
HAL Id: inria-00337614
https://inria.hal.science/inria-00337614

Submitted on 7 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diagnosis of Pushdown Systems
Christophe Morvan, Sophie Pinchinat

To cite this version:
Christophe Morvan, Sophie Pinchinat. Diagnosis of Pushdown Systems. [Research Report] PI 1904,
2008, pp.19. �inria-00337614�

https://inria.hal.science/inria-00337614
https://hal.archives-ouvertes.fr


I  
 R

   I
   S

   A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO
R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U  B  L  I  C  A  T  I  O  N
I  N  T  E  R  N  E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1904

DIAGNOSIS OF PUSHDOWN SYSTEMS

CHRISTOPHE MORVAN, SOPHIE PINCHINAT





INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France
Tél. : (33) 02 99 84 71 00 – Fax : (33) 02 99 84 71 71

http://www.irisa.fr

Diagnosis of Pushdown Systems

Christophe Morvan, Sophie Pinchinat
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Abstract: Diagnosis problems of discrete-event systems consist in detecting unobservable
defects during system execution. For finite-state systems, the theory is well understood and
a number of effective solutions have been developed. For infinite-state systems, however,
there are only few results, mostly identifying classes where the problem is undecidable.

We consider higher-order pushdown systems and investigate two basic variants of diagno-
sis problems: the diagnosability, which consists in deciding whether defects can be detected
within a finite delay, and the bounded-latency problem, which consists in determining a bound
for the delay of detecting defects.

We establish that the diagnosability problem is decidable for arbitrary sub-classes of
higher-order visibly pushdown systems provided unobservable events leave the stacks un-
changed. For this case, we present an effective algorithm. Otherwise, we show that diag-
nosability becomes undecidable already for first-order visibly pushdown automata. Further-
more, we establish that the bounded-latency problem for higher-order pushdown systems is
as hard as deciding finiteness of a higher-order pushdown language. This is in contrast with
the case of finite-state systems where the problem reduces to diagnosability.

Key-words: Pushdown systems, Visibly pushdown systems, Partial observation, Diagno-
sis.
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Diagnostic des Systèmes à Piles

Résumé : Les problèmes de diagnostic des systèmes à événements discrets examinent la
détection de défauts inobservables au cours de l’exécution du système. Pour les systèmes à
nombre d’états fini, la théorie est déjà bien mâıtrisée, et de nombreuses solutions effectives
ont été développées. En revanche, le cas des systèmes à nombre d’états infini n’a fait l’objet
que de peu d’études, exhibant le plus souvent des problèmes indécidables.

Nous considérons les systèmes à piles d’ordre supérieur et étudions deux problèmes
élémentaires de diagnostic : la diagnosticabilité, problème pour lequel il s’agit de décider si
les défauts seront détectés en un temps fini, et le problème de la latence bornée, pour lequel
on souhaite déterminer si le décalage temporel entre l’occurrence d’un défaut et sa détection
est borné.

Nous établissons que la diagnosticabilité est décidable pour toute sous-classe de systèmes
à piles d’ordre supérieur dès lors que que tout événement inobservable ne modifie l’état des
piles. Dans ce cas, nous présentons des algorithmes. Autrement, nous montrons que la
diagnosticabilité est indécidable pour la sous-classe des systèmes dits ”visibly pushdown”,
un classique de la littérature. En outre, nous établissons que le problème de la latence bornée
pour les systèmes à piles d’ordre supérieur est au moins aussi difficile que celui de décider
la finitude des langages à piles d’ordre supérieur. Ce dernier résultat est en opposition avec
le cas des systèmes à nombre d’états fini pour lesquels le problème de la latence bornée se
réduit à celui de diagnosticabilité.

Mots clés : Systèmes à piles, “Visibly pushdown systems”, Observation partielle, Diag-
nostic.
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1 Introduction

Absolute knowledge of the actual execution of a computer driven system is not practicable.
The so-called partial observation approaches provide abstraction-based settings where the
system executions analysis is more realistic. Relative to this matter, diagnosis is a fertile
topic (e.g. [7, 9, 10, 13])

In diagnosis problems, one aims at constructing a device, the diagnoser, intended to
observe the system executions on-line via sensors, and to detect their potential defects. Sen-
sors are not formally described, but they are instead modeled by partial observation abilities
which split information about the system execution into observable and unobservable ones;
the former represent what the sensors have gathered.

Discrete-event systems are basic models of systems, for which executions consist in se-
quences of atomic events; events are typed either observable or unobservable. Observing an
execution yields the sub-sequence of observable events, called the observation of this exe-
cution; two different executions may yield the same observation. The defects of executions
are given by a property: the set of executions that have these defects. Defects cannot be
directly observed on the execution in general,
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4 Morvan C. & Pinchinat S.

An observation is an input of the diagnoser. The corresponding output depends on the
actual knowledge emanating from this observation. Sensitive situations, called equivocalness,
arise when the observation is justified by different executions that disagree on the defects
property. Equivocalness therefore precludes a real-time response of the diagnoser to defect
occurrences. As originally advocated by [13], response delays must be considered, bringing
two basic variants of diagnosis issues: the diagnosability and the bounded latency.

Diagnosability is a qualitative property of the diagnoser which can ensure a finite response
delay for any faulty execution under observation; it ratifies the completeness of the diagnoser.
On a quantitative angle of view, the bounded-latency property can ensure a uniform bound
of the response delay.

For finite-state systems, the theory is well understood and a number of effective solutions
have been developed [13, 10, 9]. For infinite-state systems, however, we are not aware of any
result.

In this paper, we consider pushdown systems, arising from the configuration graph of
higher-order pushdown automata [11]. We establish that the diagnosability problem is de-
cidable for arbitrary sub-classes of higher-order visibly pushdown systems [1, 8] provided
unobservable events leave the stacks unchanged. Under this assumption, we present an ef-
fective algorithm. Otherwise, we show that diagnosability is undecidable already for classical
visibly pushdown automata. Furthermore, we show that the bounded-latency problem for
higher-order pushdown systems is as hard as deciding the finiteness of higher-order push-
down languages. This is in contrast with the case of finite-state systems where the problem
reduces to diagnosability.

Technical content. Effective solutions in partial observation settings crucially relies on
the closure under projection property of languages. Additionally, diagnosability is dually
equivalent to the existence of an infinite path in an infinite-state model obtained as a product
of structures [9]. Monadic second-order logic can be used to express this property, and its
model-checking is decidable [12, 6]. Rather, lacks of closure properties under projection and
intersection of the models cause computational limitations in diagnosis problems.

First-order pushdown systems are closed under projection, at the price of loosing deter-
minism, but they are notoriously not closed under product; hence, diagnosability cannot be
decided in general (Theorem 4.1). Seeking adequate sub-classes, we consider visibly push-
down systems, presentable by visibly pushdown automata whose input alphabet uniformly
dictates the stack operations. Any collection of visibly pushdown automata over a fixed
alphabet is closed under product [1]. Moreover, we show that visibly pushdown languages
are closed under projections which erase only symbols corresponding to so-called “internal”
transitions, i.e. transitions that leave the stack unchanged. This latter condition raises a
class of first-order pushdown systems where diagnosability and bounded-latency problems
are decidable (Theorems 5.2 and 4.7).

Following the same lines as in the first-order case, we next extend our results to higher-
order pushdown systems: we concentrate on higher-order visibly pushdown sub-classes [8].
Although the sub-classes of higher-order visibly pushdown languages have somehow been

Irisa



Diagnosis of Pushdown Systems 5

discarded due to their many redhibitory weaknesses (they are neither closed under concate-
nation, nor under iteration, and cannot be determinized), these sub-classes still offer nice
features for diagnosis issues. First, they are closed under intersection. Second, similarly
to first-order visibly pushdown languages, they are closed under projections which abstract
only symbols corresponding to internal transitions. We take advantage of these two closure
properties to describe an effective solution for diagnosability (Theorem 5.2). On the other
hand, the bounded-latency problem for higher-order pushdown systems is more involved.
Indeed, this problem is as hard as deciding the finiteness of higher-order pushdown lan-
guages (by an easy generalization of the first-order case of Proposition 4.4). For real-time
higher-order pushdown languages, the finiteness problem is decidable (Theorem 5.4), but
the question is open for the general case, and seems difficult [4].

The paper is organized as follows: In Section 2.2, we explain diagnosis problems. First-
order pushdown systems are presented in Section 3 with the visibly pushdown sub-classes.
Section 4 contains the main results for the diagnosis of first-order pushdown systems, and
in Section 5, we investigate how previous results generalize to higher-order.

2 Diagnosis problems

2.1 Mathematical notations and definitions

For any set E, we denote by 2E its powerset, and the complement of a subset B ⊆ E is
written B. For any natural number n, we write [n] := {1, 2, 3, . . . , n}. Given an alphabet
Σ (a set of symbols), we denote by Σ∗ and Σω the sets of finite and infinite words over Σ
respectively. We use the typical elements u, u′, v, . . . for Σ∗, and ε for the empty word. We
use w, w1, . . . for elements of Σω. For u ∈ Σ∗, |u| denotes its length, and for v ∈ Σ∗ ∪ Σω,
we write u � v to indicate that u is a prefix of v.

Definition 2.1. A discrete-event system (des) is a structure

S = 〈Σ, S, s0, δ, P rop, [[.]]〉,

where Σ is an alphabet, S is a set of states and s0 ∈ S is the initial state, δ : S × Σ → S is
a (partial) transition function, and Prop is a set of propositions and [[.]] : Prop → 2S is an
interpretation of the propositions.

An execution of S is a word u = a1a2 . . . an ∈ Σ∗ such that there exists a sequence of
states s0, s1, . . . , sn such that s0 = s0 and δ(si−1, ai) = si for all 1 ≤ i ≤ n. A execution u

reaches a subset S′ ∈ S whenever δ(s0, u) ∈ S′, by extending δ to S × 2Σ∗

. We naturally
extend these definitions to infinite executions; in particular, an infinite execution w ∈ Σω

reaches S′ if one of its prefixes reaches S′.
A proposition m marks the (elements of the) set [[m]], and an execution reaches m if it

reaches [[m]].

PI n˚1904



6 Morvan C. & Pinchinat S.

2.2 An overview on diagnosis

Informally, diagnosis is about synthesis: one aims at constructing a device, a diagnoser,
intended to work on-line together with the system. While the system executes, the diagnoser
collects input data via sensors and outputs a verdict on the actual execution.

In classic diagnosis, the sensors are not formally described, but instead simulated in a
partial observation framework: the set of events Σ is partitioned into Σo and Σo composed
of observables and unobservables respectively; words θ, θ1, . . . over Σo are observations. The
canonical projection of Σ onto Σo is written πΣo

, or π when Σo is understood; it extends to
Σ∗ by erasing unobservables in words. An execution u matches an observation θ whenever
π(u) = θ. Two executions u and u′ are indistinguishable if they match the same observation.

Observations are the inputs of the diagnoser. Regarding the outputs, faulty executions
of particular interest (as opposed to safe ones) are distinguished a priori by means of a
proposition f ∈ Prop: an execution u is faulty if δ(s0, u) ∈ [[f ]]. Moreover, we require that
[[f ]] is a trap: δ([[f ]], a) ⊆ [[f ]], for all a ∈ Σ. In this way, e.g. executions that contain a faulty
event can be adequately described; we refer to [7] for a comprehensive exposition.

An instance of a diagnosis problem is a triplet composed of a des, S = 〈Σ, S, s0, δ, P rop, [[.]]〉,
an alphabet of observables, Σo, and a proposition, f . The associated diagnoser is a struc-
ture D := 〈Σo, 2

S, I0, δ̂, diag〉 whose states are information sets : an information set I is
the smallest subset of states reached by a set of executions of the form π(u) ∩ Σ∗Σo, for

some execution u. The initial state is I0 :=
{
s0

}
, the transition function, δ̂ : 2S × Σ → 2S ,

is the extension of δ to sets of states in a canonical way1, and the output function diag

is defined as follows. Given an information set I, three cases exist: (a) all states of I are
marked by f ; (b) no state is marked; and otherwise (c) where I is equivocal. Formally,
diag : 2S → {(a), (b), (c)} with

diag(I) :=






(a) if I ⊆ [[f ]],
(b) if I ∩ [[f ]] = ∅,
(c) otherwise.

By extension, an observation θ is equivocal if δ̂(I0, θ) is equivocal, otherwise θ is clear ; the
empty observation is clear since I0 = {s0} is not equivocal. Moreover, θ is faulty-clear if it

is clear and δ̂(I0, θ) is in case (a).
D may be infinite-state in general (if S is infinite-state). However, its computation can

be avoided by simulating it on-the-fly, storing the current information set I, and updating
this object on each observable step of the system. While the synthesis of the diagnoser is not
necessary, analyzing its behaviour is crucial: in particular, because equivocalness (case (c))
precludes the real-time detection of a fault, latencies to react are tolerated. Diagnosability is
a qualitative property of the diagnoser which can ensure a finite latency for any observation
of a faulty execution; it ratifies the completeness of the diagnoser. From a quantitative angle
of view, the bounded-latency property can ensure a uniform bound on the latencies.

1δ̂(I, a) :=
S

s∈I
δ(s, Σo

∗
a)

Irisa
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2.3 Diagnosability

In accordance with [13], we use the following definition (where the parameters Σo and f are
understood).

Definition 2.2. A discrete-event system is diagnosable if every infinite observation of an
infinite faulty execution has a clear finite prefix.

Remark that diagnosability considers only infinite executions that do not diverge, where
an infinite executions diverges if it as an unobservable infinite suffix. In other words, we are
only interested in fair behaviours of the system w.r.t. observability.

Notice that in a diagnosable system, safe executions may yield arbitrarily long equivocal
observations. To illustrate this, consider the finite-state system below with alphabet {a, b, γ},
the initial state p, and the unobservable faulty event γ. The infinite observation aω, obtained

from

the unique safe execution aω, loops infinitely in the equivocal
information set {p, q, r}. Yet, this system is diagnosable since
a faulty execution yields an infinite observation with the clear
prefix anb.

p q

f

r

f

s

f

a

γ a b

a, b, γ

Theorem 2.3. [13] Diagnosability of finite-state discrete-event systems is decidable.

2.4 Bounded latency

The latency of a diagnosable system is the minimal number of additional observation steps
that is needed to detect a faulty execution.

Definition 2.4. Let S = 〈Σ, S, s0, δ, P rop, [[.]]〉 be a des, Σo be an alphabet of observables,
and f ∈ Prop such that [[f ]] is a trap. A just-faulty-clear observation is a faulty-clear
observation whose strict prefixes are equivocal.

Given a equivocal observation θ, the latency for θ is

ℓ(θ) := max {|ϑ| | θϑ is just-faulty-clear}

S is bounded-latency if there exists N ∈ N such that ℓ(θ) ≤ N , for every equivocal observation
θ. The least such N is the bounded-latency value.

The bounded-latency value of the example above is 2: any equivocal observation is of
the form an (with n ∈ N), and its just-faulty-clear extensions are anb and anab, yielding
ℓ(an) = 2.

Bounded-latency systems are diagnosable, but the converse does not hold in general,
unless the systems are finite-state [9].

Remark 2.5. Note that two des S1 and S2 with the same set of executions and such
that any execution u reaches [[f ]] in S1 if, and only if, it reaches [[f ]] in S2, have the same
diagnosability and bounded-latency properties (with the same bounded-latency value, if
any).

PI n˚1904



8 Morvan C. & Pinchinat S.

3 Pushdown systems

Pushdown automata are finite-state machines that use a stack as an auxiliary data structure
(see for example [2]). Pushdown systems are configuration graphs of pushdown automata;
they are infinite-state in general.

3.1 Ordinary pushdown automata

Definition 3.1. A pushdown automaton (pda) is a structure

A = (Σ, Γ, Q, q0, F, ∆) where

Σ and Γ are finite alphabets of respectively input and stack symbols, Q is a finite set of
states, q0 ∈ Q is the initial state, F ⊆ Q is a set of final states, and ∆ ⊆ Q × (Γ ∪ {ε}) ×
(Σ ∪ {ε})×Q × Γ∗ is the set of transition. We use p, q, . . . (resp. X, Y, . . ., and U, V, W, . . .)
for typical elements of Q (resp. Γ, and Γ∗).

Without loss of generality, we assume ∆ in normal form: (1) pop transitions of the form
(p, X, a, q, ε) pop the top symbol of the stack, (2) push transitions of the form (p, ε, a, q, X)
push a symbol on top of the stack, and (3) internal transitions of the form (p, ε, a, q, ε) leave
the stack unchanged.

The pda A = (Σ, Γ, Q, q0, F, ∆) is deterministic if: (1) ∀(p, X, a) ∈ Q × Γ × Σ ∪ {ε},
|∆(p, X, a)| ≤ 1, and (2) ∀(p, X, a) ∈ Q×Γ×Σ, ∆(p, X, ε) 6= ∅ implies ∆(p, X, a) = ∅. A is
real-time if ∆ ⊆ Q× (Γ∪ {ε})×Σ×Q×Γ∗. A configuration of A is a word qU ∈ QΓ∗; the
initial configuration is q0ε, and a configuration qU is final if q ∈ F . Transitions (between
configurations) are elements of QΓ∗ × Σ ∪ {ε} × QΓ∗: there is a transition (qU, a, q′U ′)
whenever there exists (p, X, a, q, V ) ∈ ∆ with U = WX and U ′ = WV . A finite run
of A is a finite sequence r = q0U0a1q1U1a2 . . . anqnUn such that U0 = ε is initial, and
(qiUi, ai, qi+1Ui+1) is a transition, for all 0 ≤ i < n. We say that a1a2 . . . an is the word
of r, or that r is a run on a1a2 . . . an. The run is accepting if qnUn is final. The language
accepted by A is L(A) ⊆ Σ∗, the set of words u ∈ Σ∗ such that there is an accepting run on
u.

Proposition 3.2. [2] Any pda is equivalent to a real-time pda. The construction is effec-
tive.

Pda accept context-free languages (cf languages), while deterministic pda yield a proper
subclass of deterministic cf languages which contains all regular languages. Moreover,
cf languages are closed under union, concatenation, and iteration, and their emptiness is
decidable. Closure under intersection is more involved.

Proposition 3.3. [2] The emptiness problem of an intersection of deterministic cf lan-
guages is undecidable.

A pushdown system (pd system) [14]2 S is the configuration graph of a real-time pda

A; S is then presented by A. If A is deterministic, S is a des. Notice that if in S, each

2We here use “system” instead of “process” as to identify the objects with des.

Irisa



Diagnosis of Pushdown Systems 9

proposition interpretation is a regular set of configurations – in the usual sense of “regular”,
when configurations are seen as words –, then S can be presented by a pda, and the monadic
second-order logic, MSO, properties can be evaluated.

Theorem 3.4. [12] Model-checking a pd system w.r.t. MSO-properties is decidable.

By Proposition 3.3, pd systems are not closed under product3, which causes limitations
in effective methods for their analysis, and in particular regarding diagnosis (see Section 4).
We consider more friendly sub-classes of pda: the visibly pushdown automata [1].

3.2 Visibly pushdown automata

Visibly pushdown automata are pda with restricted transition rules: whether a transition
is push, pop, or internal depends only on its input letter.

Definition 3.5. A visibly pushdown automaton (vpa) is a pushdown automaton A =
(Σ, Γ, Q, q0, F, ∆), where ⊥ ∈ Γ is a special bottom-stack symbol, and whose input al-
phabet and transition relation are partitioned into Σ := Σpush ∪ Σpop ∪ Σint, and ∆ :=
∆push ∪ ∆pop ∪ ∆int respectively, with the constraints that






∆push ⊆ Q × {ε} × Σpush × Q × (Γ \ {⊥})
∆pop ⊆ Q × Γ × Σpop × Q × {ε}
∆int ⊆ Q × {ε} × Σint × Q × {ε}

The transitions in ∆int hence leave the stack unchanged. The sub-alphabet Σint is the
internal alphabet.

Theorem 3.6. [1] Any vpa is equivalent to a deterministic vpa over the same alphabet.
The construction is effective.

Regarding the terminology, vpa present visibly pushdown systems (vp systems), and ac-
cept visibly pushdown languages (vp languages). A language L is a [Σint]-vp language if it
is accepted by some vpa whose internal alphabet is Σint.

According to [1], any family of vp languages with a fixed partition Σpush, Σpop, Σint of
the input alphabet is a Boolean algebra. In particular the synchronous product A1 ×A2 of
vpa is well-defined, and accepts the intersection of the respective languages.

3.3 Projection of visibly pushdown languages

Projections of languages on a sub-alphabet are central operations for partial observation
issues; we recall that the class of cf languages is projection-closed. We examine properties
of the projection over the class of vp languages.

3usual synchronous product.

PI n˚1904



10 Morvan C. & Pinchinat S.

Proposition 3.7. Any cf language is the projection of a [∅]-vp language.

Proof. Let L be accepted by a pda A = (Σ, Γ, Q, q0, F, ∆). Without loss of generality, we
can assume that A is real-time, and that ∆ is in normal form (see Definition 3.1).

Define the vpa A′ := ([Σ, {τpop} , ∅], Γ ∪ {Z} , Q′, q0, F, ∆′), where

• Z and τpop are fresh symbols,

• Q′ := Q ∪ {qpop} ∪ {qX |X ∈ Γ}, and

• ∆′ is defined by:

(p, ε, a, q, X) ∈ ∆′
push if (p, ε, a, q, X) ∈ ∆,

(p, ε, a, qpop, Z) ∈ ∆′
push if (p, ε, a, q, ε) ∈ ∆,

(qX , ε, a, qpop, Z) ∈ ∆′
push

(p, X, τpop, qX , ε) ∈ ∆′
pop

}
if (p, X, a, q, ε) ∈ ∆.

Furthermore, for each q ∈ Q, (qpop, Z, τpop, q, ε) ∈ ∆′
pop.

It is easy to verify that A′ accepts the interleavings of words of L and words of {τpop}
∗
,

which concludes the proof.

Because there exist non-deterministic cf languages and since every vp language is de-
terministic (Theorem 3.6), vp languages are not closed under projections.

Proposition 3.8. The projection of a [Σint]-vp language onto Σ′∗, with Σ′ ⊆ Σint, is a
[Σint]-vp language. The construction is effective.

Proof. Let L be a [Σint]vp language, with alphabet Σ := Σpush ∪ Σpop ∪ Σint, and let
A = (Σ, Γ, Q, q0, F, ∆) be a vpa which accepts L.

We use a standard “ε-closure” of the transitions of A. Let us write p ⇒ p′ whenever
there exists (p, ε, a, p′, ε) ∈ ∆int with a ∈ Σ′.

We defined the vpa π(A) by

π(A) := (Σpush ∪ Σpop ∪ (Σint \ Σ′), Γ, Q, q0, F
′, ∆′)

where




(p, a, X, q) ∈ ∆′
push if (p′, a, X, q) ∈ ∆push and p ⇒∗ p′, for some p′ ∈ Q,

∆′
pop and ∆′

int are defined similarly, and
p ∈ F ′ if p ⇒∗ p′ and p′ ∈ F .

It is easy to check that L(π(A)) = π(L).

4 Diagnosis problems of pushdown systems

We show that diagnosability of arbitrary deterministic pd systems is undecidable. Next, we
focus on vp systems whose diagnosability is also undecidable in general, unless unobservable
transitions leave the stack unchanged.

Irisa



Diagnosis of Pushdown Systems 11

4.1 Undecidability of diagnosability

Theorem 4.1. Diagnosability of deterministic pd systems is undecidable.

This theorem is a corollary of Proposition 3.3 and the following construction (see also
Lemma 4.2). Let A1 and A2 be two deterministic pda over Σ1 and Σ2 respectively, and let
Σ = Σ1 ∪ Σ2 ∪ {i1, i2, #}, with fresh symbols #, i1 and i2.

For i = 1, 2, let A#
i be a deterministic pda which accepts

L(Ai)#Σ∗, the set of words iiu#v where u ∈ L(Ai). Note

A#
1 ⊕A#

2 the pda depicted on the right. Mark all configura-

tions of A#
1 ⊕A#

2 whose state is in A#
1 by f ; [[f ]] is a regular

set and a trap, by construction. Notice that A#
1 ⊕A#

2 is de-
terministic.

q0

q0
1 q0

2

i1 i2

A#
1 A#

2

Lemma 4.2. The pd system presented by A#
1 ⊕A#

2 is diagnosable w.r.t. Σ \ {i1, i2} and f

if, and only if, L(A1) ∩ L(A2) = ∅.

Proof. Let S be presented by A#
1 ⊕A#

2 . We use the following alternative characterization
of diagnosability; its equivalence with Definition 2.2 is immediate.

Lemma 4.3. A des is not diagnosable w.r.t. the set of observables Σo and the proposition
f if, and only if, there exist two indistinguishable infinite executions w1 and w2 such that
w1 reaches f while w2 does not.

Consider w1 := i1u#ω indistinguishable from w2 := i2u#ω with u ∈ L(A1) ∩ L(A2).
Thus w1 reaches f but w2 does not. Apply Lemma 4.3 to conclude. Reciprocally, if S is not
diagnosable, then by Lemma 4.3, there exist indistinguishable infinite executions w1 and w2

such that only w1 reaches f ; necessarily, w1i1u#w and w2 = i2u#w for some u, entailing
u ∈ L(A1) ∩ L(A2), which concludes the proof.

4.2 The bounded-latency problem

The vp system of Figure 4.1, is diagnosable for ι and γ unobservable and f (black) marking
executions that contain the faulty event γ. Indeed, every maximal execution is finite, and its
last event is N if, and only if, γ has occurred. However, the system is not bounded latency
since N can occur after arbitrarily long executions.

We explain here the intrinsic complexity of the bounded-latency problem which is shown
to somehow contain the finiteness problem for languages, as stated by Proposition 4.4.
Notice however that the statement becomes trivial for cf languages, as their finiteness is
decidable [2]. This Proposition however will be very useful in Section 5.

Proposition 4.4. Let L be a class of languages which contains finite languages, and which
is closed under concatenation and union. If the language finiteness problem is undecidable
on L, so is the bounded-latency problem on the class of systems whose set of executions is
in L.
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�

ι

γ

�

�

�

ι

γ

�

�

ι

γ

▽

N

Figure 4.1: Diagnosable but not bounded latency.

Proof. Let L ∈ L (say with alphabet Σ). We build SL such that SL is bounded-latency if,
and only if, L is finite. The event set of SL is Σ∪{i1, i2, #, $}, with fresh symbols i1, i2, #,

and $. SL has two components L# and L$. By construction, SL ∈ L̃.

With the unobservables i1 and i2, and f which marks the
configurations of the L$ component, SL is diagnosable be-
cause events # or $ always eventually occur along any exe-
cution. It is easy to see that SL is bounded-latency if, and
only if, L finite.

q0

q1 q2

i1 i2

L# L$

4.3 The case of visibly pushdown systems

In this section we address the diagnosability and the bounded-latency problems for vp sys-
tems. We show that their diagnosability is undecidable in general, unless the unobservables
belong to the internal alphabet (Theorem 4.5). Under the latter hypothesis, bounded-latency
can also be decided (Theorem 4.7); for both problems we draw an algorithm.

We use the terminology [Σint]-vpa to put the emphasis on the internal alphabet Σint of
the automata.

Theorem 4.5. (a) Diagnosability of vp systems is undecidable.
(b) Diagnosability w.r.t. a set of observables Σo and a proposition f is decidable over any
class of [Σint]-vp systems whenever Σo ⊆ Σint and f marks a regular set of configurations.

Proof. Point (a) is an immediate corollary of Theorem 4.1 and Proposition 3.7: if the di-
agnosability of vp systems was decidable, so would it be for ordinary pd systems; this
contradicts the undecidability result of Theorem 4.1. Indeed, diagnosability w.r.t. Σo and f

of a pd system presented by a pda A is equivalent to the diagnosability w.r.t. Σo and f of
the vp system presented by a vpa whose Σo-projection is A and whose internal alphabet is
empty (Proposition 3.7).
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Diagnosis of Pushdown Systems 13

Regarding Point (b), let S be a vp system, and consider an alphabet of observables
Σo such that Σo ⊆ Σint, and a proposition f which marks a regular set of configura-
tions of A. We sketch an algorithm to decide the diagnosability of S w.r.t. Σo and f ;
the proposed method extends the solution of [10] for finite-state systems. Let the vpa

A = (Σ, Γ, Q, q0, F, ∆) represent S. We can assume A deterministic4, and, using stan-
dard techniques, we can assume that [[f ]] = F × Γ∗. We consider the (non-deterministic)
[Σint\Σo]-vpa π(A)×π(A) (over the stack alphabet Γ×Γ), obtained from the Σo-projection
explained in the proof of Proposition 3.7, and the standard product of vpa [1]. From now
on, we write F for Q \ F .

Lemma 4.6. The vpa π(A)×π(A) with initial state (q0, q0) and final states F ×F accepts
the equivocal observations.

Proof. Consider an equivocal observation θ. By definition, there exists two indistinguishable
executions u1 and u2, such that u1 and u2 match θ, but only u1 reaches f (i.e. is in L(A)).
By determinism, the unique runs of A on u1 and u2 respectively synchronize in a run of
π(A) × π(A) on θ, which necessarily reaches a configuration in (F × F ) × (Γ × Γ)∗.

Reciprocally, assume an accepting run r of π(A)× π(A) on some θ ∈ Σ∗
o. Because r can

be tracked as a run of A, θ is an observation. Moreover, r decomposes into a pair of runs
r1 and r2 in π(A) (on θ) which end in F and in F respectively. Now, r1 and r2 yield two
runs in A respectively accepting and rejecting, and whose respective words match θ; θ is
therefore equivocal.

In π(A)×π(A), an infinite run remaining in the set of configurations (F ×F )× (Γ×Γ)∗

denotes an infinite observation which has no clear prefix. By Lemma 4.3, this equivalently
rephrases as “the system is not diagnosable”. Since (F×F )×(Γ×Γ)∗ is regular the existence
of such a run is expressible in MSO, and can be decided (Theorem 3.4).

More precisely, we have to check that the graph satisfies the formula: ∃XPath∞(X).
This formula express the existence of a set X of vertices that forms a infinite path (whether
it is a loop or a straight path may also be checked). The sub-formulas are built from the
base formulas as follows:

Path∞(E) = Path(E) ∧ (∀x ∈ E, ∃y ∈ E, (x → y))

Here are the expression for Path(E):

Path(E) = (∀x, y, z ∈ E, (x → y ∧ z → y) ⇒ (x = z)) ∧

(∀x, y, z ∈ E, (x → y ∧ x → z) ⇒ (y = z)) ∧

(∀x, y ∈ E, (x →∗ y ∨ y →∗ x))

4by Theorem 3.6, A can be transformed into a deterministic vpa B, and by Remark 2.5, we equivalently
decide the diagnosability of the system presented by B.
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The last sub-formula is →∗:

x →∗ y = ∀X((x ∈ X ∧ Closed(X)) ⇒ y ∈ X)

Closed(X) = ∀x, y((x ∈ X ∧ x → y) ⇒ y ∈ X)

Theorem 4.7. Given a [Σint]-vp system S, an observation alphabet Σo with Σo ⊆ Σint,
and a proposition f which marks a regular set of configurations, it is decidable whether S is
bounded-latency or not. Furthermore, the bound can be effectively computed.

Proof. Without loss of generality, let A be a deterministic [Σint]-vpa which presents S5.
Also, we can assume S diagnosable, otherwise it is not bounded-latency and, by the hypothe-
sis on Σo and f , diagnosability is decidable (Theorem 4.5). We derive the (non-deterministic)
pda A′ from the vpa π(A)×π(A) as follows. We re-label with ε all transitions outgoing the
states in F ×F , we remove all transitions outgoing the states in F ×F , and we let (q0, q0) be
the initial state and F ×F be the final states. As such, A′ accepts the words ϑ such that θϑ

is a just-faulty-clear observation, for some equivocal observation θ. By Definition 2.4, L(A′)
is finite if, and only if, S is bounded-latency, and it is well established that the finiteness of
cf languages is decidable. Moreover, when L(A′) is finite, the value is max{|ϑ| |ϑ ∈ L(A′)}.

5 Higher-order pushdown systems

Higher-order pushdown automata [11] extend pda and reach context-sensitive languages.
We only sketch their definition, following [5].

Let Γ be a stack alphabet. For any integer k ≥ 1, k level stacks, or shortly k-stacks,
(over Γ) are defined by induction: A 1-stack is of the form [U ]1, where U ∈ Γ∗, and the
empty stack is written []1; 1-stacks coincide with stacks of pda. For k > 1, a k-stack
is a finite sequence of (k − 1)-stacks; the empty k-stack is written []k. An operation of
level k acts on the topmost k-stack of a (k + 1)-stack; operations over stacks (of any level)
preserve their level. Operations of level 1 are the classical pushX and popX , for all X ∈ Γ:
pushX([U ]1) = [UX ]1 and popX([UX ]1) = [U ]1. Operations of level k > 1 are copyk and
copyk, and act on (k + 1)-stacks as follows (S1, . . . , Sn are k-stacks).

copyk([S1, . . . , Sn]k+1) := [S1, . . . , Sn, Sn]k+1

copyk([S1, . . . , Sn, Sn]k+1) := [S1, S2, . . . , Sn]k+1

Any operation ρ of level k extends to arbitrary higher level stacks according to: ρ([S1, . . . , Sn]ℓ) =
[S1, . . . , ρ(Sn)]ℓ, for ℓ > k + 1.

A higher-order pushdown automaton (hpda) of order k is a structure A = (Σ, Γ, Q, q0, F, ∆)
like a pda, but where ∆ specifies transitions which effects operations on the k-stack of the

5We use Remark 2.5 to make this assumption valid.
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automaton. We refer to [5] for a comprehensive contribution on the analysis of hpda; follow-
ing this contribution, a set of configurations is regular whenever the sequences of operations
that are used to reach the set forms a regular language, in the usual sense. Higher-order
pushdown systems (hpds) are configuration graphs of hpda. By Theorem 4.1, their diag-
nosability is undecidable. However, similarly to first-order pd systems, higher-order vpa

(hvpa) can be considered [8].
A k-order vpa has (2k + 1) sub-alphabets Σpush, Σpop, Σint, Σcopy

r

, and Σcopy
r

, where
r ∈ [k], each of which determines the nature (e.g. push, pop, internal, copyr, copyr) of
the transitions on its symbols. Transitions on elements of Σint leave the stacks of any
level unchanged. According to [8], hvpa are neither closed under concatenation, nor under
iteration, and cannot be determinized; they are however closed under intersection.

Proposition 5.1. The projection onto Σ′∗ of a k-order vp language with internal alphabet
Σint is a k-order vp language, provided Σ′ ⊆ Σint.

Proof. The proof of Proposition 3.8 easily adapts here. Let L be a k-order vp language
accepted by the k-order hvpa A = (Σ, Γ, Q, q0, F, ∆). We again write p ⇒ p′ whenever
there exists (p, ε, a, p′, ε) ∈ ∆int with a ∈ Σo.

The hvpa π(A) which accepts π(L) is obtained by adding new transitions, and by letting
p ∈ F ′ if p ⇒∗ p′, for some p′ ∈ F . The transitions in ∆′ are obtained by replacing, in a
transition of ∆, the origin state p by the state r, provided r ⇒ p in A. Notice that ∆ ⊆ ∆′.

This construction is correct in the sense that L(π(A)) = π(L).

Theorem 5.2. For any class of k-order vp system with the sub-alphabets Σpush, Σpop,
Σint, Σcopy

r

, and Σcopy
r

(r ∈ [k]), diagnosability w.r.t. the set of observables Σo and the

proposition f is decidable, whenever Σo ⊆ Σint (the internal alphabet) and f marks a regular
set of configurations.

Proof. Let S be a k-order vp system presented by A = (Σ, Γ, Q, q0, F, ∆). By Proposi-
tion 5.1, π(A) is a k-order vpa, and Lemma 4.6 for first-order vp system can be easily
adapted.

Lemma 5.3. The non-deterministic k-order vpa π(A)×π(A) with initial state (q0, q0) and
final states F × F accepts the equivocal observations.

As in the proof of Theorem 4.5, checking diagnosability amounts to decide an MSO-
property (the existence of an infinite run remaining in configurations whose states are in
(F × F )). Since Theorem 3.4 for MSO-properties model-checking extends to hpda [6], we
are done.

The bounded-latency problem. We are unable to generalize Theorem 4.7 to hvp sys-
tems for the following reasons. Deciding the finiteness of L(A′) in the proof of Theorem 4.7
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is a key point. Fortunately, the finiteness of cf languages is decidable, thanks somehow to
its decidability for real-time pda6. For hpda, we have a similar result.

Theorem 5.4. The finiteness of a real-time hpd language is decidable.

Proof. Let L be a real-time hpd language presented by the real-time hpda A = (Σ, Γ, Q, q0, F, ∆).
Because A is real-time, the finiteness of L is equivalent to the finiteness of the set of accept-
ing runs of A.

By [5], the following sets are regular:

• R, the set of configurations reachable from the initial configuration;

• F , the set of final configurations;

• coR(C), the set of configurations that reach a fixed configuration C;

If the regular set R ∩ F is infinite, then we can build infinitely many accepting runs,
L is hence infinite. Otherwise, R ∩ F = {C1, . . . , Cm}. Consider the regular set D :=
R∩ (coR(C1)∪ . . . coR(Cm)); it is the set of configurations which belong to some accepting
run of A.

If D is infinite, we can build arbitrarily long accepting runs; therefore, L is infinite.
Otherwise, we consider the finite-state automaton obtained by restricting the configuration
graph of A to the finite set D. The language of this automaton is finite if, and only if, L is
finite.

Unfortunately, the Theorem 5.4 requires to assume a finite set of initial configurations,
which is too restrictive in general as illustrated by the example of Figure 5.1: the proposed
system is a higher-order

� �

ι γ

▽ ▽

△ N

ι γ

▽ ▽

△ N

ι γ

▽ ▽

△ N

Thanks to the event either △ or N, that eventu-
ally ends an execution, diagnosability is clear for
the only unobservables are ι and γ, and f (black)
marks the faulty executions – those which contain
the faulty event γ. It is also bounded-latency since
once a faulty execution occurs, a single additional
observable suffices to decide whether the current
execution is faulty or not. However, the language
(�)∗▽ of equivocal observations reaches infinitely
many configurations.

Figure 5.1: Bounded delay, but infinitely many equivocal configurations

However, the pda A′ is not real-time in general, and deciding whether an arbitrary
hpda is equivalent to a real-time one or not is an open question, conjectured negative by

6and Proposition 3.2.
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[4]. The finiteness of an arbitrary hpd language is therefore a difficult question. Moreover,
provided the argument for Proposition 4.4 easily extends to hvp language, hopes to decide
the bounded-latency problem for hvp systems considerably lessen.

Nevertheless, this problem can sometimes be answered positively.
Consider a hvp system S, presented by the hvpa A = (Σ, Γ, Q, q0, F, ∆). By Lemma 5.3,

the language Υ of the real-time hpda π(A)×π(A) (with initial state (q0, q0) and final states
F × F ) is the set of equivocal observations; its finiteness is hence decidable (Theorem 5.4).

• If Υ is finite, the bounded-latency value is

max{|ϑ| | ∃θ ∈ Υ, θϑ is just-faulty-clear}

• Otherwise, we inspect the set C of configurations reached by Υ; it is regular by [5],
and can be effectively computed.

– If C is finite, for each C ∈ C, define the real-time hpda AC as π(A)×π(A) where
transitions outgoing states in F × F have been cut, with initial configuration C,
and with the final states F × F . Decide the finiteness of L(AC) (Theorem 5.4).
If every L(AC) is finite, then S is bounded-latency with the value

max{|ϑ| |ϑ ∈ ∪C∈CL(AC)}

– If C is infinite, nothing can be inferred.

6 Conclusion

Formal methods for the diagnosis of discrete-event systems have been widely investigated
since the seminal paper of [13]. Sticking to so-called centralized diagnosis problems, that is
diagnosis problems with a single system and a single diagnoser, particular attention has been
paid to the diagnosability property, as a cornerstone to establish the completeness of the
diagnoser. Deciding the diagnosability of finite-state systems is easy, with polynomial time
solutions [9, 10, 13]; notice that moreover, the bounded-latency property is an immediate
corollary of diagnosability. On the other hand, to our knowledge, the diagnosability and the
bounded-latency problems for infinite-state discrete-event systems were unexplored so far.

The present work brings to light distinctive elements to decide diagnosability, and cir-
cumscribes relevant classes of instances of diagnosis problems. The obtained results extend
in two directions. On the model side, we have considered the rich collection of pushdown
systems, whose set of executions may be context-free languages, and even context-sensitive
languages for higher-order pushdown systems. On the specification side, it is important to
remark that the class of properties we have considered, although necessarily restricted to
topologically open sets of words [3], strictly extends regular sets [9]: allowing properties
characterized by a regular set of configurations (in the sense of [5]) yields a set of executions
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that is not regular, i.e. that is not characterized by a finite-state automaton (indeed it can
be seen as the product of the pushdown automaton with a finite state system).

An essential outcome of this contribution is the need to consider classes of models where
the projection over the alphabet of observables has good computational properties, and
where the product can also be effectively handled. Our way to enforce this computabil-
ity gives only a sufficient condition based on syntactic criteria between the alphabets, and
strongly depends on the presentation used to describe the system’s executions. Since pre-
sentations are not unique in general, we may wish to exhibit conditions for decidability
at a more semantic level: to illustrate this, consider a system whose set of executions is
(ab)n(cd)n. It is easy to design a (first-order) visibly pushdown automaton over the al-
phabet partition [{a, b}, {c, d}, ∅] that describes this system. For such a presentation, our
criterion (Theorem 4.5.(b)), does not allow any unobservable event (because each event
operates on the stack) and yet, the projection of (ab)n(cd)n onto the alphabet {b, c, d} is
bn(cd)n, a visibly pushdown language. In fact, the presentation chosen above to describe
(ab)n(cd)n was unfortunate, whereas another visibly pushdown automaton over the alpha-
bet e.g. ({b}, {d}, {a, c}) exists and is adequate for diagnosis problem instances where a is
unobservable. We believe that a structural analysis of a fixed presentation can shed light on
the alphabets of observables that yield computable projections with good properties, hence
entailing more general methods for diagnosis problems, or other connected topics of partial
observation.
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