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Abstract are essential in an asynchronous context to reduce the risk
of errors in the design.
Few formal verification techniques are currently avail- Our goal is the verification of asynchronous hardware

able for asynchronous designs. In this paper, we describedesigns specified in KPP using existing model checking
a new approach for the formal verification of asynchronous tools that are based on the exploration afsk (Labelled
architectures described in the high-level langu#&ler, by Transition Systems), also known as finite state machines.

using model checking techniques provided by @GP Examples of properties to be checked are the absence of
toolbox. Our proposal is based on an automatic translation deadlocks or the correct sequencing of communications in
from CHP into LOTOS, the process algebra used @aDP. a protocol (some stimuli are always followed by the appro-
A translator has been implemented, which handlesGuip priate responses). In this work, we used the model checking
including the specific probe operator. tools available in the €DP toolbox [12]. CADP takes as

TheCADP toolbox capabilities allow the designer to ver-  input LOTOs[15] specifications, and provides an efficient
ify properties such as deadlock-freedom or protocol cdrrec  tool for exploring the state space of @tosdescription.
ness on substantial systems. Our approach has been suc- Our approach is based on the translation fromp@o
cessfully applied to formally verify two complex designs. | LOTOS Such a high-level translation has been chosen since
this paper, we illustrate our technique on an asynchronous CHP and LoTos are both inspired by the process algebra
Network-on-Chip architecture. Its formal verification hig ~ CSP[14], i.e., they are based on the same kernel of behav-
lights the need to carefully design systems exhibiting non-ioral operators, namely sequential composition, choied, a
deterministic behavior. parallel composition. This translation is not trivial thgu
because @p has some hardware related specificities that do
not exist in LOTOS. In particular, communication in &P is
not necessarily atomic (as it is in standard process cglculi
theprobeoperator [21] of Gip allows to check whether the
communication partner is ready for a communication or not,

Process calculi are acknowledged as appropriate for-but without performing the communication actually.
malisms to describe concurrent systems. For the descrip- A translator tool has been implemented and was used
tion of asynchronous hardware, severalsVprogramming  successfully for the verification of two industrial casedstu
languages based on process calculi have been proposedks designed at the CEA/Leti laboratory, namely an asyn-
as for instance 8p (Communicating Hardware Proces3es chronous implementation of the H3 (Data Encryption
[22], DI-Algebra [30], HASTE [26] (formerly TANGRAM Standard [24] and ANOC, an asynchronous Network-on-
[18]), or BaLsA [9]. These languages allow the descrip- Chip architecture [1]. This paper focuses omdc, the
tion of concurrent processes communicating via handshakenput controller of which is used for illustration purposes
synchronizations, and are supported by synthesis todls thaWe show how informal properties to be ensured are formal-
can generate the implementation of a design from its pro-ized and checked using the verification means available in
cess algebraic description. For instance, theiTsynthe- CADP.
sis tool [28] can generate ) (Quasi Delay Insensitive) The organization of the paper is as follows. Section 2
netlists from Gip descriptions and is being used to elab- overviews our translation from i into LoTos Sec-
orate complex designs. However, foHE specifications,  tion 3 shows how verification of hardware architectures is
few formal verification means are available, although they achieved using €bp tools. In Section 4, we present the

1. Introduction



ANoOC architecture, and we illustrate in Section 5 the ap-
plication of our approach on a part of\dC. Section 6
compares our proposal with related work. Section 7 ends
the paper with some concluding remarks.

2. Translation of CHP into LOTOS

Translating Gip into LoTOSis quite straightforward for

Active emission Passive reception Probe#”

| ”
Chp O clV O O c?x O O
c! Probe
| ” |
LoTOS clV O c?x O Oc. Probeo

Figure 1. Single probe translation

most GHP operators, since both languages are based on

the process algebrage (see Appendices A and B for a
brief summary of both languages). Thus, communication in
both directions (emissions and receptions), guarded behav
ior, sequential and parallel composition, and nondetesmin

tic choice existin both languages. There are, however, some

noticeable differences. For instanceyitypes (Booleans,
natural numbers, bit vectors, etc.) are translated irtods
abstract data types. SimilarlyH® operations are translated
into LOTOS operations, which are implemented either us-
ing algebraic equations or, more efficiently, by external C
code, using the possibilities offered byagr. CHP loops
are translated into recursive processes ords because
LoTtosdoes not have a similar loop construct.

A major difference between i@ and LOTOS is the
hardware-specific probe operation ofi€; which has no
equivalentin loTOS A previous version [29] of the trans-
lation focused on @p behaviors using the probe only as a
single operator in guards. To deal with the full specificatio
of complex designs such asndc, we have extended our

nication pending or not) of the probed channels. The
shared resource corresponding to a chanfekrans-
lated by an additional bTOS processchannel_c with

two states, representing whether a communication has
been initiated but not yet acknowledged; a probe oper-
ation allows to check the state atannel_c.

single probe if a channek is probed in a guard (con-
taining no other probe operation), the additional-L
TOS process can be avoided. In this case, the probe
(passive side) is translated as a communication with an
additional flag f Pr obe” to distinguish it from a regu-

lar communication. The guarded statement can be exe-
cuted as soon as the probe communication is possible.
The communication on the active side is translated in a
loop: both processes can interact on the probe commu-
nicatiort as often as necessary until the effective com-
munication between them takes place. This translation
is summarized in Figure 1 and detailed in [29].

translation to handle probes in general expressions and to

support complex datatypes and code specialization.
2.1. Translation of the Probe

A probe “c#” (activity probe) allows a passive process
(either emitter or receiver) to check if its active partnash
already initiated a communication on channelithout per-
forming the communication actually. The notatiaré#V™

In case of a probed channel, the translation scheme sim-
ulates a two-phase protocol with the effective communi-
cation corresponding to the acknowledgement. Otherwise
(unprobed channel), such a protocol is avoided to reduce
the corresponding state space. The examples in the remain-
der of this paper use only the unprobed and single probe
case.

(value probe), which can only be used by a receiver, checks2.2. Tool Implementation

if the sender has initiated the emission of the particular
valueV'. The probe operator enables a form of shared mem-

A translator from @GP to LoTos has been developed

ory communication, and does not exist in classical processusing the SNTAX and LoTos NT compiler construction
calculi based solely on message passing. Hence, its transtechnologies [11]. It consists of 2,200 lines of \&rAX,

lation requires the generation of additional communicetio

13,400 lines of bTOSNT, and 3,900 lines of C. This tool

representing the access to the active channels to be probechas been validated on more than 508rCspecifications,

To alleviate the overhead due to the general translation

corresponding to about 14,500 lines afi€ We emphasize

of probe operations, our approach uses code specializationthat this tool allows a completely automated translatian fo

i.e., the translation of a communication channelepends
whether and how is probed.

e unprobed channel each GiP emission/reception is
translated directly to its €Tosequivalent.

e general casethe evaluation of an expression contain-
ing probes requires information on the state (commu-

full CHP including probes and hierarchical components.

As regards semantics preservation, the translation of the
probe operation requires the generation of additionaldridd
communications leading to internal transitions labellgd b
7; thus it is impossible to preserve strong equivalence [23],

1The value-matching feature of dTos ensures that two offers
“I' Pr obe” will synchronize.



which handles transitions similarly to visible transitions,
but only weak equivalences that allow additiomatransi-
tions. Our translation preserves observational equicalen
[23], as checked in practice on many examples.

3. Architecture Verification with CADP

The verification technique implemented in thenop
toolbox [12] is calledenumerativesince it is based on the
explicit enumeration of states. To verify properties ofjkar
state spaces, ADP incorporates different techniques, such
as static analysis, distributed, and compositional verific
tion, that help to circumvent the so-called state explosion
problem.

In this section we focus on the use okgr for the verifi-
cation of asynchronous architectures. In a first step,7a L
that is smaller, but equivalent to the complete state space
is generated compositionally. Thisr& is then used in a
second step for the verification of the interesting properti

3.1. Compositional State Space Generation

The underlying principle of compositional state space
generation is “divide and conquer”: instead of a single
monolithic generation step, the state space of the complet
system is obtained by alternating generation, minimizatio
and sub-system-composition steps. This approach is par
ticularly efficient if the subsystems contain intermairan-
sitions (representing details not required for the comyposi
tion with the rest of the system), some (or even most) of

e A specific environment.e., additional GP processes
implementing the environment of the system guaran-
teeing that only realistic stimuli are provided, avoids
the enumeration of stimuli that will never occur in
practice. Here and in the sequel, a stimulus is a com-
munication with a passive port, i.e., either sending a
message to a passive input port or requesting the emis-
sion of a message from a passive output port.

A specific environment may also include additional
ports on which messages are sent if an error has been
detected.

e Exploiting symmetry arguments, the generation of a
single state space taking into account all possible or-
derings of inputs can be replaced by the generation of
several smaller state spaces correspondisge¢oarios
representing particular subsets (e.g., sequences) of the

, inputs. These scenarios should be expresseddn C
and integrated in the specific environment.

The compositional generation of the state space is fa-
cilitated by the use of @ (Script Verification Language)
[10], which allows a high-level and concise description of
the calls to the different 0P tools. The order in which
the different processes are combined has to be determined
manually following the data path of the stimuli, requiring

qmowledge about the architecture. Since this order does not

depend on the scenario, a singlkeLSscript can be used for

the compositional generation of thass corresponding to

. several scenarios.

which might be removed during minimization modulo a 3-2. Property Verification
weak equivalence abstracting franiransitions.

The successful use of compositional state space genera- In the following, we describe the techniques for the veri-
tion requires some care, since the state space of some pafication of three different kinds of properties relevanttie t
of the overall system might be larger than the state space ofvalidation of asynchronous hardware architectures.
the complete system. For instance, the state space of a sim-
ple buffer generated sgparately contailjspossible values., 3.2.1. Deadlock Freedom. Given the complete state
whereas onlysomeparticular values might be buffere(_j_ n space of a system, it is straightforward to check the absence
the complete system. Thus, the state space of a specific Paidt deadlocks by counting the number of successors of ev-

.Of the ngtem ShOl.Jld be generatled onkly |f.the constralntsery state. In @DP, this property is printed as one of the
imposed by its environment are also taken into account, SOg- - haracteristics of ams.
that only the relevant part of its state space is generated. . - : .
Furth icting the | |  th Notice that most of the remaining properties require a
I urt erm(;Jre, rﬁstrl_ctlngft he input va u(;as of the SyStelgnfcyclic behavior. Thus their verification would fail if thesy
allows to reduce the size of the generated state space. Dify might deadlock.

ferent techniques can be used for this purpose.

e Using the idea of data independence, if some parts 0f3.2.2. Correct Stimulus-Response Protocol. Code in-
the input values have no influence with respect to the spection allows to verify that a single basic process of an
interesting properties, they can be chosen constant, sasynchronous design conforms to the basic protocol, i.e.,
as to abstract from differences in the data values whichexecutes a cyclic behavior producing from a set of stim-
otherwise would multiply the size of the state space uli {S1,...,S,,} asetof responsdsR,, ..., R,}. To ver-
accordingly. ify this property for more complex components, containing



several subcomponents and processes, the following three- e the formula‘< S > ¢”is true in a state, if there exists
step approach relying on the equivalence checking tools of a transition sequence of the forff) starting ins, and
CADP can be used. leading to a state whergis true.

1. To check the cyclic occurrence of the whole set of In both cases, the pattern of a transition sequehaethe
stimuli, all transitions but the stimulf; are hidden ~ Modal operator can use regular expressions on predicates of
(i.e., transformed tor transitions) in the generated transition Iabel_s_. In particular, the predicatege is true
LTs, and the resulting ts is then compared to arris for every transition; thus the regular expressiom tie*”
describing the cyclic arrival of stimuli in any order; describes a possibly empty sequence of transitions.
this second s can be given explicitly, or be gener-
ated from a loTOS or CHP description, namely the 4. An Asynchronous Network-on-Chip
CHpprocess[ (S1,...,Sm); | oop] ™"

The verification approach described in Sections 2 and 3

2. To check the cyclic occurrence of the whole set of re- js jjjustrated hereafter on theH® specification of an ac-
sponses, the same technique can be applied as for th@,a| asynchronous design, namely@c, an Asynchronous
stimuli. Network-on-Chip architecture [1], which was used as the

backbone of EusT, a 4" Generation Wireless Telecom

3. To check that the set of stimuli generates the set of gasepand [8].
responses, it is now sufficient to choose a single stim-  Thjs Section presents the asynchronous node e
ulus 5 and a single responsk and to verify thatS with a specific focus on its input controller, which will be
generated?; the advantage is to avoid to consider all ysed in Section 5 for illustration of our approach.
possible orderings of stimuli and responses. This step
can be achieved by comparing with thedgenerated 4.1. ANOC Outline
from the G4p description f S; R; | oop] ".

ANOC relies on the @Ls (Globally-Asynchronous
Locally-Synchronous) paradigm, in which synchronous re-
sources communicate through a fully asynchronous net-
work. Resources are connected to the network via a syn-

cessf (S1, ..., Sm); (R1, ..., Ry); | oop] ", since this : .- :
would require that the first response occurs necessardy aft chronous petwork mterfac_e providing all higher-level-net
work services (packetization, flow-control, ...) and ap-

the last stimulus, which might not be the case if a response” ™ ™ . ) - . )
g P plication services (synchronization, scheduling, .. .Hick

1z; depends only on a subset of the stimuli connects to the switching fabric through aiG interface,
as described in [2].

3.2.3. Functional Properties. General functional proper- The five-port asynchronous network node is the elemen-
ties can be verified in two ways. A first approach is to en- tary component of Aoc. It provides the lower-level net-
rich the specific environment with observer processes thatwork services, i.e., routing and arbitration of the transit
monitor the stimuli and responses, and signal any detectedng packets. It is actually made of five input controllers,
error (e.g., faulty responses) by a particutaur or tran- which route incoming packets to one of the other four ports,
sition or block the system as soon as an error is detectedand five output controllers, which arbitrate between packet
In this case, the verification of the property is tantamount heading for the same output.
to checking the reachability of ar r or transition or the Although no assumption is made on the topology of the
absence of deadlock. network as regards the architecture of the node, it was cho-

A second possibility is classical model checking. In sen in the BusT implementation of Aioc to connect the
this case, the property is expressed formally using a tempoJ10des in a 2D-Mesh topology, as seen in Figure 2.
ral logic, e.g., regular alternation freecalculus in Q\DP. It is crucial for any application that the interconnect
Then, a model checkerMELUATOR [4], is used to verify if structure transfers data without corruption, and with &isuf

the generated state space, possibly after hiding some-transcient level of QoS (Quality-of-Service). At a system level,
tions, satisfies the formula. a 2D-Mesh topology presents several advantages (scalable

bandwidth, easier place and route on silicon), but also en-
ables theorem proving thanks to its regular structure. fror i
e the formula{ S] ¢"is true in a statss, if all transi- stance, using the “odd-even turn model” routing algorithm

tion sequences of the forshand Starting i lead to a [6], a rOUting of the communications in the network that
state where is true. avoids any deadly embrace can be computed.

Notice that it is not sufficient to compare therd —
after hiding all transitions but the stimuli and responses
— with a second s corresponding to the 1@ pro-

The temporal logic used inAbP allows two modalities:



wact that a new flit can be buffered on VC1 in the input con-
Lemat | troller. This defines on VC1 a data-link protocol where a

token on theAccept 1 channel is consumed by the emitter
MOD. MOD. MOD. INTER. CODER CODER . . .

before each transmission @end andDat a, and is regen-
Noc Sl e erated once the transmission is over. The protocol on VCO

is simpler, as it only requires simultaneous transmissions

PT— f;;;ﬂ;m“ Send andDat a.
A On chip NOC GALS IF y y -
Vo —: OFF chip NOC TF
S = 5B -
™ i | i i 4.2.2. Network Layer. In order to minimize the overhead

Nocz | ' 3 of routing information in every communication, thenac

! protocol is based on packet switching: several consecutive
_ i flits are gathered, using a single VC, into a packet, which
Figure 2. FAUST network architecture will be transmitted, on this VC, without interruption. This
requires an identification of the first and last flits of a packe
we introduced therefore two additional bits to the 32 biadat

Such analytical methods can _often guarantee h|gh-levelpath’ coding théegin of packe{BOP) andend of packet
properties, but always rely on an ideal operation of the asyn : .
(EOP) informations.

chronous nodes. It is hence necessary to verify, at design : .
4 fy 9 Furthermore, in order not to handle complex routing ta-

level, that a node strictly complies to thevac protocol. bles, we used static source routing of the packets. Rout-
ing information path-to-targe} is provided in the first flit
(heade) of a packet, as a vector of dibits containing the
o ) ) successive directions to follow. Each node actually uses th
Formal verification has to rely on rigorous functional g jower bits of this vector in the first flit to route the whole

specifications of the design. In the following, we describe packetin the given direction, and shifts {heth-to-targeso
the network protocol of Aoc that the asynchronous node  ihat it can be used by the following node.

should implement.

4.2. Functional Specifications: ANOC Protocol

BOP | EOP | header flit payload path to target
4.2.1. Data-Link Layer. The elementary piece of infor- 33 32 | 31 18] 17 0
mation transiting on the links of hoc is called &lit (flow- Header flit
control unit). In order to provide QoS in the networkyAc
was designed using two VCs (Virtual Channels) with differ- BOP | EOP body flit payload
ent priority levels, used to transmit flits according to thei 33 | 32 |31 0
precedence. A VC identifier is associated to every flit tran- Body flit
siting in _the network, and is propggated througBend BOP | EOP| fiitid. | fixed sequencé dest,
channel in the whole path, along with the actDat a. 33 35 31 30| 29 >T1 0

The asynchronous node dispatches incoming flits inside
its internal buffers according to this VC identifier, so that
contention, i.e., the need for arbitration between two com- _ _
munications, may appear only between flits sharing the Figure 3. Flit format
same VC. The arbitration between VCs was made static,
so that VCO always holds priority before VC1.

This mechanism actua“y creates two independent |Ogi_ Figure 3 presents the structure of the actual flits transit-
cal networks, one of which may be kept lightly loaded for ing in the network, and how these flits can be constrained
low-latency signalling messages. for the formal verification of the input controller ofMoOC.

Additionally, a flit-based flow control mechanism had to Considering only th&/C identifier BOP, EOP, thedestina-
be implemented to control the buﬁering Capacity of each t|0n, and a 2-bifflit |dent|f|er, we can reduce the pOtentIa|
port on VC1. Indeed, the separation into VCs requires State space of the input controller from abdut1 0% states
that the physical link between two nodes must be kept freeto abouts x 10'° state$. The fixed sequence used for the
for a new flit on VCO after each flit on VC1. Since the flit payload is made so that it reflects the data integrity, in-
link is shared by the two VCs, letting flits accumulate on cluding the shift of thepath-to-target
VC1 more than the. buffering capacny_ of the input con- 2These numbers are obtained by multiplication of the numbkstates
troller would block flits of the other V_C in the Shf_ire(_j Part.  of the separate processes; due to synchronizations, trel acmber might
An Accept 1 channel was therefore introduced, indicating be slightly smaller.

Simplified flit for formal verification




4.3. CHP Design of the ANOC Input Controller e EOPi signals, notifying the end of a packet, broadcast
in the same way aBat ai, necessary to enable a new
The asynchronous node was first developed using a  arbitration on the output controller.
coarse description level in System@HM, which was used
to set up the various layers of thevAc protocol at a system
level [1]. Then, an equivalent functionaHe model of the
node was written, and was later rgfined iqto elementay C A peculiarity in this design is the use of passive combi-
processes that could be synthesized usingrec#/(Weak-  tional splits at the output of the input controller, in erd
Condition Half-Buffer [19]) circuit template, and mapped 5 reduce the gate count compared to a 34-bit passive-in /
onto a specific standard cell library. _ active-out commanded split. At implementation level, such
We chose to apply our formal verification technique on 4 combpinational split is indeed only a AND4 gate merging
the refined @GP model of the input controller of the OC e “active low” acknowledgement signals, while the data
node, whose behavior is the closest to the actual implemenyires are forked to every output controller.
tation in the RUST chip. This behavior was described irH@ using a passive out-
The internal micro-architecture of the input controller is put, which can be probed for communication requests by
given in Figure 4, and was described more precisely in [1]. the output controllers. The actual notification of the ottpu

In this figure, light grey processes are actually syntheésize .ontrollers is done by thRout e_Fl i t process, using the
with combinational logic. Val i di_t od signals.

The GHP code of such a process is given below:

e Accept 1_f r omd signals from the output controller,
indicating that a new flit can be sent on VC1.

Split = B3iag-16f
Data0 | Bl a8 65 process Split_Data0O port (
Split [ ERQ-too Dat a0 : in DI passive MR 4][17];
in_Data | Fork Shift EOP0 I RS Data0_to0 : out DI passive MR 4][17];
} Data e ol | mtatoo Data0_tol : out DI passive MR 4][17];
Datal —= iaris; Data0_to2 : out DI passive MR 4][17];
- Split |7 EgL o0 Dat a0_to3 : out DI passive MR 4][17])
EOPL —— ECRi7toz variable x : M 4][17];
TCmLShMt B begin
i n_Send égiiggig Eg [
= Val i d0O_t 03 @
- Valide |- \a i Dat a0_t 00# => Dat a0?x; DataO_to0!x; break
o T~ Validios Dat a0_t ol# => Data0?x; DataO_tol!x; break
= AT feepn - iis! Dat a0_t 02# => Data0?x; Data0_to2!x; break
oLl Dat a0_t 03# => Data0?x; DataO_to3!x; break
| ]:1o0p
in_Accept 1 A((}:z:tehp?rs %éég% ggé% :Ie;]d;

Figure 4. In ntroller micro-archi r e
gure put controfler micro-architecture 5. Formal Verification of the Input Controller

The interface of the input controller complies, on the  The translation from @p to LoTosand compositional
data-link side, to the Aoc protocol, and consists therefore ~state space generation described in Sections 2 and 3 have
of the signals n_Dat a, i n_Send andi n_Accept 1. The been used to set up a formal model of the input controller of
internal control and data signals from an input controlter t ANOC. Using this model, it is possible to check the func-
the output controllers are: tional properties describing its conformance to theok

protocol.
e Dat a0 andDat al, buffered in the two VCs, that the

input controller broadcasts to every output controller, g 1 Translation of the CHP Design into LOTOS
only one of which will acknowledge the channel.

e Val i di_t od signals notifying the availability of a First of all, for each considered scenario, tharQle-
new flit onDat as to the output controlled. sign of the input controller (about 1,200 lines of code) is
translated in less than one second intorbs (about 3,600
e BOPi_t od signals, notifying the begin of a packet, lines of code) using our translator tool. Let us show the
necessary to trigger arbitration on the output controller. LOTOS code obtained after translation of thei€process



Spl it _Dat a0 shown above (find in Appendix B a sum- observed when the\& script is used for the generation of
mary of the LoTos operators). The btosprocess below  LTs corresponding to different cycles of four flits.
is slightly simplified since we removed the explicit list of

gates f Dat a0-t od] " coming with every process call. 5.3. Verification of the Functional Specifications
process Split_DataO: noexit :=
Dat a0 t 00 ! Probe; Even though the micro-architecture of the input con-
Dat a0 ?data: MR4_17; DataO_t o0 !dat a; troller was used during the state space generation, the prop
Split_Data0 erties to which it should conform were defined as if it were a
[] blackbox. Thus, we enunciated functional properties, twhic
Dat a0_t ol ! Probe; describe the protocols at the interfaces, not biased by any
Dat a0 ?data: MR4_17; DataO_tol !data; structural hypothesis.
Split_Data0

Similarly to the compositional state space generation, the
verification of the properties uses &ISscript (of about 250
lines) which facilitates the calls to the differenaGP tools,

[
Dat a0_t 02 ! Probe;
Dat a0 ?data: VR4_17; DataO_to2 !data;

Split_Data0 required for hiding and renaming of transitions, as well as
[ - equivalence and model checking. A further advantage of the
Dat a0 t 03 ! Probe: script is the possibility to automate the verification ofelif
Dat a0 ?data: MR4_17; DataO_t o3 !dat a; ent scenarios. For a scenario with cyclic sequences of four
Split_Data0 flits, the execution of the script checking all the propertie
endpr oc presented below takes about three minutes.

The CHP process contains simple probes in its guards o )
that are translated as communications iaTbs with the 5.3.1. Infinite Occurrence. The input controller may not
specific offer 1 Pr obe” to distinguish them from regular ~ €ach a state where a communication may not occur any-
communications on the same channels. A branch of theMOre on an asynchronous channel. For every signat
choice structure in the &ToS process can be executed if Should have a “quasi-cyclic” behavior in a closed system.
and only if an active process is ready to communicate on  1hese properties were checked with theo® toolbox

this particular channel with the process at hand. as explained in Section 3.2. Every state of the state space
has a successor, which means there is no deadlock state.

Furthermore, for a sign&, the “quasi-cyclic” behavior is
verified using the observational equivalence-checkinig-tec
nigue to compare the1is of the input controller with the
LTs of a CHP process [ S! ; | oop] ", after hiding every
other signal in the input controller.

5.2. State Space Generation

In order to provide realistic stimuli to the input contralle
of ANOC, several scenarios were used with packets of dif-
ferent length (one or more flits), emitted sequentially or
overlapping on different channels and to different destina
tions. The composition order of the different processed use 5.3.2. Protocol Correctness. The input controller must
to build the state space of the input controller has beem-dete comply at its inputs with the Aoc protocol, and transmit
mined following the data path of the input values according the incoming data to an output controller. On VCO, this

to the architectural schema presented in Section 4.3. means that an incoming flit will generate an emission to an
The description of the 41 steps to generate the ¢or- output controller.
responding to the input controller of8oc for a particular This was proven formally using a stimulus-response pat-

cycle of four flits requires 483 lines of\&. The scriptis  tern, as described in Section 3.2: the two stimuliDat a
generic in the sense that it can be used to generate the stat@ndi n_Send together must lead to the three responses
space for all stimuli using only simplified flits as described Val i di_t od, Dat ai, andEOP:, where the values of —

in Figure 3. In the remainder of this section, we consider the virtual channelQ or 1) — andd — the destination(0,

the scenario based on the sequence of four packets (each, 2, or3) — are obtained by inspection of the values com-
containing exactly one flit) sent on virtual channel VCO al- municated orn n_Dat a.

ternatively to destinatio® and to destinatiod. For this On VC1, an accept token must be used and regenerated
scenario, the 8L script generates, in about four minutes, accordingly, but this is actually done in the output con-
the correspondingis with 1,300 states, 3,116 transitions, troller. Environment processes simulating the output con-
and 34 labels without any hidden internal transition. The trollers were described in the specific environment of the
largest intermediatels observed during the generation has input controller, which perform this task. The property de-
295,893 states and 812,283 transitions. Similar values arescribing this behaviour actually ensured correctness ®f th



combination of these additional processes to the input con-  This routing problem has also been found by simulating
troller. Decorrelation of the accept process from the for- the GHp description of the input controller using theadT

ward data flow of the input controller can be seen in Figure simulator for about 500.000 steps. The actual issue with
4 of Section 4.3: the architecture of the input controller is simulation-based validation is to decide when the verifica-

divided in two unconnected parts.

5.3.3. Data Integrity. The content of the communications
must be preserved by the input controller. Body flits should
be transmitted without alteration, while header flits skdoul
be transmitted with theipath-to-targetfield shifted, pre-
serving theBOP, EOP, andheader payloadields.

This functional property has been verified by integrating
observer processes in the specific environment: the environ

ment processes simulating the output controllers have been

enriched in order to compare the data from the input con-
troller with the expected result, determined accordindpéo t
flit provided as a stimulus to the input controller.

5.3.4. Packet Routing. The input controller has to route
all the flits of a packet in the right direction. A header flit
will be routed to the output controller specified by its desti
nation field, while a body flit will use the same direction as
the previous header flit.

The following formula expresses that after every se-

tion was thorough enough to claim a correct behavior.

The encountered problem lies in the use of the passive
split that simulates broadcasting to every output coreroll
EVALUATOR exhibits the following sequence of communi-
cations (unrelated transitions are hidden):

i n_Send! 0; In — Route Flit
inDatalflitO; In — Shift Data
Val i dO_t 00! ; Route Flit— VCO0 Out 0
Cnd_Shi ft ! bopO; Route Flit— Shift Data
i n_Send! 0; In — Route Flit
inDatal flit1; In — Shift Data
Val i dO_t 01! ; Route Flit— VCO Out 1
Dat a0_t o1#t r ue; VCO0 Out 1— Split Data0
DataO!flitO; Shift Data— Split Data0
DataOtol!flit0; Split DataO— VCO Out 1
ERROR 1! ; VCO Out 1—

In this sequencef, | i t O is a header flit to output 0, and
flit1lisaheaderflitto output 1.

The issue is that the active signalal i dO_t od are ac-
knowledged by the outputs before the probe is actually done

quence of transitions such that after an unspecified start dn Split Datad OnceRoute Flithas sent both its outputs

transition labelled with a request to emit a priority packet
(predicate dn_channel (0)") is followed by a transi-
tion labelled with a request to emit a data packet to des-
tination 1 (predicate t o_dest (1) "), the next commu-
nication on one of the channelat a0_t od (predicate
“no_Dat a0_t oD() "is true for all other transitions) is nec-
essarily on channdlat a0_t 01:

[true* . on_channel (0)
<(no_DataO_toD())* .
true

to_dest(1)]
" DataO_tol’ >

Unfortunately, this formula does not hold for thed.
(after hiding all transitions on channels different from
i n_Send, i n_Dat a, and Dat a0_t od). The counter-
example provided by ¥ALUATOR [4], the model checker
of CADP, shows the possibility that, contrary to the de-
sign assumptions, two flits for the virtual chanfetan be
present simultaneously in the input controller, which can
lead to a routing error, i.e., a flit is transmitted to a wrong
output.

This is confirmed by the following formula which ex-

presses that in all transition sequences, after a communi-

cation on one of the channel¥dl i dO_t od” there has to

be a communication on one of the channéat‘a0_t od”
before the next communication on one of the channels
“Val i dO_t od”, which does not hold either:

[true* . "ValidO_to.’
(not "DataO_to.*’)* . "ValidO_to.’]
fal se

Val i d0_t 00 and Cnd_Shi ft, a new incoming flit can
triggerVal i dO_t 01 immediately afterwards. Both output
controllers are therefore notified and may request the data,
creating a non-exclusive guard8plit DataQ leading to an
unwanted non-deterministic choice.

Nevertheless, this issue does not occur in the actual im-
plementation of the nodelt is indeed an issue of interpre-
tation of the GiP specification.

The circuit was synthesized using a WCHB [19] circuit
template. Theslack (maximal number of tokens a single
process can accumulate) of each WCHB process is only
1/2, due to the four-Phase reshuffling. Besides, Spét
Data0 combinational process has a null slack. Hence, in
the synthesized version, ti@rd_Shi f t token at the out-
put of Route Flitis not freed befor®at a0 was read, which
happens only afteBplit DataOwas notified. This guaran-
tees that no other token can be emittedvad i dO_t oz,
preventing the routing error. Yet, this property holds afly
the slack betweeRoute FlitandSplit DataOis less than 1.
The system is said not to lsack-elastid20].

However, on current implementations of the simulation
and verification tools, communications omE€channels are
done atomically between two semicolons, and do not de-
scribe the acknowledgement of the data. This corresponds
to a Full-Buffer (slack of 1) description of the asynchrosou
processes, except f@plit DataQ thanks to the probe on

3This was actually checked in a SDF (Standard Delay File) back
annotated Verilog simulation of the node.



output mechanism. 7. Conclusion

The slack increase in theH® description of this non

slack-elastic process allows an unwanted behavior, namely !N this paper, we have presented an approach for the ver-
the routing of a flit to a wrong output. ification of process algebraic descriptions of asynchrenou

Toi . his furth dified theied . architectures using the verification toolbox &P originally
0 investigate this further, we modified theiedescrip- designed for the verification of telecommunication proto-

tion so as to reduce the slack of the processes by doubling,q¢ " approach is supported by a tool, capable of auto-
the communications on each channel, which mimics afour'matically translating full Gp into the international stan-

phase protocol. A first communication describes the raisingdard LoTos We validated our approach on two asyn-
phase on the signal (falling on the acknowledge), while the chronous designs, namely an implementation of the Data

second describes the falling phase on the signal (rising OnEncryption Standard [24] andMoc, the input controller

the a_cknowledge), th_e guar(_JIs being evaluated acgqrding %t which was used in this paper as an illustrating example.
the first communication. With each process modified fol-

lowing this princiole. the I ; N The node of Aloc required a careful 8p design us-
owing this principie, the LS contains no error transition: ing nonslack-elasticprocesses. Some of the node proper-
the routing properties hold.

ties were thus verified while manually taking the handshake
As for VCL1, the routing correctness was already verified expansion into account. In order to ease this verification

on the original Gip description. Thanks to thaccept 1 task, we suggest to enrich the high-leveifdanguage with

flow-control mechanism, a single flit is allowed in the in- pragmas indicating the chosen handshake expansion to the

put controller. Even though an additional buffering stage i simulation, synthesis and verification tools.

presenton VC1, the overall slack is constrainedto 1, and no  As regards future work, we are currently using our ap-

interference can occur. proach to ensure the correctness, before synthesis, af arch
tectures designed at the CEA/Leti laboratory, in particula
the next implementation of ®OC. In this context, we rely

6. Related Work on the possibility to use our approach hierarchically, loy is

lating subsystems that are verified separately and seen as

blackboxes when verifying properties of the global system.
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