A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity

Raymond Ros 1 Nikolaus Hansen 1, 2
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : This paper proposes a simple modification of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for high dimensional objective functions, reducing the internal time and space complexity from quadratic to linear. The covariance matrix is constrained to be diagonal and the resulting algorithm, sep-CMA-ES, samples each coordinate independently. Because the model complexity is reduced, the learning rate for the covariance matrix can be increased. Consequently, on essentially separable functions, sep-CMA-ES significantly outperforms CMA-ES. For dimensions larger than a hundred, even on the non-separable Rosenbrock function, the sep-CMA-ES needs fewer function evaluations than CMA-ES.
Document type :
Conference papers
10th International Conference on Parallel Problem Solving From Nature, Sep 2008, Dortmund, Germany. 2008
Liste complète des métadonnées


https://hal.inria.fr/inria-00287367
Contributor : Raymond Ros <>
Submitted on : Monday, June 23, 2008 - 6:04:18 PM
Last modification on : Thursday, February 9, 2017 - 3:55:44 PM
Document(s) archivé(s) le : Friday, September 28, 2012 - 3:51:01 PM

File

sepCMA_PPSN2008HAL.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00287367, version 1

Collections

Citation

Raymond Ros, Nikolaus Hansen. A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity. 10th International Conference on Parallel Problem Solving From Nature, Sep 2008, Dortmund, Germany. 2008. <inria-00287367>

Share

Metrics

Record views

480

Document downloads

299