
HAL Id: inria-00200450
https://inria.hal.science/inria-00200450

Submitted on 20 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Verification of CHP Specifications with CADP -
Illustration on an Asynchronous Network-on-Chip

Gwen Salaün, Wendelin Serwe, Yvain Thonnart, Pascal Vivet

To cite this version:
Gwen Salaün, Wendelin Serwe, Yvain Thonnart, Pascal Vivet. Formal Verification of CHP Specifica-
tions with CADP - Illustration on an Asynchronous Network-on-Chip. Proceedings of the 13th IEEE
International Symposium on Asynchronous Circuits and Systems ASYNC 2007, Mar 2007, Berkeley,
California, United States. �inria-00200450�

https://inria.hal.science/inria-00200450
https://hal.archives-ouvertes.fr

Formal Verification of CHP Specifications with CADP
Illustration on an Asynchronous Network-on-Chip

Gwen Salaün, Wendelin Serwe
INRIA Rhône-Alpes / VASY, Montbonnot, France

Email: Wendelin.Serwe@inria.fr

Yvain Thonnart, Pascal Vivet
CEA/Leti - MINATEC, Grenoble, France

Email: Yvain.Thonnart@cea.fr
Pascal.Vivet@cea.fr

Abstract

Few formal verification techniques are currently avail-
able for asynchronous designs. In this paper, we describe
a new approach for the formal verification of asynchronous
architectures described in the high-level languageCHP, by
using model checking techniques provided by theCADP

toolbox. Our proposal is based on an automatic translation
from CHP into LOTOS, the process algebra used inCADP.
A translator has been implemented, which handles fullCHP

including the specific probe operator.
TheCADP toolbox capabilities allow the designer to ver-

ify properties such as deadlock-freedom or protocol correct-
ness on substantial systems. Our approach has been suc-
cessfully applied to formally verify two complex designs. In
this paper, we illustrate our technique on an asynchronous
Network-on-Chip architecture. Its formal verification high-
lights the need to carefully design systems exhibiting non-
deterministic behavior.

1. Introduction

Process calculi are acknowledged as appropriate for-
malisms to describe concurrent systems. For the descrip-
tion of asynchronous hardware, several VLSI programming
languages based on process calculi have been proposed,
as for instance CHP (Communicating Hardware Processes)
[22], DI-Algebra [30], HASTE [26] (formerly TANGRAM

[18]), or BALSA [9]. These languages allow the descrip-
tion of concurrent processes communicating via handshake
synchronizations, and are supported by synthesis tools that
can generate the implementation of a design from its pro-
cess algebraic description. For instance, the TAST synthe-
sis tool [28] can generate QDI (Quasi Delay Insensitive)
netlists from CHP descriptions and is being used to elab-
orate complex designs. However, for CHP specifications,
few formal verification means are available, although they

are essential in an asynchronous context to reduce the risk
of errors in the design.

Our goal is the verification of asynchronous hardware
designs specified in CHP using existing model checking
tools that are based on the exploration of LTSs (Labelled
Transition Systems), also known as finite state machines.
Examples of properties to be checked are the absence of
deadlocks or the correct sequencing of communications in
a protocol (some stimuli are always followed by the appro-
priate responses). In this work, we used the model checking
tools available in the CADP toolbox [12]. CADP takes as
input LOTOS [15] specifications, and provides an efficient
tool for exploring the state space of a LOTOSdescription.

Our approach is based on the translation from CHP to
LOTOS. Such a high-level translation has been chosen since
CHP and LOTOS are both inspired by the process algebra
CSP [14], i.e., they are based on the same kernel of behav-
ioral operators, namely sequential composition, choice, and
parallel composition. This translation is not trivial though
because CHP has some hardware related specificities that do
not exist in LOTOS. In particular, communication in CHP is
not necessarily atomic (as it is in standard process calculi):
theprobeoperator [21] of CHP allows to check whether the
communication partner is ready for a communication or not,
but without performing the communication actually.

A translator tool has been implemented and was used
successfully for the verification of two industrial case stud-
ies designed at the CEA/Leti laboratory, namely an asyn-
chronous implementation of the DES (Data Encryption
Standard) [24] and ANOC, an asynchronous Network-on-
Chip architecture [1]. This paper focuses on ANOC, the
input controller of which is used for illustration purposes.
We show how informal properties to be ensured are formal-
ized and checked using the verification means available in
CADP.

The organization of the paper is as follows. Section 2
overviews our translation from CHP into LOTOS. Sec-
tion 3 shows how verification of hardware architectures is
achieved using CADP tools. In Section 4, we present the

ANOC architecture, and we illustrate in Section 5 the ap-
plication of our approach on a part of ANOC. Section 6
compares our proposal with related work. Section 7 ends
the paper with some concluding remarks.

2. Translation of CHP into LOTOS

Translating CHP into LOTOS is quite straightforward for
most CHP operators, since both languages are based on
the process algebra CSP (see Appendices A and B for a
brief summary of both languages). Thus, communication in
both directions (emissions and receptions), guarded behav-
ior, sequential and parallel composition, and nondeterminis-
tic choice exist in both languages. There are, however, some
noticeable differences. For instance, CHP types (Booleans,
natural numbers, bit vectors, etc.) are translated into LOTOS

abstract data types. Similarly, CHP operations are translated
into LOTOS operations, which are implemented either us-
ing algebraic equations or, more efficiently, by external C
code, using the possibilities offered by CADP. CHP loops
are translated into recursive processes in LOTOS because
LOTOSdoes not have a similar loop construct.

A major difference between CHP and LOTOS is the
hardware-specific probe operation of CHP, which has no
equivalent in LOTOS. A previous version [29] of the trans-
lation focused on CHP behaviors using the probe only as a
single operator in guards. To deal with the full specification
of complex designs such as ANOC, we have extended our
translation to handle probes in general expressions and to
support complex datatypes and code specialization.

2.1. Translation of the Probe

A probe “c#” (activity probe) allows a passive process
(either emitter or receiver) to check if its active partner has
already initiated a communication on channelc without per-
forming the communication actually. The notation “c#V ”
(value probe), which can only be used by a receiver, checks
if the sender has initiated the emission of the particular
valueV . The probe operator enables a form of shared mem-
ory communication, and does not exist in classical process
calculi based solely on message passing. Hence, its trans-
lation requires the generation of additional communications
representing the access to the active channels to be probed.

To alleviate the overhead due to the general translation
of probe operations, our approach uses code specialization,
i.e., the translation of a communication channelc depends
whether and howc is probed.

• unprobed channel: each CHP emission/reception is
translated directly to its LOTOSequivalent.

• general case: the evaluation of an expression contain-
ing probes requires information on the state (commu-

CHP

Active emission

c!V

Passive reception Probe “c#”

c?x

c!Probe

LOTOS
c!V c!Probec?x

Figure 1. Single probe translation

nication pending or not) of the probed channels. The
shared resource corresponding to a channelc is trans-
lated by an additional LOTOSprocesschannel c with
two states, representing whether a communication has
been initiated but not yet acknowledged; a probe oper-
ation allows to check the state ofchannel c.

• single probe: if a channelc is probed in a guard (con-
taining no other probe operation), the additional LO-
TOS process can be avoided. In this case, the probe
(passive side) is translated as a communication with an
additional flag “!Probe” to distinguish it from a regu-
lar communication. The guarded statement can be exe-
cuted as soon as the probe communication is possible.
The communication on the active side is translated in a
loop: both processes can interact on the probe commu-
nication1 as often as necessary until the effective com-
munication between them takes place. This translation
is summarized in Figure 1 and detailed in [29].

In case of a probed channel, the translation scheme sim-
ulates a two-phase protocol with the effective communi-
cation corresponding to the acknowledgement. Otherwise
(unprobed channel), such a protocol is avoided to reduce
the corresponding state space. The examples in the remain-
der of this paper use only the unprobed and single probe
case.

2.2. Tool Implementation

A translator from CHP to LOTOS has been developed
using the SYNTAX and LOTOS NT compiler construction
technologies [11]. It consists of 2,200 lines of SYNTAX ,
13,400 lines of LOTOS NT, and 3,900 lines of C. This tool
has been validated on more than 500 CHP specifications,
corresponding to about 14,500 lines of CHP. We emphasize
that this tool allows a completely automated translation for
full CHP including probes and hierarchical components.

As regards semantics preservation, the translation of the
probe operation requires the generation of additional hidden
communications leading to internal transitions labelled by
τ ; thus it is impossible to preserve strong equivalence [23],

1The value-matching feature of LOTOS ensures that two offers
“!Probe” will synchronize.

which handlesτ transitions similarly to visible transitions,
but only weak equivalences that allow additionalτ transi-
tions. Our translation preserves observational equivalence
[23], as checked in practice on many examples.

3. Architecture Verification with CADP

The verification technique implemented in the CADP

toolbox [12] is calledenumerativesince it is based on the
explicit enumeration of states. To verify properties of large
state spaces, CADP incorporates different techniques, such
as static analysis, distributed, and compositional verifica-
tion, that help to circumvent the so-called state explosion
problem.

In this section we focus on the use of CADP for the verifi-
cation of asynchronous architectures. In a first step, an LTS

that is smaller, but equivalent to the complete state space,
is generated compositionally. This LTS is then used in a
second step for the verification of the interesting properties.

3.1. Compositional State Space Generation

The underlying principle of compositional state space
generation is “divide and conquer”: instead of a single
monolithic generation step, the state space of the complete
system is obtained by alternating generation, minimization,
and sub-system-composition steps. This approach is par-
ticularly efficient if the subsystems contain internalτ tran-
sitions (representing details not required for the composi-
tion with the rest of the system), some (or even most) of
which might be removed during minimization modulo a
weak equivalence abstracting fromτ transitions.

The successful use of compositional state space genera-
tion requires some care, since the state space of some part
of the overall system might be larger than the state space of
the complete system. For instance, the state space of a sim-
ple buffer generated separately containsall possible values,
whereas onlysomeparticular values might be buffered in
the complete system. Thus, the state space of a specific part
of the system should be generated only if the constraints
imposed by its environment are also taken into account, so
that only the relevant part of its state space is generated.

Furthermore, restricting the input values of the system
allows to reduce the size of the generated state space. Dif-
ferent techniques can be used for this purpose.

• Using the idea of data independence, if some parts of
the input values have no influence with respect to the
interesting properties, they can be chosen constant, so
as to abstract from differences in the data values which
otherwise would multiply the size of the state space
accordingly.

• A specific environment, i.e., additional CHP processes
implementing the environment of the system guaran-
teeing that only realistic stimuli are provided, avoids
the enumeration of stimuli that will never occur in
practice. Here and in the sequel, a stimulus is a com-
munication with a passive port, i.e., either sending a
message to a passive input port or requesting the emis-
sion of a message from a passive output port.

A specific environment may also include additional
ports on which messages are sent if an error has been
detected.

• Exploiting symmetry arguments, the generation of a
single state space taking into account all possible or-
derings of inputs can be replaced by the generation of
several smaller state spaces corresponding toscenarios
representing particular subsets (e.g., sequences) of the
inputs. These scenarios should be expressed in CHP

and integrated in the specific environment.

The compositional generation of the state space is fa-
cilitated by the use of SVL (Script Verification Language)
[10], which allows a high-level and concise description of
the calls to the different CADP tools. The order in which
the different processes are combined has to be determined
manually following the data path of the stimuli, requiring
knowledge about the architecture. Since this order does not
depend on the scenario, a single SVL script can be used for
the compositional generation of the LTSs corresponding to
several scenarios.

3.2. Property Verification

In the following, we describe the techniques for the veri-
fication of three different kinds of properties relevant in the
validation of asynchronous hardware architectures.

3.2.1. Deadlock Freedom. Given the complete state
space of a system, it is straightforward to check the absence
of deadlocks by counting the number of successors of ev-
ery state. In CADP, this property is printed as one of the
standard characteristics of an LTS.

Notice that most of the remaining properties require a
cyclic behavior. Thus their verification would fail if the sys-
tem might deadlock.

3.2.2. Correct Stimulus-Response Protocol.Code in-
spection allows to verify that a single basic process of an
asynchronous design conforms to the basic protocol, i.e.,
executes a cyclic behavior producing from a set of stim-
uli {S1, . . . , Sm} a set of responses{R1, . . . , Rn}. To ver-
ify this property for more complex components, containing

several subcomponents and processes, the following three-
step approach relying on the equivalence checking tools of
CADP can be used.

1. To check the cyclic occurrence of the whole set of
stimuli, all transitions but the stimuliSi are hidden
(i.e., transformed toτ transitions) in the generated
LTS, and the resulting LTS is then compared to an LTS

describing the cyclic arrival of stimuli in any order;
this second LTS can be given explicitly, or be gener-
ated from a LOTOS or CHP description, namely the
CHP process “[(S1, . . . , Sm); loop]”.

2. To check the cyclic occurrence of the whole set of re-
sponses, the same technique can be applied as for the
stimuli.

3. To check that the set of stimuli generates the set of
responses, it is now sufficient to choose a single stim-
ulus S and a single responseR and to verify thatS
generatesR; the advantage is to avoid to consider all
possible orderings of stimuli and responses. This step
can be achieved by comparing with the LTS generated
from the CHP description “[S;R;loop]”.

Notice that it is not sufficient to compare the LTS —
after hiding all transitions but the stimuli and responses
— with a second LTS corresponding to the CHP pro-
cess “[(S1, . . .,Sm);(R1, . . .,Rn);loop]”, since this
would require that the first response occurs necessarily after
the last stimulus, which might not be the case if a response
Rj depends only on a subset of the stimuli.

3.2.3. Functional Properties. General functional proper-
ties can be verified in two ways. A first approach is to en-
rich the specific environment with observer processes that
monitor the stimuli and responses, and signal any detected
error (e.g., faulty responses) by a particularError tran-
sition or block the system as soon as an error is detected.
In this case, the verification of the property is tantamount
to checking the reachability of anError transition or the
absence of deadlock.

A second possibility is classical model checking. In
this case, the property is expressed formally using a tempo-
ral logic, e.g., regular alternation freeµ-calculus in CADP.
Then, a model checker, EVALUATOR [4], is used to verify if
the generated state space, possibly after hiding some transi-
tions, satisfies the formula.

The temporal logic used in CADP allows two modalities:

• the formula “[S] ϕ” is true in a states, if all transi-
tion sequences of the formS and starting ins lead to a
state whereϕ is true.

• the formula “< S > ϕ” is true in a states, if there exists
a transition sequence of the formS, starting ins, and
leading to a state whereϕ is true.

In both cases, the pattern of a transition sequenceS in the
modal operator can use regular expressions on predicates of
transition labels. In particular, the predicatetrue is true
for every transition; thus the regular expression “true*”
describes a possibly empty sequence of transitions.

4. An Asynchronous Network-on-Chip

The verification approach described in Sections 2 and 3
is illustrated hereafter on the CHP specification of an ac-
tual asynchronous design, namely ANOC, an Asynchronous
Network-on-Chip architecture [1], which was used as the
backbone of FAUST, a 4th Generation Wireless Telecom
Baseband [8].

This Section presents the asynchronous node of ANOC

with a specific focus on its input controller, which will be
used in Section 5 for illustration of our approach.

4.1. ANOC Outline

ANOC relies on the GALS (Globally-Asynchronous
Locally-Synchronous) paradigm, in which synchronous re-
sources communicate through a fully asynchronous net-
work. Resources are connected to the network via a syn-
chronous network interface providing all higher-level net-
work services (packetization, flow-control, . . .) and ap-
plication services (synchronization, scheduling, . . .), which
connects to the switching fabric through a GALS interface,
as described in [2].

The five-port asynchronous network node is the elemen-
tary component of ANOC. It provides the lower-level net-
work services, i.e., routing and arbitration of the transit-
ing packets. It is actually made of five input controllers,
which route incoming packets to one of the other four ports,
and five output controllers, which arbitrate between packets
heading for the same output.

Although no assumption is made on the topology of the
network as regards the architecture of the node, it was cho-
sen in the FAUST implementation of ANOC to connect the
nodes in a 2D-Mesh topology, as seen in Figure 2.

It is crucial for any application that the interconnect
structure transfers data without corruption, and with a suffi-
cient level of QoS (Quality-of-Service). At a system level,
a 2D-Mesh topology presents several advantages (scalable
bandwidth, easier place and route on silicon), but also en-
ables theorem proving thanks to its regular structure. For in-
stance, using the “odd-even turn model” routing algorithm
[6], a routing of the communications in the network that
avoids any deadly embrace can be computed.

Figure 2. FAUST network architecture

Such analytical methods can often guarantee high-level
properties, but always rely on an ideal operation of the asyn-
chronous nodes. It is hence necessary to verify, at design
level, that a node strictly complies to the ANOC protocol.

4.2. Functional Specifications: ANOC Protocol

Formal verification has to rely on rigorous functional
specifications of the design. In the following, we describe
the network protocol of ANOC that the asynchronous node
should implement.

4.2.1. Data-Link Layer. The elementary piece of infor-
mation transiting on the links of ANOC is called aflit (flow-
control unit). In order to provide QoS in the network, ANOC

was designed using two VCs (Virtual Channels) with differ-
ent priority levels, used to transmit flits according to their
precedence. A VC identifier is associated to every flit tran-
siting in the network, and is propagated through aSend
channel in the whole path, along with the actualData.

The asynchronous node dispatches incoming flits inside
its internal buffers according to this VC identifier, so that
contention, i.e., the need for arbitration between two com-
munications, may appear only between flits sharing the
same VC. The arbitration between VCs was made static,
so that VC0 always holds priority before VC1.

This mechanism actually creates two independent logi-
cal networks, one of which may be kept lightly loaded for
low-latency signalling messages.

Additionally, a flit-based flow control mechanism had to
be implemented to control the buffering capacity of each
port on VC1. Indeed, the separation into VCs requires
that the physical link between two nodes must be kept free
for a new flit on VC0 after each flit on VC1. Since the
link is shared by the two VCs, letting flits accumulate on
VC1 more than the buffering capacity of the input con-
troller would block flits of the other VC in the shared part.
An Accept1 channel was therefore introduced, indicating

that a new flit can be buffered on VC1 in the input con-
troller. This defines on VC1 a data-link protocol where a
token on theAccept1 channel is consumed by the emitter
before each transmission onSend andData, and is regen-
erated once the transmission is over. The protocol on VC0
is simpler, as it only requires simultaneous transmissionson
Send andData.

4.2.2. Network Layer. In order to minimize the overhead
of routing information in every communication, the ANOC

protocol is based on packet switching: several consecutive
flits are gathered, using a single VC, into a packet, which
will be transmitted, on this VC, without interruption. This
requires an identification of the first and last flits of a packet:
we introduced therefore two additional bits to the 32 bit data
path, coding thebegin of packet(BOP) andend of packet
(EOP) informations.

Furthermore, in order not to handle complex routing ta-
bles, we used static source routing of the packets. Rout-
ing information (path-to-target) is provided in the first flit
(header) of a packet, as a vector of dibits containing the
successive directions to follow. Each node actually uses the
two lower bits of this vector in the first flit to route the whole
packet in the given direction, and shifts thepath-to-targetso
that it can be used by the following node.

BOP EOP header flit payload path to target
33 32 31 18 17 0

Header flit

BOP EOP body flit payload
33 32 31 0

Body flit

BOP EOP flit id. fixed sequence dest.
33 32 31 30 29 2 1 0

Simplified flit for formal verification

Figure 3. Flit format

Figure 3 presents the structure of the actual flits transit-
ing in the network, and how these flits can be constrained
for the formal verification of the input controller of ANOC.
Considering only theVC identifier, BOP, EOP, thedestina-
tion, and a 2-bitflit identifier, we can reduce the potential
state space of the input controller from about5 ∗ 1025 states
to about5 ∗ 1016 states2. The fixed sequence used for the
flit payload is made so that it reflects the data integrity, in-
cluding the shift of thepath-to-target.

2These numbers are obtained by multiplication of the numbersof states
of the separate processes; due to synchronizations, the actual number might
be slightly smaller.

4.3. CHP Design of the ANOC Input Controller

The asynchronous node was first developed using a
coarse description level in SystemC/TLM , which was used
to set up the various layers of the ANOC protocol at a system
level [1]. Then, an equivalent functional CHP model of the
node was written, and was later refined into elementary CHP

processes that could be synthesized using a WHCB (Weak-
Condition Half-Buffer [19]) circuit template, and mapped
onto a specific standard cell library.

We chose to apply our formal verification technique on
the refined CHP model of the input controller of the ANOC

node, whose behavior is the closest to the actual implemen-
tation in the FAUST chip.

The internal micro-architecture of the input controller is
given in Figure 4, and was described more precisely in [1].
In this figure, light grey processes are actually synthesized
with combinational logic.

Accept1_from2

Accept1_from0
Accept1_from1

Accept1_from3

BOP1_to0

BOP1_to2
BOP1_to1

BOP1_to3

Valid1_to0

Valid1_to2

in_Accept1

in_Send

in_Data

Cmd_Shift

Valid1_to3

Valid1_to1

Valid0_to2
Valid0_to1

Valid0_to3

Valid0_to0

EOP1_to0
EOP1_to1

EOP1_to3

EOP0_to0

EOP0_to2
EOP0_to1

EOP1_to2

Data0_to3

Data0_to1
Data0_to0

Data0_to2

Data1_to3

Data1_to1
Data1_to2

Data1_to0

EOP0_to3

Split
EOP0

Split
Data1

Split

Gather

EOP1

Dest1

Dest0

Accepts

Route

Data0
Split

BOP1

Valid1

EOP1

Data1

Data
Fork

Data
Shift

Flit

Figure 4. Input controller micro-architecture

The interface of the input controller complies, on the
data-link side, to the ANOC protocol, and consists therefore
of the signalsin Data, in Send andin Accept1. The
internal control and data signals from an input controller to
the output controllers are:

• Data0 andData1, buffered in the two VCs, that the
input controller broadcasts to every output controller,
only one of which will acknowledge the channel.

• Validi tod signals notifying the availability of a
new flit onDatai to the output controllerd.

• BOPi tod signals, notifying the begin of a packet,
necessary to trigger arbitration on the output controller.

• EOPi signals, notifying the end of a packet, broadcast
in the same way asDatai, necessary to enable a new
arbitration on the output controller.

• Accept1 fromd signals from the output controller,
indicating that a new flit can be sent on VC1.

A peculiarity in this design is the use of passive combi-
national splits at the output of the input controller, in order
to reduce the gate count compared to a 34-bit passive-in /
active-out commanded split. At implementation level, such
a combinational split is indeed only a AND4 gate merging
the “active low” acknowledgement signals, while the data
wires are forked to every output controller.

This behavior was described in CHP using a passive out-
put, which can be probed for communication requests by
the output controllers. The actual notification of the output
controllers is done by theRoute Flit process, using the
Validi tod signals.

The CHP code of such a process is given below:

process Split_Data0 port (
Data0 : in DI passive MR[4][17];
Data0_to0 : out DI passive MR[4][17];
Data0_to1 : out DI passive MR[4][17];
Data0_to2 : out DI passive MR[4][17];
Data0_to3 : out DI passive MR[4][17])

variable x : MR[4][17];
begin
[
@[
Data0_to0# => Data0?x; Data0_to0!x; break
Data0_to1# => Data0?x; Data0_to1!x; break
Data0_to2# => Data0?x; Data0_to2!x; break
Data0_to3# => Data0?x; Data0_to3!x; break
];loop

];
end;

5. Formal Verification of the Input Controller

The translation from CHP to LOTOS and compositional
state space generation described in Sections 2 and 3 have
been used to set up a formal model of the input controller of
ANOC. Using this model, it is possible to check the func-
tional properties describing its conformance to the ANOC

protocol.

5.1. Translation of the CHP Design into LOTOS

First of all, for each considered scenario, the CHP de-
sign of the input controller (about 1,200 lines of code) is
translated in less than one second into LOTOS(about 3,600
lines of code) using our translator tool. Let us show the
LOTOS code obtained after translation of the CHP process

Split Data0 shown above (find in Appendix B a sum-
mary of the LOTOS operators). The LOTOS process below
is slightly simplified since we removed the explicit list of
gates “[Data0 tod]” coming with every process call.

process Split_Data0: noexit :=
Data0_to0 !Probe;

Data0 ?data:MR4_17; Data0_to0 !data;
Split_Data0

[]
Data0_to1 !Probe;

Data0 ?data:MR4_17; Data0_to1 !data;
Split_Data0

[]
Data0_to2 !Probe;

Data0 ?data:MR4_17; Data0_to2 !data;
Split_Data0

[]
Data0_to3 !Probe;

Data0 ?data:MR4_17; Data0_to3 !data;
Split_Data0

endproc

The CHP process contains simple probes in its guards
that are translated as communications in LOTOS with the
specific offer “!Probe” to distinguish them from regular
communications on the same channels. A branch of the
choice structure in the LOTOS process can be executed if
and only if an active process is ready to communicate on
this particular channel with the process at hand.

5.2. State Space Generation

In order to provide realistic stimuli to the input controller
of ANOC, several scenarios were used with packets of dif-
ferent length (one or more flits), emitted sequentially or
overlapping on different channels and to different destina-
tions. The composition order of the different processes used
to build the state space of the input controller has been deter-
mined following the data path of the input values according
to the architectural schema presented in Section 4.3.

The description of the 41 steps to generate the LTS cor-
responding to the input controller of ANOC for a particular
cycle of four flits requires 483 lines of SVL . The script is
generic in the sense that it can be used to generate the state
space for all stimuli using only simplified flits as described
in Figure 3. In the remainder of this section, we consider
the scenario based on the sequence of four packets (each
containing exactly one flit) sent on virtual channel VC0 al-
ternatively to destination0 and to destination1. For this
scenario, the SVL script generates, in about four minutes,
the corresponding LTS with 1,300 states, 3,116 transitions,
and 34 labels without any hidden internal transition. The
largest intermediate LTS observed during the generation has
295,893 states and 812,283 transitions. Similar values are

observed when the SVL script is used for the generation of
LTS corresponding to different cycles of four flits.

5.3. Verification of the Functional Specifications

Even though the micro-architecture of the input con-
troller was used during the state space generation, the prop-
erties to which it should conform were defined as if it were a
blackbox. Thus, we enunciated functional properties, which
describe the protocols at the interfaces, not biased by any
structural hypothesis.

Similarly to the compositional state space generation, the
verification of the properties uses a SVL script (of about 250
lines) which facilitates the calls to the different CADP tools,
required for hiding and renaming of transitions, as well as
equivalence and model checking. A further advantage of the
script is the possibility to automate the verification of differ-
ent scenarios. For a scenario with cyclic sequences of four
flits, the execution of the script checking all the properties
presented below takes about three minutes.

5.3.1. Infinite Occurrence. The input controller may not
reach a state where a communication may not occur any-
more on an asynchronous channel. For every signalS, it
should have a “quasi-cyclic” behavior in a closed system.

These properties were checked with the CADP toolbox
as explained in Section 3.2. Every state of the state space
has a successor, which means there is no deadlock state.
Furthermore, for a signalS, the “quasi-cyclic” behavior is
verified using the observational equivalence-checking tech-
nique to compare the LTS of the input controller with the
LTS of a CHP process “[S!;loop]”, after hiding every
other signal in the input controller.

5.3.2. Protocol Correctness. The input controller must
comply at its inputs with the ANOC protocol, and transmit
the incoming data to an output controller. On VC0, this
means that an incoming flit will generate an emission to an
output controller.

This was proven formally using a stimulus-response pat-
tern, as described in Section 3.2: the two stimuliin Data
and in Send together must lead to the three responses
Validi tod, Datai, andEOPi, where the values ofi —
the virtual channel (0 or 1) — andd — thedestination(0,
1, 2, or3) — are obtained by inspection of the values com-
municated onin Data.

On VC1, an accept token must be used and regenerated
accordingly, but this is actually done in the output con-
troller. Environment processes simulating the output con-
trollers were described in the specific environment of the
input controller, which perform this task. The property de-
scribing this behaviour actually ensured correctness of the

combination of these additional processes to the input con-
troller. Decorrelation of the accept process from the for-
ward data flow of the input controller can be seen in Figure
4 of Section 4.3: the architecture of the input controller is
divided in two unconnected parts.

5.3.3. Data Integrity. The content of the communications
must be preserved by the input controller. Body flits should
be transmitted without alteration, while header flits should
be transmitted with theirpath-to-targetfield shifted, pre-
serving theBOP, EOP, andheader payloadfields.

This functional property has been verified by integrating
observer processes in the specific environment: the environ-
ment processes simulating the output controllers have been
enriched in order to compare the data from the input con-
troller with the expected result, determined according to the
flit provided as a stimulus to the input controller.

5.3.4. Packet Routing. The input controller has to route
all the flits of a packet in the right direction. A header flit
will be routed to the output controller specified by its desti-
nation field, while a body flit will use the same direction as
the previous header flit.

The following formula expresses that after every se-
quence of transitions such that after an unspecified start a
transition labelled with a request to emit a priority packet
(predicate “on channel(0)”) is followed by a transi-
tion labelled with a request to emit a data packet to des-
tination 1 (predicate “to dest(1)”), the next commu-
nication on one of the channelsData0 tod (predicate
“no Data0 toD()” is true for all other transitions) is nec-
essarily on channelData0 to1:

[true* . on_channel(0) . to_dest(1)]
<(no_Data0_toD())* . ’Data0_to1’>
true

Unfortunately, this formula does not hold for the LTS

(after hiding all transitions on channels different from
in Send, in Data, and Data0 tod). The counter-
example provided by EVALUATOR [4], the model checker
of CADP, shows the possibility that, contrary to the de-
sign assumptions, two flits for the virtual channel0 can be
present simultaneously in the input controller, which can
lead to a routing error, i.e., a flit is transmitted to a wrong
output.

This is confirmed by the following formula which ex-
presses that in all transition sequences, after a communi-
cation on one of the channels “Valid0 tod” there has to
be a communication on one of the channels “Data0 tod”
before the next communication on one of the channels
“Valid0 tod”, which does not hold either:

[true* . ’Valid0_to.’ .
(not ’Data0_to.*’)* . ’Valid0_to.’]

false

This routing problem has also been found by simulating
the CHP description of the input controller using the TAST

simulator for about 500.000 steps. The actual issue with
simulation-based validation is to decide when the verifica-
tion was thorough enough to claim a correct behavior.

The encountered problem lies in the use of the passive
split that simulates broadcasting to every output controller.
EVALUATOR exhibits the following sequence of communi-
cations (unrelated transitions are hidden):

in Send!0; In → Route Flit
in Data!flit0; In → Shift Data
Valid0 to0!; Route Flit→ VC0 Out 0
Cmd Shift!bop0; Route Flit→ Shift Data
in Send!0; In → Route Flit
in Data!flit1; In → Shift Data
Valid0 to1!; Route Flit→ VC0 Out 1
Data0 to1#true; VC0 Out 1→ Split Data0
Data0!flit0; Shift Data→ Split Data0
Data0 to1!flit0; Split Data0→ VC0 Out 1
ERROR 1!; VC0 Out 1→

In this sequence,flit0 is a header flit to output 0, and
flit1 is a header flit to output 1.

The issue is that the active signalsValid0 tod are ac-
knowledged by the outputs before the probe is actually done
in Split Data0. OnceRoute Flit has sent both its outputs
Valid0 to0 andCmd Shift, a new incoming flit can
triggerValid0 to1 immediately afterwards. Both output
controllers are therefore notified and may request the data,
creating a non-exclusive guard inSplit Data0, leading to an
unwanted non-deterministic choice.

Nevertheless, this issue does not occur in the actual im-
plementation of the node3. It is indeed an issue of interpre-
tation of the CHP specification.

The circuit was synthesized using a WCHB [19] circuit
template. Theslack (maximal number of tokens a single
process can accumulate) of each WCHB process is only
1/2, due to the four-Phase reshuffling. Besides, theSplit
Data0 combinational process has a null slack. Hence, in
the synthesized version, theCmd Shift token at the out-
put ofRoute Flitis not freed beforeData0was read, which
happens only afterSplit Data0was notified. This guaran-
tees that no other token can be emitted toValid0 tox,
preventing the routing error. Yet, this property holds onlyif
the slack betweenRoute FlitandSplit Data0is less than 1.
The system is said not to beslack-elastic[20].

However, on current implementations of the simulation
and verification tools, communications on CHP channels are
done atomically between two semicolons, and do not de-
scribe the acknowledgement of the data. This corresponds
to a Full-Buffer (slack of 1) description of the asynchronous
processes, except forSplit Data0, thanks to the probe on

3This was actually checked in a SDF (Standard Delay File) back-
annotated Verilog simulation of the node.

output mechanism.

The slack increase in the CHP description of this non
slack-elastic process allows an unwanted behavior, namely
the routing of a flit to a wrong output.

To investigate this further, we modified the CHP descrip-
tion so as to reduce the slack of the processes by doubling
the communications on each channel, which mimics a four-
phase protocol. A first communication describes the raising
phase on the signal (falling on the acknowledge), while the
second describes the falling phase on the signal (rising on
the acknowledge), the guards being evaluated according to
the first communication. With each process modified fol-
lowing this principle, the LTS contains no error transition:
the routing properties hold.

As for VC1, the routing correctness was already verified
on the original CHP description. Thanks to theAccept1
flow-control mechanism, a single flit is allowed in the in-
put controller. Even though an additional buffering stage is
present on VC1, the overall slack is constrained to 1, and no
interference can occur.

6. Related Work

As regards the application of model checking tools
to asynchronous hardware designs in general, most ap-
proaches, e.g., [25, 7, 13, 16, 27, 31, 32], are based on a
manual modelling of the design directly in the input lan-
guage of the used verification tool, whereas we base the ver-
ification on design descriptions written by hardware design-
ers — the same descriptions that are also used for synthe-
sizing the circuits. As an example, [31] introduces a model
for the low-level description of asynchronous circuits on the
hardware gate level, and presents the verification of safety
and progress properties using FDR2 (via a manual transla-
tion to CSP). On the contrary, our approach focuses on the
verification of high-level descriptions, from which concrete
implementations in hardware can be derived automatically,
for instance using TAST.

As regards verification of process algebraic descriptions
of asynchronous designs, we are only aware of [5] and [17].
[5] proposes a translation of CHP into networks of com-
municating automata. Contrary to our approach, [5] flat-
tens CHP processes with intertwined sequential and paral-
lel compositions, which is less efficient than our translation
from CHP into LOTOS; we also observed reductions of the
LTS generation time by factors up to four [29]. [17] presents
techniques for equivalence and refinement checking of DI-
Algebra descriptions. Our approach allows to verify a larger
class of properties, i.e., alternation-free modalµ-calculus
formulas.

7. Conclusion

In this paper, we have presented an approach for the ver-
ification of process algebraic descriptions of asynchronous
architectures using the verification toolbox CADP originally
designed for the verification of telecommunication proto-
cols. Our approach is supported by a tool, capable of auto-
matically translating full CHP into the international stan-
dard LOTOS. We validated our approach on two asyn-
chronous designs, namely an implementation of the Data
Encryption Standard [24] and ANOC, the input controller
of which was used in this paper as an illustrating example.

The node of ANOC required a careful CHP design us-
ing nonslack-elasticprocesses. Some of the node proper-
ties were thus verified while manually taking the handshake
expansion into account. In order to ease this verification
task, we suggest to enrich the high-level CHP language with
pragmas indicating the chosen handshake expansion to the
simulation, synthesis and verification tools.

As regards future work, we are currently using our ap-
proach to ensure the correctness, before synthesis, of archi-
tectures designed at the CEA/Leti laboratory, in particular
the next implementation of ANOC. In this context, we rely
on the possibility to use our approach hierarchically, by iso-
lating subsystems that are verified separately and seen as
blackboxes when verifying properties of the global system.

Acknowledgements

This collaborative work has been supported by the com-
mon laboratory of INRIA Rhône-Alpes and CEA/Leti as
well as the Minalogic EmSoC MULTIVAL project.

The authors would like to thank their colleagues from the
TIMA CIS group for providing the TAST CHP syntax, and
for valuable discussions on the probe semantics.

References

[1] E. Beigné, F. Clermidy, P. Vivet, A. Clouard, and M. Re-
naudin. An asynchronous NoC architecture providing low
latency service and its multi-level design framework. In
Proc. of ASYNC 2005, pp. 54–63.

[2] E. Beigné and P. Vivet. Design of off-chip and on-chip in-
terfaces for a GALS NoC architecture. InProc. of ASYNC
2006, pp. 172–181.

[3] T. Bolognesi and E. Brinksma. Introduction to the ISO spec-
ification language LOTOS.Computer Networks and ISDN
Systems, 14(1):25–59, Jan. 1988.

[4] R. Mateescu and M. Sighireanu. Efficient on-the-fly model-
checking for regular alternation-free mu-calculus.Science
of Computer Programming, 46(3):255–281, Mar. 2003.

[5] D. Borrione, M. Boubekeur, L. Mounier, M. Renaudin, and
A. Sirianni. Validation of asynchronous circuit specifica-
tions using IF/CADP. InProc. of VLSI-SoC 2003, pp. 86–
91.

[6] G.-M. Chiu. The odd-even turn model for adaptive rout-
ing. IEEE Trans. on Parallel and Distributed Systems,
11(7):729–738, July 2000.

[7] G. Clark and G. Taylor. The verification of asynchronous
circuits using CCS. Technical Report ECS-LFCS-97-369,
University of Edinburgh, Oct. 1997.

[8] Y. Durand, C. Bernard, and D. Lattard. FAUST : On-chip
distributed architecture for a 4G baseband modem SoC. In
Proc. of Design and Reuse IP-SOC 2005, pp. 51–55.

[9] D. Edwards and A. Bardsley. Balsa: An asynchronous hard-
ware synthesis language.The Computer Journal, 45(1):12–
18, 2002.

[10] H. Garavel and F. Lang. SVL: a scripting language for com-
positional verification. InProc. of FORTE 2001, pp. 377–
392.

[11] H. Garavel, F. Lang, and R. Mateescu. Compiler construc-
tion using LOTOS NT. InProc. of CC 2002, pp. 9–13.

[12] H. Garavel, F. Lang, and R. Mateescu. An overview of
CADP 2001.EASST Newsletter, 4:13–24, Aug. 2002.

[13] J. He and K. J. Turner. Verifying and testing asynchronous
circuits using LOTOS. InProc. of FORTE/PSTV 2000, pp.
267–283.

[14] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[15] ISO/IEC. LOTOS — a formal description technique based
on the temporal ordering of observational behaviour. Inter-
national Standard 8807, International Organization for Stan-
dardization — Information Processing Systems — Open
Systems Interconnection, Sept. 1989.

[16] H. K. Kapoor and M. B. Josephs. Modelling and verification
of delay-insensitive circuits using CCS and the Concurrency
Workbench. Information Processing Letters, 89(6):293–
296, Mar. 2004.

[17] H. K. Kapoor, M. B. Josephs, and D. P. Furey. Verification
and implementation of delay-insensitive processes in restric-
tive environments.Fundamenta Informaticæ, 70(1–2):21–
48, 2006.

[18] J. L. W. Kessels and A. M. G. Peeters. The Tangram frame-
work (embedded tutorial): Asynchronous circuits for low
power. InProc. of ASP-DAC 2001, pp. 255–260.

[19] A. M. Lines. Pipelined asynchronous circuits. Master’s the-
sis, California Institute of Technology, 1995 (rev 1998).

[20] R. Manohar and A. J. Martin. Slack elasticity in concurrent
computing. InProc. of MPC 1998, pp. 272–285.

[21] A. J. Martin. The probe: An addition to communication
primitives. Information Processing Letters, 20(3):125–130,
Apr. 1985.

[22] A. J. Martin. Compiling communicating processes into
delay-insensitive VLSI circuits. Distributed Computing,
1(4):226–234, 1986.

[23] R. Milner. Communication and Concurrency. Prentice-Hall,
1989.

[24] NIST. Data encryption standard (DES). Federal Information
Processing Standards FIPS PUB 46-3, National Institute of
Standards and Technology, Oct. 25 1999.

[25] S. M. Nowick and D. L. Dill. Practicality of state-machine
verification of speed-independent circuits. InProc. of
ICCAD-89, pp. 266–269. IEEE, 1989.

[26] A. Peeters and M. de Wit.Haste Manual, Version 3.0. Hand-
shake Solutions, 2006.

[27] B. Rahardjo. SPIN as a hardware design tool. InProc. of
SPIN 1995.

[28] M. Renaudin. TAST Compiler and TASTCHP Language,
Version 0.6. TIMA Laboratory, CIS Group, 2005.

[29] G. Salaün and W. Serwe. Translating hardware process alge-
bras into standard process algebras — illustration with CHP
and LOTOS. InProc. of IFM 2005, pp. 287–306.

[30] J. T. Udding. A formal model for defining and classifying
delay-insensitive circuits.Distributed Computing, 1(4):197–
204, 1986.

[31] X. Wang and M. Z. Kwiatkowska. On process-algebraic ver-
ification of asynchronous circuits. InProc. of ACSD 2006,
pp. 37–46.

[32] M. Yoeli and A. Ginzburg. LOTOS/CADP-based verifica-
tion of asynchronous circuits. Technical Report TR CS-
2001-09, Technion, Computer Science Department, Mar.
2001.

A. Grammar of CHP

The behavior of a processB in CHP is described using assign-
ments, communications, collateral and sequential compositions,
and nondeterministic guarded commands (as implemented in the
TAST tool [28]):

B ::= skip null action
| x:=V assignment
| c!V emission on channelc
| c?x reception on channelc
| B1;B2 sequential composition
| B1,B2 collateral composition
| [V ->B;T] guarded command
| @[V1->B1;T1 . . . Vn->Bn;Tn] choice

T ::= break | loop terminations
V ::= x | f(V1, . . . , Vn) value expression

| c#V | c# probe on passive channel

B. Grammar of LOTOS

We only present in this appendix a very simplified grammar of
the LOTOS notation, see [15, 3] for more details. The behavior
of a processB in LOTOS is described using communications, se-
quence, guarded behavior, choice, parallel composition, and pro-
cess call (to express a looping behavior):

B ::= G;B sequence
| [V]->B guarded behavior
| B1[]B2 choice
| B1|[g1, . . . , gn]|B2 parallel composition
| P[g1, . . . , gn] process call

G ::= τ internal action
| g!V emission on gateg
| g?x : t reception on gateg

V ::= x | f(V1, . . . , Vn) value expression

The parallel composition operator means that processesB1 and
B2 synchronize on the gatesg1, . . . , gn. As LOTOSgates are un-
typed, the type of received values must be specified for receptions.

