the surface tension of the
liquid and the constanpg is an unknown of the problem. Physicallyy represents
the difference between the internal and external press8iese it is assumed that the
molten metal is incompressible, we have the following ctadi

/w dx= S, 7

whereS is given.

In the direct problem the electric current densltis given and one needs to find
the shape ofv that satisfies]7) and such that the magnetic fijdsolution of [1)-{%)
satisfies also the equilibrium equati@h (6) for a real camtgba.

Conditions[L){(b), with the functiod compactly supported i€, imply that there
exists the flux functio® : Q — R such tha8 = (@ fﬂ,O) and¢ is the solution

X2’ 0Xq
of:
—Ap = LpJd in Q,
¢ =0 onl, (8)
9(x) =0(1) as|lx| — .

RR n° 6733
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Figure 2: Domain perturbation.

The equilibrium equatiori]6) in terms of the flgxbecomes:
i||D¢||2+0‘€fp onl 9)
2o 0 '

The direct problem, in terms of the flux, consists of looking & domainw such
that the solutiorp,, of (@) satisfies[9) for a real constapy.

2.1 The variational model of the direct problem

Under suitable assumptions, the equilibrium configuratiare given by the local sta-
tionary points with respect to the domain of the followintpdeenergy:

1 3
Ew:——/ O dx+ oP(w), 10
(@)=~ | 1090 (@) (10)
subject to the equality constraint in the measureof

/w dx=S. (11)

In (@), ¢, is the solution of[(B) an®(w) is the perimeter oy, i.e., the length of
I = dw whendw is regular enough (for instance of cla3y:

P(a)):/ dy, dy = length measure oh. (12)
r

The variational formulation of the direct problem consitéinding the domairw
as a stationary point of the total enerfiyl(10), subject tocthestraint[TIL). Asp, is
solution of [8), to prove that this variational formulati@nequivalent to the previous
one it remains to show that the equilibrium relation is awtoally ensured for all the
stationary points.

2.2 First order optimality conditions

In order to derive the first order optimality conditions wensmler shape derivatives.
Differentiation with respect to the domain is a classicaliss in this work we consider
the point of view of F. Murat and J. Simon; séé [LL[39.]1[31].

LetV € WL*(R? R?) the set of the Lipschitz functiong from R? to R? such that
@ andOg are uniformly bounded]1]. Lew be a bounded domain iR? of classC?.
We consider a shape deformation given by the maplinrgV, whereld is the identity
mapping. Then, the deformed saf is defined bywy = {x+V(X) | x € w}; see FigP.

For everyV € W1 (R? R?) the mappingd +V is a diffeomorphism provided
IV Ilwe g2 g2) < 1[I

INRIA



Inductor shape optimization 7

Let & (w) be the collection of images ab considering all possible diffeomor-
phisms. IfF is a scalar function defined iff(w) we said that it is shape differentiable
if the functionV — F(wy ) is differentiable av = 0 in the Banach spatt’=(R?, R?).

The derivative ofF, defined inW%*(R? R?), is calledshape gradienand is de-
noted byF’(w). It can be shown that the linear applicat®dn— F’(w)(V) is deter-
mined by the normal component ¥fin the boundary otv, see the works by [1][]7]
and [40] for a detailed description of the shape derivatimgcsure.

Let L be the Lagrangian function defineddi(w) x R by:

L(w, po) = E(w) — po(M(w) — S), (13)
Then, the first order optimality condition is the following:
L(w,po)(V)=0 VYV € Wh*(R? R?). (14)

This kind of optimality conditions often appear in hydrodynic problems and other
fluid problems; let us refer for instance to the work byl [10Jesdna large class of liquid
metal equilibria is considered.
Theorem Let Q be the complement of a compact setn R? with nonempty interior.
Assume thal = dw = dQ is of classC?. LetV be inW'*(R? R?) with compact
support and|V|yi=g2 g2y < 1. LetF be a square integrable function frdinto R
with compact support if.
Then, there exists a unique solutipg, in C1(Qy) (seel2] and

[19]) of:

—A(P(W = UpJ in Qy,

0w, =0 onoQy, (15)
fu,(x) =O(1) as||x| — .

and the shape derivative of the lagrandias given by:

Uw.po0) = [ (gl 00ult 06— m)vVvidy as)

wherev is the unit normal td” oriented toward, ¢ is the curvature of (seen from
the metal) andp,, the solution of[(B).
Proof See[19],124],[4D], [TL].

This problem is very similar to some ones considered by s¢aerthors. We refer
the readers to the following papers and references theoeithé physical analysis of
the simplifying assumptions that the above model requises: [9], [16], [18], [19],

(41, [22], [38], [40), [24], [24],[23], [5], [28], [30], (39, [B8].

3 The inverse problem

The goal of the inverse problem is to find a distribution ofreat around the liquid
metal column so that it attains a given shape.
Given the target shape*, we want to computd as the solution of the following
optimization problem:
mJind(w, w"), 17)

where the functior is a distance betwee and w*. The domainw belongs to the
set of admissible domains, i.ey € ¢, and is in equilibrium under the action of the

RR n° 6733



8 Canelas, Roche & Herskovits

electric current density in the variational sense. In other words satisfies the area
constraint[(Tll) and the flug,, solution of [B) satisfies the equilibrium equati@nl(18)
for a real constanp:

1
[ (5 180012+ 06— ) v-)dy =0
r \4Ho
YV in CY(R2,R?). (18)

From a practical point of view, the magnetic field has to beatme by a simple
configuration of inductors. For that purpose, we considestilution of the electric
current density) of the form:

m
J=175 dpXey, (19)
p=1

wherel is a given intensity of curren®p, with 1 < p < m, are subsets dt?, Xo, are
their characteristic functions, amg, are dimensionless coefficients. Then, the inverse
problem consists of determining the séts.

Note that the expressiof{19) assumes that the electriemudiensity is uniform
on each regio®,. Inductors made of bundled insulated strands allow the t§EX
as a good approximation, s¢é¢ [8] and references thereily. dreaalso suitable to make
inductors of specific geometries.

For an electric current density given By114), (5) is satikfieposing:

m .
z ap [ dx=0. (20)
p=1 JOp

Remark 1.n certain cases it is possible to find a current densityidistion such that
the target shape* is in equilibrium. This topic was already studied and theea
few papers about the existence of such solutions. [Sée [H], |[P€].

In the two-dimensional casey* is assumed simply connected and its boundary is
only one Jordan curvi. [L9], show that a solution oEX1)I(2L1(3[1(4), arkd (6), hvi
compactly supported i€ can be found for eachg satisfying:

Po > 0 maxe’(x), (21)
xel

That is, assuming compactly supported i€, and choosingy satisfying [21), then
there exist® satisfying [1), [2),[B) [}), an@X6) if an only if:

(i) T is an analytic curve.

(i) If pois chosen satisfying the equality [DJ21), the global maximaf the curva-
ture must be attained in an even number of points.

Moreover, the magnetic field is well determined in a neighlbod ofw (local unique-
ness).

Equation[[b) is also obtained [y is chosen satisfying the equality ii]21). A cur-
rent density distribution concentrated on a curv&igan always be found. However,
a solution given by the addition of a finite number of charastie functions like [IP)
may be not possible. S€e19].

INRIA
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3.1 Two approaches for the inverse problem

We propose two different approaches for finding an approtérealution of problem
(@3). The first one considers a domain deformatiombtflefined by the mapping:

Tz(x) =x+2Z(x), Vxe€R2 (22)
whereZ is a regular vector field with compact supporfiA. Then, defining:

wy = Tz(w"),
r; = To(r).

The first inverse formulation is:

: 2
T'anlzllﬂ(r*)a

subject to: (23)
oy is in equilibrium unded.

A second formulation of the inverse problem can be consdli@teoducing a slack
variable functionp(x) : I — R in order to make the equilibrium equation satisfied for
the target shape:

1
[ (51060l + 0% o+ p) (v-v)dy =0
= \ 2Ho
vV in CY(R?,R?). (24)

The functionp can be understood as an additional pressure acting on dréaice.
GivenJ and w*, p is the surface pressure that equilibrates the action of thgnetic
pressure and the surface tension. The second formulatidhdanverse problem is an
indirect approach that try to minimize th&(r"*) norm of the function p:

: 2
minf|pliz ),

subject to: (25)
w* is in equilibrium unded andp.

Remark 2.In this last formulation only shape variables concernirgyitiductors are
considered. This fact makds{25) much easier to solve {i@n (2 the functionp
vanishes at the solution dE{25), the resulting electricentr densityd will also be a
solution of the first formulation with the equilibrium domainatching exactly the tar-
get shape. In the general cagewill not vanish at the solution and, in this case, the
target shapev* will not be in equilibrium unded only. Then, a second stage of analy-
sis will be necessary to find the equilibrium domain underdbiined current density
distribution. However, as the norm pfwas minimized, the resultant equilibrium do-
main is expected to be a good approximation of the targetfeumehermore, sincé25)
can be solved with a minor computational effort, its solaticcan be employed as an
initial guess for the formulatiof (2 3).

RR n° 6733



10 Canelas, Roche & Herskovits

4 Numerical Method

4.1 The exterior Dirichlet problem

To solve [B) in the exterior domai® we consider a particular solutign of the differ-
ential equation given by:

__Ho 7 _
0200 = =52 [ Inx=y|3()ay. (26)
This function is a solution of the problem:
~Di(x) = pod inR? (27)
$1(x) = O(1) as|x||— co. (28)

Note that for the current density distribution definedy)(18e expression af; is

109 = 503 ap [ mlp-ylay. 9)

The function¢, can be calculated as a sum of line integrals on the boundagies
domainsd,. Consider the functiow : R? x R? — R? defined as:

wW(xy) = (1/4)(1—2In|x=y[)(x=y). (30)
The divergence ofvis Oy - w = In||x—y||. Then, [ZP) becomes:

m

= “OI Zap/wxy vdy. (31)

The functiong can be computed as:

¢(x) = (%) + 91(x), (32)

where the functiorf is the solution of the following exterior problem:

—A§(x) =0 inQ,
E(X) = *¢1(X) onl, (33)
€I =0(1) as||x|| — oo.

Following [Z], an integral single layer representationtod solution of[(3B) is given by:

§ =5 [amin|x-yldy+c (34)

where the constantis the value at the infinity of and the functiory(y) € H=%/2(I")
satisfies:

/r q(y)dy=0. (35)

It remains to impose the boundary conditionslanHere, this is done with a weak
formulation. Letar (q,g) be the following elliptic bilinear form:

ar(q,9) = —%T/rg(x)/rq(y)lnIIX—devdv+

INRIA
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+c/rg(x)dy (36)

defined orH~2(I") x H=Y/2(T"). We look for a functiory(y) € H~%/2(I") that satisfies
@39) and:

= - [ 1099000y vge H (D). 37)
Finally, the norm{|O¢|| in @8) can be computed as:
091
1061 = av =13y (38)

where the first equality comes from the fact that constant o, and the second one
from (32). The normal derivative aff; is obtained from[{31):

0¢1 _ Mol il
The following expression can be used &r
0¢ 1 17} 1
509 === [aW g mix=yldy+ 3600 Yxel,  (@0)

where the integral 0f{40) is understood in the Cauchy ppialcialue sense.

4.2 The SAND formulation of the inverse problems

A SAND formulation of the inverse problemE_{23) aridl(25) ispémyed here. In
other words, the state variablpg, c andq are incorporated as unknowns of the opti-
mization problem and the state and equilibrium equatioesrarorporated as equality
constraints. The optimization problem of the formulatigd) becomes:

; 2
a2 20z, (41)
subject to the area constraint:
/ dx= S, (42)
wz
the state equations:
= [ :0amdy vgeH (), 43)
[ a)dy=o. (44)
JIz

and the equilibrium equation:
1 2
[ (510012+ 0% — po) (v-v)dy =0
rz \ 2Ho
vV in CY(R?,R?), (45)

where@q, ¢, andé are given by[[26) [[32) anf{B4).

RR n° 6733



12 Canelas, Roche & Herskovits

The optimization problem of the formulatidn{25) becomes:

; 2
spmin lIPlEze), (46)

subject to the state equations:
ar-(6.0) =~ [ 91(0g00dy VgeH M), @7)
[ aay=o. 48)

and the equilibrium equation:

1
[ (55100124 06~ pop) (v-v)dy =0
r+ \ <Ho
vV in CY(R?,R?). (49)

4.3 The numerical model
4.3.1 Discretization of the domain

We consider an approximation of the domaindefined by the piecewise linear closed
boundary, i.e., M is the union of then linear finite elementg; inR?, j € {1,...,n}.
The nodes of the boundaFy are denoted by;.

AdirectionZ' € R? is associated to each vertgyof I'". We construct a continuous
piecewise linear vector field from I'" in R? such thaZ' (x,) = §¢Z'. The support of
Ziis equal to the union of the finite elements for whiglis a node. The vector field
of 23) is computed as:

n

Z(x) = ; uZ'(x), (50)

and the updated boundadry is then given by:
FU:{X|X:X+Z(X);ui ER,x€ r“}, (51)

wherel" = (uy,...,un) € R"is the vector of unknowns which determine the evolution
of the boundary. This representation has the advantagdiafrigonly one degree of
freedom for each node. We denote day the interior domain related tog in order to
show the dependence with respect to the vedtor

4.3.2 Inductors

Each inductor has a geometry corresponding to one of thenedriz shapes given
by Fig.[3. The contribution of each inductor to the functipnis calculated using
@1). The boundary , of each inductor is divided in small linear elements to perfo
the integration. The entire set of shape parameters camespy to the inductors is
denoted bylp.

INRIA



Inductor shape optimization 13

(s V)
X

@%

Figure 3: Geometry of the inductors and shape parametefsur-parameter inductor
of rectangular shape?. six-parameter inductor of parabolic vertical sid8s; six-
parameter inductor of parabolic horizontal sides.

4.3.3 Exterior boundary value problem

For numerical calculations we consider a piecewise cohsgaproximationg,(x) of
q(x):

n
ah(x) = > ajej(x), (52)
=1
whereej(x) = 1 if x € ¢ and zero elsewhere.

Replacing the functiog in @3) bye, withi € {1,...,n}, the weak formulation of
the boundary value problem, given by equatidn3 (43) Bold betomes:

A(t)d = b(tp, ), (53)

where the vectod” = (qy,...,0n,C) is in R™1, Gis the vector of shape variables and
Up is the vector that contains the shape parameters of thetmduclhe coefficients
aij of the symmetric matriXa(U) are:

1 -
ai@ = —5- [ [ nlx=yldydy i.je{L....n}, (54)

2

e

~—~
I

/dy i—n+1, andj e {L,....n}, (55)
¢

and the components of the vecto are:
bi(Up,0) = —/é_ p:()dy ie{l...n}, (56)
bi(Up,d) = O i=n+1, (57)

Remark 3.For given vectorsi anddp, the linear systen[{$3) is symmetric and non-
sparse. Numerical approximations of the element integfgisevious and later equa-
tions are computed by Gauss quadrature.

RR n° 6733



14 Canelas, Roche & Herskovits

Remark 4. If q is the solution of the systeni {35[{37) and the piecewisestzom
approximatiorgy, given by the solution off33), then we have the following etrounds

(see[41]):

HQ*CIhHH—l/Z(r) SCthCIHHl(r)a (58)
and if &, is the approximation of(34) then
9§ dén
—= - <Coh .
155 I (59)
L . .0& L
Remark 5The approximation of the normal derlvatl\g% atx € ¢ is given by:
06, . 12 X oInlx—x(sa) 1
gy X) = *2ni;q' ngl Pm v +50, (60)
il

wherex;(sm) are the integration points arul, the weights of the Gauss quadrature

formula. Thus, the computation %%(x;) need<O(n) floating point operations.

4.3.4 Equilibrium equation

Consider a directioV' € R2 associated to each vertex of rh and the continuous
piecewise linear vector fied' from " in R? such thav/' (x) = okV'. If we project
the equation[{45) in the finite dimensional space generated bi € {1,...,n}, the
discrete version of the equilibrium is the following:
(1 2 i
DE (U5, 0.6 Po) = | ( 5= 1001~ po ) (V'-v)dy+
Jrg \ 2Ho
+0%6' V', (61)

wherei € {1,...,n} and%" is an approximation of the mean curvaturesagiven by:

i ( (X —Xi—1)  (Xip1—X) ) _ (62)

% —xi—all Xz — Xl

The gradientl¢ is computed usind(38)(B9) arld]40).
In the case of equatiof.[#9), we consider a piecewise linesationp;, defined as:

pn(X) = ; pifi, (63)

where the functiorf; satisfiesf;(x() = k. Then, definingd” = (py,..., pn), the equi-
librium equation is defined as:

DF (T P8 Po) = 5 [ (1361 o+ po)(V'-v)dy-+

+0%¢' V. (64)
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Curve Q> 5::2:; (;(f
N

Inductors

Figure 4: Geometric constraints.

4.3.5 Geometric constraints

Some geometric constraints are needed to prevent the pgoptof the inductors into
the liquid metal. That is done here considering the follapimequalities:

W(xj) < o, forallxjeX, (65)

whereX is a chosen set of points belonging to the boundary of thediwds. The real
valued functiony is zero in the interior of the liquid metal and negative in éxéerior.
Then, choosing a negative value for the paramgitei@d) enforces the pointg to be
in the exterior of the liquid metal as illustrated by Hijy. 4.

The functiony is defined as the solution of:

AY(x) =0 in Q"
Y(x) =0 onl*, (66)
/F*Dlp(x)vdy =-1

Like functioné of Sectiof 4Ly can be calculated as:

w00 =~ [[ay)nix-yldy+ ©7)

whereq must satisfy:
ﬁQWMv:fl (68)

In a similar way as in Sectidn4.3.3, an approximated saiudf@ andc can be obtained
solving a linear system similar th{63). The numerical agpration of the function
Y is obtained employind{%7).

The valuey can be defined choosing a point in the exterior of the liquidafrend
calculating the value of the functiap at this point. See Figfl 5 afifl 6 that show the
functiony for two different target shapes.

Definingﬁj (Up) = Y(x;(Up)) — Yo, all the geometric constraints are expressed as:

—

R(dp) <. (69)
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Figure 5: Functiony for a rectangular like target shape.

Figure 6: Functiony for a “T” like target shape.

4.4 Discretized inverse problems

Let the area function b&(U) = [, dx, andDE(Up,U,d, po) the vector function such
that (DE); = DE;(Up, U,q, po). The discretized version of the first inverse problem is
the following:
; 2
LT )
subject to the nonlinear equality constraints:
A(t)d — B(Up, 0)
SU) - S =0, (71)
DE(UD7H7 q7 pO)

and the nonlinear inequalities:

—

A(p) <O. (72)
The discretized version of the second inverse problem is:
; 2
) 73
ot Pl (73)

with the equality constraints:

Aq - b(Up) ) _
( DF(up7 ﬁv qa pO) 07 (74)

and the nonlinear inequalities:

—

f(tp) < O. (75)

In this case, since the integrals are defined on the fixed dofiriahe vectoru of
shape variables is not present in the formulation.
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5 Numerical examples

We consider several examples to illustrate the behavion@fproposed formulations
of the inverse problem. The goal is to identify the positioa ghape of the inductors
given by the shape variableég. The shape and the surfagg of the target shape,
the surface tensioa, the intensityl and the dimensionless coefficients are given.
For each example all the parameters, including the parasgteof the geometric
constraints, are the same for both formulations. The iniiues of the state variables
g andpo, the shape variable of the first formulation and the pressugef the second
one are set equal to zero for all the examples.

For the solution of the optimization problems, the line shanterior-point algo-
rithm for nonlinear constrained optimization problems PAlwas employed. For a
given feasible point with respect to the inequality corieBaFAIPA defines a feasible
and descent arc solving three linear systems of equatiadhghé same coefficient ma-
trix. Then, it performs a line search along this arc to defmerext iterate. FAIPA
makes subsequent iterations until a certain convergeiteeion is satisfied. For more
details about FAIPA se&TR0[[B4]. TR1]. The number of itevas of FAIPA was lim-
ited to 400 in all the examples.

For each example we plot the initial position and shape ofriactors, the tar-
get shape of the liquid metal and shape of the inductors rddady the optimization
algorithm.

5.1 Example 1

The target shape of this example is the solution of the dfreetsurface problem con-
sidering four concentrated intensities of value 0.1, with the sign given by Fidl7;
see [Example 1a[T13].

For the inverse problem we consider four inductors of typ&Hig@.[3, and a target
shape of are& equal tor. The intensityl is equal to 01 and the surface tensian
is equal to 10 x 104, The dimensionless coefficients, have absolute value equal
to 4.0 with the sign given by Fifl 8; two configurations for thitial positions of the
inductors, named Ex1la and Ex1b, are considered as depictbe figure.

The configuration of inductors obtained was the same for indtibl configurations
and both formulations. The equilibrium shape obtained risost the same that the
target one and none of the geometric constraints is actitreeaolution. Figlld shows
the inductors obtained and some level curves of the flux fandt at the solution.

Employing the first formulation and starting from the initanfiguration of FiglB.a,
the optimization algorithm found the solution in just 7 &Bons, but otherwise the
number of iterations was large when starting from the condigion of Fig[8.b. When
the second formulation was used, the algorithm solves thiel@m at very reasonable
cost, and with a very good accuracy as Tdlble 1 shows.

5.2 Example 2

In this example the target shape is the rounded square ddgigt Fig.[ID. For the
inverse problem we consider four inductors of type 1 of Elgaidd a target shape of
areaS equal to 336. The intensity is equal to 0L and the surface tensianis equal
to 1.0 x 104 The dimensionless coefficients have absolute value equal to 4.0 with
the sign given by Fid10. Four different values of the paramg, of the geometric
constraints are considered, these values generate féeredit problems that we have
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O

Figure 7: Example 1, target shape considering concentiatedsities. Solid line:
equilibrium shape, plus: positive current, circle: negatiurrent.

Figure 8: Example 1, initial configuration and geometricstomints of examples Exla
and Ex1ba example Exlab example Ex1b. Dash-dot line: target shape, solid line:
curvey(x) = Yo, plus: inductor of positive current, circle: inductor ofyative current.
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N\

o

o

0

Figure 9: Solution of the Example 1, both formulations, éqtium shape and level
curves of the flux functiorp.

Figure 10: Example 2, initial configuration and geometricstoaints of examples Ex2a
to Ex2d. Dash-dot line: target shape, solid line: curygg) = y for four different
values ofyy, plus: inductor of positive current, circle: inductor ofgative current.

named Ex2a to Ex2d, as shown by the id@. 10. The example Ex2asponds to
the constraint given by the closest curve to the target shdgile the example Ex2d
corresponds to the the farthest one.

For the first formulation, the same configuration of the intdeewas obtained for
all cases as shown by FIgl]11.a; the equilibrium shape and el curves of the flux
function¢ at the solution is depicted by Fig:]11.b. The geometric cairds were not
active in all the examples using this formulation. Emplaythe second formulation,
the final configuration of inductors depends on the value efprameteqy. For the
larger value, Fig—2.a shows the inductors obtained andIidp depicts the equilib-
rium shape and some level curves of the flux functfoat the solution. FigurEZ13
shows the same for the smaller valueyaf Different from the first formulation, the
second one has the solution having the inductors as closedgtid metal as pos-
sible. In the four cases the geometric constraint is actdhough the location of
the inductors is quite different using one or the other fdation, the optimum value
of the objective function of the first formulation is almoketsame for all the results
obtained.
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.

-
"

e\
a C———— b ——

Figure 11: Solution of example Ex2a, first formulati@solution and geometric con-
straint,b equilibrium shape and level curves of the flux functiipn

V==Y

b /N

Figure 12: Solution of example Ex2a, second formulatesplution and geometric
constraintp equilibrium shape and level curves of the flux functiipn

a

N=—7

7\

Figure 13: Solution of example Ex2d, second formulat@splution and geometric
constraintp equilibrium shape and level curves of the flux functiipn
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Figure 14: Example 3, initial configuration and geometrigstoaints of examples Ex3a
and Ex3b. Dash-dot line: target shape, solid line: cutveg = o for four different
values ofy, plus: inductor of positive current, circle: inductor ofgative current.

—

a

Figure 15: Solution of example Ex3a, first formulati@solution and geometric con-
straint,b equilibrium shape and level curves of the flux functiipn

5.3 Example 3

The target shape of this example is the bar depicted by Hig=d#the inverse problem
we consider eight inductors of type 1 of Hig. 3, and a targaepslof are&, equal to
7.86. The intensityl is equal to 01 and the surface tensianis equal to 10 x 10~4.
The dimensionless coefficients have absolute value equal to 4.0 with the sign given
by Fig.[13. The solutions for two different values of the paeteryp, named Ex3a
and Ex3b, are compared.

In this example, the main difference employing one or theofarmulation is the
size of the inductors located on left and right side. Thig slepends strongly on the
value of the parametepy when using the first formulation but weekly employing the
second one. For the larger value and for the first formulatig. [I%.a shows the
inductors obtained and FigJ15.b depicts the equilibriuapghand some level curves
of the flux function¢ at the solution. Figureds]l6.a ahd 16.b show the same for the
second formulation.

5.4 Example 4

This example has the only difference with respect to theiptesvone in the sign of the
coefficientsay, as depicted by Fig—17. For the larger value of the parampgeand
for the first formulation, Figil18.a shows the inductors ated and Fig[ZTIB.b depicts
the equilibrium shape and some level curves of the flux fomofi at the solution.
Figure{ID.a and19.b show the same for the second formulatio
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Figure 16: Solution of example Ex3a, second formulatemsplution and geometric
constraintp equilibrium shape and level curves of the flux functipn

Figure 17: Example 4, initial configuration and geometrigstoaints of examples Ex4a
and Ex4b. Dash-dot line: target shape, solid line: cugveg = (o for four different
values ofyy, plus: inductor of positive current, circle: inductor ofgagive current.

a

Figure 18: Solution of example Ex4a, first formulatiasolution and geometric con-
straint,b equilibrium shape and level curves of the flux functipn

=S,

| ]

Figure 19: Solution of example Ex4a, second formulatemsplution and geometric
constraintp equilibrium shape and level curves of the flux functipn
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Figure 20: Example 5, initial configuration. Dash-dot lirtarget shape, solid line:
curvesy(x) = Yo for four different values oilip, plus: inductor of positive current,
circle: inductor of negative current.

— = s

W%@i\

Figure 21: Solution of the example Ex5, first formulati@isolution and geometric
constraintbp equilibrium shape and level curves of the flux functipn

Figure 22: Solution of the example Ex5, second formulatéosnlution and geometric
constraintbp equilibrium shape and level curves of the flux functipn

5.5 Example 5

The target shape of this example is the bar depicted by Hig=@Qthe inverse problem
we consider eight inductors. The inductors on the top antbboside are of type 3
of Fig.[d while the inductors on the left and right side areygfet 1. The target shape
hasS equal to 499, the intensityl is equal to 01 and the surface tensianis equal
to 1.0 x 10~%. The dimensionless coefficients have absolute value equal to 4.0 with
the sign given by Fid_20.

The optimization algorithm was unable to solve this exangpigloying the first
formulation. A large distortion of the mesh related to thygilid metal was observed in
the last iterations. For the second formulation, Ei. 2B@ns the inductors obtained
and Fig[ZP.b depicts the equilibrium shape and some levekswof the flux function
¢ at the solution.

5.6 Example 6

This example has the only difference with respect to theiptesvone in the sign of the
coefficientsa, as depicted by Fig—23. For the larger value of the paramgeand
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Figure 23: Example 6, initial configuration. Dash-dot lirtarget shape, solid line:
curvesy(X) = Yo for four different values ofil, plus: inductor of positive current,
circle: inductor of negative current.

Figure 24: Solution of the example Ex6, first formulati@nsolution and geometric
constraintp equilibrium shape and level curves of the flux functipn

Figure 25: Solution of the example Ex6, second formulatéosnlution and geometric
constraintp equilibrium shape and level curves of the flux functipn

for the first formulation, Figiz24.a shows the inductors ated and FiglZ24.b depicts
the equilibrium shape and some level curves of the flux foncfi at the solution.
FiguredZb.a anld?5.b show the same for the second formulamthe figures show,
the solutions of the considered formulations are very difféin this case. That shows
that the results of the second formulation have to be usddaaittion, its solution can
be far different from the best design of the first formulation

5.7 Summary of results

Table[d resumes the information about the considered examipbr each one we give
the number of nodes used for the finite element approximatfahe boundary*

of the target shape and the number of inductors. For eachufatibn the number of
iterations performed by the optimization algorithm is catied as well as the final value
of the objective function. For the second formulation itlsoandicated the final value
of the objective function of the first formulation, it was calated solving the free-
surface problem considering the inductors obtained by phienization algorithm. As
one could expect, the first formulation shows smaller vabfets objective function
in all the examples with the only exception of the examples&Eand Ex1b where the
shape of the inductors at the solution is almost the same.
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Table 1: Summary of results.

Example Nodes Inductors First formulation Second formoitét
lterations Obj. F1 Iterations Obj. F1  Obj. F2

Exla 72 4 42 4.663e-07 48 1.773e-07 3.787e-11
Ex1b 72 4 58 7.267e-07 114 1.791e-07 3.777e-11
Ex2a 80 4 104 1.507e-04 96 1.640e-04 2.338e-08
Ex2b 80 4 104 1.507e-04 331 1.723e-04 3.535e-08
Ex2c 80 4 105 1.507e-04 322 1.964e-04 4.268e-08
Ex2d 80 4 106 1.507e-04 104 2.223e-04 4.731e-08
Ex3a 120 8 49 7.345e-04 400 1.135e-02 1.005e-07
Ex3b 120 8 400 4.513e-03 57 1.857e-02 1.142e-07
Ex4a 120 8 372 2.119e-02 24 9.728e-02 1.273e-07
Ex4b 120 8 16 7.712e-02 27 2.261e-01 1.663e-07
Ex5 136 8 249 8.558e-03 153 2.110e-02 8.988e-07
Ex6 136 8 400 5.513e-02 400 5.921e-01 1.260e-06

(b) Objective function of the first formulation calculateddfree-surface analysis considering the inductors
obtained.
(a) F1: first formulation, F2: second formulation.

6 Conclusions

This paper deals with the shape design of inductors conugtthie electromagnetic
casting of molten metals. Two different approaches basedonitinear optimization
has been proposed in order to find the position and shape tabsuinductors. The
first one minimizes the difference between the geometrighebest possible equi-
librium domain and the target shape; the second minimizéack sariable function
related to the equilibrium equation on the target boundefg. have also shown how
to consider geometric constraints that prevent the inds¢topenetrate into the liquid
metal. The finite dimensional optimization problems obgdiafter discretization were
solved employing the line search interior-point algoritRAIPA.

Some presented examples show that both formulations aretieéf to design suit-
able inductors. However, the formulations are not equiviajledging by the results
obtained for the examples Ex2a-Ex2d and Ex6. The first foatman has shown to be
more convenient due to the fact that it found better solstimn almost all the exam-
ples. The second formulation could find solutions with simibptimal value of the
objective function in most of the cases, but the last preskaexample has shown that
its solution can be, qualitatively, far different from thedb design of the first formu-
lation. However, it is less time consuming because of thk tddhe shape variables
related to the liquid metal. Thus, as most of the results indas, this formulation
appear to be interesting for finding an initial guess for the formulation.
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