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Abstract

Hybrid logic is a formalism that is closely related to both modal logic and description logic. A variety of
proof mechanisms for hybrid logic exist, but the only widely available implemented proof system, HyLoRes,
is based on the resolution method. An alternative to resolution is the tableaux method, already widely
used for both modal and description logics. Tableaux algorithms have also been developed for a number of
hybrid logics, and the goal of the present work is to implement one of them.
In this article we present the implementation of a terminating tableaux algorithm for the basic hybrid logic.
The performance of the tableaux algorithm is compared with the performances of HyLoRes and HyLoTab
(a system based on a different tableaux algorithm).
HTab is implemented in the functional language Haskell, using the Glasgow Haskell Compiler (GHC). The
code is released under the GNU GPL and can be downloaded from http://hylo.loria.fr/intohylo/htab.
php.
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1 Introduction

In this article we present the implementation of a terminating tableau algorithm

for the basic hybrid logic H(@) described in [4]. The performance of the tableaux

algorithm is compared with the performance of two other theorem provers for hy-

brid logics, HyLoRes (see [2]) and HyLoTab (see [5]). Some optimisations aimed at

improving the behavior of the prover are also explored.

In section 2, we provide a brief introduction to hybrid logics, presenting the

basic syntax and semantics for the hybrid language H(@). In section 3, we discuss
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the main goals we have set for the HTab prover. In section 4, we present the rules

of the tableaux method, their implementation, and some basic optimisations. In

section 5, we list the result of preliminary testing. In the conclusion we see the

perspectives for further developments of the prover.

2 The Hybrid Logic H(@)

H(@) extends the basic modal language by adding nominals and satisfaction oper-

ator. The following definition gives the syntax and the semantic of this language.

Definition 2.1 Let REL = {✸1,✸2, . . .} (relational symbols), PROP = {p1, p2, . . .}

(propositional variables) and NOM = {i1, i2, . . .} (nominals) be disjoint and count-

able sets of symbols. Well formed formulas of the hybrid language H(@) in the

signature 〈REL,PROP,NOM〉 are given by the following recursive definition:

FORMS ::= p | i | ¬ϕ | ϕ1 ∧ ϕ2 | ✸ϕ | @iϕ,

where p ∈ PROP, i ∈ NOM, ✸ ∈ REL and ϕ,ϕ1, ϕ2 ∈ FORMS.

A (hybrid) model M is a tripleM = 〈M, (✸M)✸∈REL, V 〉 such that M is a non-

empty set, each ✸
M is a binary relation onM , and V : PROP∪NOM→ ℘(M) is such

that for each nominal i ∈ NOM, V (i) is a singleton subset of M . We commonly

write M for the domain of a model M, and we call states, worlds or points the

elements of M . Each ✸
M is an accessibility relation, and V is the valuation.

Let M = 〈M, (✸M)✸∈REL, V 〉 be a model and m ∈ M . For each nominal

i ∈ NOM, let [i]M be the state referred by i (i.e., for i ∈ NOM, [i]M is the unique

m ∈ M such that V (i) = {m}). Then, the satisfaction relation is defined as

following:

M,m |= p iif m ∈ V (p) for p ∈ PROP

M,m |= i iif m = [i]M for i ∈ NOM

M,m |= ¬ϕ iif M,m 6|= ϕ

M,m |= ϕ1 ∧ ϕ2 iif M,m |= ϕ1 andM,m |= ϕ2

M,m |= ✸ϕ iif exists a state m′ s.t. ✸
M(m,m′) andM,m′ |= ϕ

M,m |= @iϕ iif M, [i]M |= ϕ for i ∈ NOM.

A formula ϕ is satisfiable if there is a model M and a world m ∈ M such that

M,m |= ϕ. A formula ϕ is valid (notation: |= ϕ) if for all modelsM,M |= ϕ.

In [1], it is shown that the satisfiability problem for H(@) is decidable and

PSPACE-complete.

3 Aims of HTab

The main goal behind HTab is to make available an optimised tableaux prover for

hybrid logics, using algorithms that ensure termination. We ultimately aim to cover

a number of frame conditions (i.e., reflexivity, symmetry, antisymmetry, etc.), as far
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as we can ensure termination. Moreover, we are interested in providing a range of

inference services beyond satisfiability checking. For example, the current version of

HTab includes model generation (i.e., HTab can generate a model from a saturated

open branch in the tableau).

In this paper we report on version 1.1 of the prover. It is distributed under

the GNU GPL, and the source code is available for download at http://hylo.

loria.fr/intohylo/htab.php. For the moment, the prover only includes a few

optimisations and can handle the basic modal logic H(@).

Even though other provers for languages similar toH(@) exists, HTab has a num-

ber of particularities that make it a potentially useful tool. We mention here some

related provers, list their main characteristics and provide appropriate references.

We will then comment on the main differences with HTab.

• RACER [7] implements a tableaux algorithm for a very expressive description logic

(ALCQHIR+). It is highly optimised and very flexible. It implements state-

of-the-art optimisations and heuristics, and provides inference services beyond

satisfiability checking which are typical of description logic reasoners (building

a concept taxonomy, retrieval, etc). The language ALCQHIR+ is incomparable

with H(@). Intuitively, it has a restricted use of @, and nominals are not allowed.

• HyLoTab [5] is a tableaux based prover for the hybrid logics up to H(@,✸−1, ↓,A)

(✸−1 is the inverse modality, ↓ is the ‘bind-to-the-current-state’ binder, and A is

the universal modality). The prover can handle the reflexivity, transitivity and

minimality frame conditions, and can generate a model from an open branch in

the tableaux. The complete languageH(@,✸−1, ↓,A) is undecidable (the ↓ binder

is to blame), and hence, general terminating algorithms are not possible. But,

unfortunately, the rules implemented by HyLoTab do not guarantee termination

even for decidable sub-fragments of H(@,✸−1, ↓,A) like H(@, A) 3 .

• HyLoRes [2] is a resolution based prover for the hybrid logics up to H(@,✸−1, ↓).

The implemented algorithm is terminating for formulas in H(@,✸−1), and does

model generation, but it doesn’t handle frame conditions. The prover actually

performs resolution with order and selections functions, and different orders and

selection functions can be specified. The complexity of the implemented algorithm

is EXPTIME, even for fragments of H(@,✸−1, ↓) with lower complexity.

As we said above, HTab has particularities that differentiate it from each of the

three provers we just mentioned. To start with, it handles the hybrid operators

(@ and nominals) with no restrictions and it performs model generation. These

two features distinguishes it from RACER. On the negative side, the current version

of HTab has only a few optimisations, while RACER is a mature theorem prover

that includes most state-of-the-art optimisation techniques. We aim to incorporate

further optimisations (e.g., model caching) step by step, in future versions of the

prover. HyLoTab is the system most similar to HTab, being both tableaux based

provers for hybrid logic. Besides some technical issues (the way in which substitu-

tions are handled in HyLoTab differs from the approach taken in HTab) the main

difference is termination: one of the main aims of HTab is to always ensure that

3 For instance, the formula ¬p ∧ A(p ∨ ✸(¬p ∧ n)) makes HyLoTab loop.
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σ:(ϕ ∧ ψ)
(∧)

σ:ϕ, σ:ψ

σ:(ϕ ∨ ψ)
(∨)

σ:ϕ | σ:ψ

σ:✸ϕ
(✸)1

σ:✸τ, τ :ϕ

σ:�ϕ, σ:✸τ
(�)

τ :ϕ

σ:@aϕ
(@)1

τ :a, τ :ϕ

σ:¬a
(¬)1

τ :a

σ:ϕ, σ:a, τ :a
(νId)2

τ :ϕ

σ:b, σ:a, τ :a
(nom)

τ :b

1 The prefix τ is new on the branch.
2 τ is the earliest introduced prefix in the branch making a true.

Fig. 1. Rules of the prefixed tableaux method for H(@)

the general algorithm is terminating. Finally, HTab and HyLoRes are actually being

developed in coordination, and a generic inference system involving both provers

is being designed. The aim is to take advantage of the dual behaviour existing

between the resolution and tableaux algorithms: while resolution is usually most

efficient for unsatisfiable formulas (i.e., a contradiction can be reported as soon as

the empty clause is derived), tableaux methods are better suited to handle satisfi-

able formulas (i.e., a saturated open branch in the tableaux represents a model for

the input formula).

4 A Tableaux Method for Hybrid Logics

The tableaux algorithm implemented in HTab is taken from [4] where a terminating

decision procedure for hybrid logics up to H(@, A,✸−1) is introduced (currently,

HTab implements only the rules for H(@)).

4.1 Rules

The rules of the prefixed tableaux method for the language H(@) are given on

figure 1.

As can be seen in the figure, the rules handle prefixed formulas, which are of the

form σ:ϕ, for ϕ a formula of the hybrid language, and σ ∈ PREF, a countable set

of symbols called prefixes. The interpretation of a prefixed formula σ:ϕ is that ϕ is

true in a world designated by σ. In addition to prefixed formulas, we notice that
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the rule ✸ produces accessibility formulas, of the form σ:✸τ , where σ and τ are

prefixes. Such formulas do not belong to the object language, but help the course

of the procedure 4 .

A tableau for an input formula ϕ in this calculus is a well-founded, finitely

branching tree with root σ:ϕ, and in which each node is labeled by a prefixed

formula, and the edges represent applications of tableau rules in the usual way.

A branch is said to be closed if it contains the formulas σ:ϕ and σ:¬ϕ, with

σ ∈ PREF and ϕ ∈ FORMS.

From a direct examination of the rules, we can already discuss some of the main

characteristics behind HTab. For example, to avoid useless repeated applications,

five of the eight rules (∧, ∨, ✸, @, ¬) can be constrained so that the premise formula

is eliminated from the branch once the rule is applied. For the � rule on the other

hand, it is necessary to keep the two premise formulas after the application of the

rule, because they can be used once again separately in other applications. The ✸

rule has a side condition requiring the prefix to be new in the branch, and hence we

should keep track of already used prefixes.

Finally, given the expressivity of the hybrid language (which provides a limited

kind of equality between states), prefixes and nominals form equivalence classes

intuitively defined by the relation “refer to the same state as.” In the course of

the procedure, these equivalence classes are created, enlarged and merged. As we

will see in the next section, efficiently handling these operations is crucial for an

appropriate performance of the prover. The effect of rule (νId) is that the smallest

prefix in a given equivalence class should inherit a copy of all the formulas true at

any other prefix in the same class. This rule requires a mapping between nominals

and the smallest prefix making it true. The rule (nom) can be intuitively interpreted

as an instruction to merge equivalence classes. Contrary to (νId), it does not impose

a direction on the propagation of information. We will see how these two last rules

are implemented in the next section.

4.2 Implementation

We will now introduce the main details concerning the implementation of HTab.

As the code is released under the GNU GPL, we want to provide some insight on

the main algorithms of the system to invite independent development. We will

start by describing the structures used in our implementation, then the algorithm

implementing the method.

HTab is being developed in the functional language Haskell [9], using the Glasgow

Haskell Compiler [6]. It uses a monad structure to define a global state where the

main data structure is a branch. A branch contains:

• A set of prefixed atomic formulas, of the form σ:n or σ:¬n, where n ∈ PROP ∪

NOM. These are the atomic formulas which are satisfied in the model correspond-

ing to the branch.

4 In other words, the tableaux rules deal with two sets of symbols – prefixes and nominals – that refer to
states in the model. Intuitively, we can think of prefixes are new nominals which are introduced on demand
during the application of the tableaux rules, while any nominal appearing in a node of the tableau should
appear also in the input formula. Keeping these two kind of symbols apart is useful for ensuring termination
of the algorithm.
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• Separate sets of prefixed formulas whose main connector is ∧, ∨, ✸, � , @, or

of the kind ¬nominal. The type of a formula determines the rules that can be

applied to it.

• A list BoxRuleChart, used to store the pairs (accessibility formula, � formula)

which have already been used by the � rule

• A counter indicating the last prefix created.

The main algorithm can be specified in two steps. First, during the initialisation

step the input formula is put into negative normal form, prefixed with the prefix

0 and stored in one of the lists in the branch structure depending of its main

connective. The second step is then started taking as input this initial branch.

Algorithm 1 Tableaux algorithm

Require: a branch B

Ensure: SAT or UNSAT

1: if B is closed then

2: return UNSAT

3: else

4: LR ← possibleRulesApplications(B)

5: if LR empty then

6: res ← SAT

7: else

8: R ← chooseRuleAmong(LR)

9: LB ← applyRuleOnBranch(R, B)

10: repeat

11: B′ ← chooseBranchAmong(LB)

12: LB ← LB - B′

13: res ← apply the algorithm on B′

14: until res = SAT or LB is empty

15: end if

16: return res

17: end if

Some of the functions mentioned in Algorithm 1 deserve further comments:

possibleRulesApplications: creates a list of pairs (rule, [formula]) of possible

rules applications. To do so, each of the set of formulas of the branch is

scanned, with some constraints begin checked (like the one of the rule � with

BoxRuleChart).

applyRuleOnBranch: this function creates one or several branches. Each new

branch is created from the current branch, with modifications among the follow-

ing:
• suppression of a formula (typically, the premise formula),
• addition of one or several formulas (typically, the conclusions of a rule),
• addition of an accessibility formula,
• incrementation of the counter of the last prefix generated in the branch (in the

case of the rule ✸),
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• addition of a pair (accessibility formula, � rule) in BoxRuleChart.

Clash detection consists of detecting σ:n and σ:¬n in the same branch, with

σ ∈ PREF and p ∈ PROP ∪NOM. To do so, each prefixed atomic formula added in

the branch is saved in a dedicated structure. When this is done, the possibility of

a clash is checked. If a clash is detected, the algorithm stops, returning the branch

and the culprit formula.

4.2.1 Structures and Invariants for ( νId) and (nom)

To implement the rules (νId) and (nom) we proceed differently than for the other

rules. We include these rules in the algorithm as a set of invariants that we ensure

every time that a formula is added to the current branch. Thus, the question of

saturation is irrelevant in these two cases.

To specify these invariants, let B be the set of formulas in the current branch,

let ≤ be an arbitrary order over PREF, let H1 : NOM → PREF be a mapping

assigning prefixes to nominals, let H2 : PREF → 2FORMS be a mapping assigning

sets of formulas to prefixes, and let E : (PREF×NOM)→ {True,False} be a Boolean

matrix.

• Imin : H1(a) = σ ⇔ (σ:a ∈ B) ∧ ∀σ′.(σ′:a ∈ B ⇒ σ ≤ σ′). This invariant simply

characterises H1 as the function mapping each nominal to the smallest prefix in

the branch making the nominal true.

• Isaturation : H1(a) = σ ⇔ ∀σ′.((σ′:ϕ ∈ B)∧ (σ′:a ∈ B)⇒ σ:ϕ ∈ B). This invariant

expresses the necessity that the smallest prefix of a class must retrieve a copy of

all the formulas of the other prefixes of the class.

• Imember : ϕ ∈ H2(σ)⇔ σ:ϕ ∈ B. This invariant characterises H2 as the function

mapping each prefix to the set of formulas that holds in that prefix.

• Ieq : σ:a ∈ B ⇒ Eσ,a = True. The matrix records the equivalent classes deter-

mined by the appearance of formulas of the form σ:a, where a is a nominal, in

the branch.

• Inom : Eσ,b = Eσ,a = Eτ,a = True ⇒ Eτ,b = True. This invariant is the direct

translation of the rule (nom).

Notice that given the order ≤ on PREF, the matrix E enables us to retrieve the

minimal prefix for a given equivalence class.

These invariants are equivalent to the use of the rules (νId) and (nom) in a

standard tableaux method. The effect of having the rule (νId) applied with the

highest priority among all rules is taken care of by the invariants Imin and Isaturation.

The case is similar for the rule (nom) and the invariants Ieq and Inom. The invariant

Imember simply prepares the ground for all the other invariants.

Let us now describe how this set of invariants is maintained in HTab.

4.2.2 Maintaining the Invariants

When a formula is added to a branch, two different cases must be handled to

maintain the invariants mentioned in the previous section. The simplest case is

when a formula σ:ϕ, with ϕ /∈ NOM, is added to a branch (see algorithm 2). In this

case we only need to ensure that the formula ϕ is copied to the smallest prefix –
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the urfather – of the equivalence class. This is because such formulas do not change

the equivalent classes defined over NOM ∪ PREF.

Algorithm 2 Maintaining of the invariants when σ:ϕ (ϕ /∈ NOM) is added to the

branch
1: H2(σ)← H2(σ) ∪ {ϕ} // to maintain Imember

2: B ← B ∪ {urfather(σ):ϕ}

urfather : Prefix → Prefix is the function that, for a given prefix, returns the

smallest prefix of its equivalence class (see algorithm 3).

Algorithm 3 urfather function

Require: σ the prefix whom we look for the urfather

Ensure: τ the smallest prefix in the equivalence class of σ

imin ← min {i | Eσ,i = True}

τ ← min {j | Ej,imin
= True}

The second case, when a formula σ:a, with a ∈ NOM, is added to the branch,

is more complicated. The algorithm 4, handles both sub-cases: when it provokes

a merge of two equivalence classes and when it does not. We can sum up this

algorithm in two lines:

(i) add σ:a to the equivalence classes, and merge if needed (lines 1 to 5)

(ii) copy formulas of each “old” urfather to the “new” urfather (lines 6 to 16)

An example of the first part is given in figure 2.

Algorithm 4 Maintaining the invariants when σ:a (a ∈ NOM) is added to the

branch
1: Eσ,a ← True // to maintain Ieq

2: L ← {Ln | Eσ,n = True}

3: E ← E with the rows of L replaced by or(L)

4: C ← {Cτ | Eτ,a = True}

5: E ← E with the columns of C replaced by or(C) // to maintain Inom

6: iC ← list of the index of the columns of C ,

7: oldUrfathers ← {H1(n) | n ∈ iC} ∪ {σ}

8: newUrfather ← min(oldUrfathers)

9: for σ′ ∈ (oldUrfathers− newUrfather) do

10: for ϕ ∈ H2(σ
′) do

11: B ← B ∪ {newUrfather:ϕ} // to maintain Isaturation

12: end for

13: end for

14: for n ∈ iC do

15: H1(n)← newUrfather // to maintain Imin

16: end for
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(a) Two equivalence
classes and a new point

(b) ORing these rows (c) ORing these columns (d) Result: one equiva-
lence class

Fig. 2. Example of update of the matrix E

4.3 Optimisations

HTab includes a few optimisations, which are semantic branching, full clash detec-

tion and backjumping. They are briefly described below.

Semantic branching: Semantic branching [8] addresses one of the problems of the

tableaux method, which is that the different branches of the tree might “overlap”

(in terms of the possible models they represent). This leads to superposition of the

search space explored by each branch.

The solution consists in adding to the second explored branch the negation of

the formula added in the first branch – which is closed. The disjunction rule is

replaced by:
σ:(ϕ ∨ ψ)

(semantic branching)

σ:ϕ | σ:(¬ϕ) ∧ ψ

Full clash: We can extend clash detection to complete formulas in the hope if

detecting clashes earlier in the branch. To do so, formulas should not be transformed

into negative normal form. Then, a simple generalisation of the clash-detection

structure seen in section 4.2 is all that is required.

The testing we carried out showed that from these two optimisations, semantic

branching is the one with the highest impact. While full clash detection results in

some improvements, it doesn’t seem to be crucial for the system.

Backjumping: Backjumping is an optimisation that aims to reduce search space

by replacing systematic one-level-up backtracking by a dependency-directed back-

tracking. A simple example from [8] is this formula:

(A1 ∨B1, A2 ∨B2, ...An ∨Bn) ∧ (✸(A ∧B)) ∧ (�¬A)

Without backjumping we have to explore the whole search space created by the

disjunctions in the left, while the causes of the clash – ✸(A∧B) and ∧(�¬A) – do

not depend on them.

To be able to determine exactly up to which branching point we can backtrack,

backjumping requires new information to be attached to each prefixed formula. We

decorate each prefixed formula with its “dependency point” which is the branching

point (i.e., the particular application of the ∨ rule) in which the formula was gener-

ated. This information is then propagated to formulas obtained by the application

of other rules: a formula depends on a particular branching point if it has been
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added to the branch at the moment of this particular application of the ∨ rule, or

if it has been added by the application of a rule where one of the premise formulas

depends on this branching.

In order to keep backjumping information, each prefixed formula is decorated by

a dependency set and the rules have to be adapted to propagate these dependencies,

especially those that have several premise formulas like the (✷) rule:

σ:d1:�ϕ , σ:d2:✸τ
(�)

τ :(d1∪d2):ϕ

In addition, we need to also ensure that the invariants that we implemented to

account for the (νId) and (nom) rules also propagate dependency information. As

the aim of these two rules is to copy formulas from one prefix to another according

to the equivalence class they belong to, we choose to keep track of the dependencies

of each equivalence class (i.e., the union of the dependencies of all the formulas that

have contributed to the class). This is a quite radical solution, as it is not necessary

to add the whole dependency set of a class to a copied formula to have a correct

implementation of backjumping. The ideal solution would be to strictly keep track

of the “path” that links two equivalent prefixes, instead of all contributions to the

equivalence class, but the coarser solution we discuss below requires much less book

keeping.

The dependencies of an equivalence class are stored in a mapping from the

urfathers to the set of dependencies. Let DEP be the enumerable set of dependencies.

In our implementation, it is the depth at which a branching occurs. Let H3 :

PREF→ 2DEP be a mapping from prefixes to a set of dependencies. H3 must meet

this invariant:

• Ideps (σ:d:n ∈ B ∧H1(n) = σ)⇒ d ∈ H3(σ)

That is: if a prefixed atomic nominal formula is in the branch, then the depen-

dencies of this formula must be included in the dependencies of the earliest prefix

making this nominal true.

Some simple modifications to the algorithm we discussed in section 4.2.2 are

sufficient to maintain this new invariant. In order to handle the case when a formula

σ:d:ϕ, with ϕ /∈ NOM, is added to a branch, we replace algorithm 2 by algorithm 5.

Notice that the type of H2 is now PREF → 2DEP×FORMS, in order to keep track of

the dependencies associated to each formula.

Algorithm 5 Propagating dependencies when σ:d:ϕ (ϕ /∈ NOM) is added to the

branch
1: H2(σ)← H2(σ) ∪ {(d, ϕ)}

2: u← urfather(σ)

3: d2 ← H3(u) ∪ d

4: B ← B ∪ {(u:d2:ϕ)}

For the second case, when a formula σ:a with a ∈ NOM is added to the branch,

we do the following two additions to the algorithm 4. First, we have to calculate the

dependencies of the resulting merge of classes, which is the union of the dependencies

of the old classes, together with the dependencies of the formula that triggers the
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merge (the code is given in algorithm 6, and it should be added just after line 8 in

algorithm 4). Second, we still have to copy all the formulas of the old class to the

new class, without forgetting to add the dependencies (i.e., we should replace lines

9 to 13 in the previous algorithm with the lines shown in algorithm 7).

Algorithm 6 Maintaining Ideps when σ:d:a (a ∈ NOM) is added to the branch

1: newDeps← d

2: for o ∈ oldUrfathers do

3: newDeps← newDeps ∪H3(o)

4: end for

5: H3(newUrfather)← newDeps

Algorithm 7 Propagating dependencies when σ:d:a (a ∈ NOM) is added to the

branch
1: for σ′ ∈ (oldUrfathers− newUrfather) do

2: for (d, ϕ) ∈ H2(σ
′) do

3: B ← B ∪ {newUrfather:(d∪newDeps):ϕ}

4: end for

5: end for

The effect of backjumping on performance can be seen in figure 4, where HTab

1.0 and HTab 1.1, HTab without and with backjumping respectively, are compared.

5 Tests

To evaluate the performance of HTab, we use a suite of test scripts originally devel-

oped for HyLoRes. The tests are launched on batches of random hybrid formulas.

They are done by steps of bigger and bigger formula sizes.

We will compare the performance of HTab with both HyLoRes and HyLoTab on

formulas of H(@) that contain 2 propositional symbols, 2 nominals, 1 relational

symbol, and a modal depth of 2. We go from formulas of size 1 to formulas of

size 66, in number of conjunctions of clauses. The percentage of satisfiability of

the input formulas can be seen on figure 3 (as reported by HyLoRes, the system

with the smallest number of timeouts): we go from mostly satisfiable formulas to

mostly unsatisfiable ones. As it is in general the case, timeouts occur mostly in the

area of maximum uncertainty, where the percentage of satisfiable and unsatisfiable

formulas is roughly the same.

We can see the results on figure 4. HyLoTab is far behind the two other provers.

Concerning HTab and HyLoRes, we see that their curves cross in the point corre-

sponding to 22 clauses. Before this point, HTab behaves better than both HyLoTab

and HyLoRes. This is because the tableaux method generally terminates faster than

resolution when a formula is satisfiable. After the 22 clause point, HyLoRes starts to

gain the upper hand. HTab 1.1 is still much slower than HyLoRes on these formulas,

but thanks to backjumping, it remains farily well behaved (as we can see HTab 1.0

would mostly timeout in all this area). HTab 1.1 median times go down after about

50 clauses as a combined result of backjumping and semantic branching.
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6 Example of Use

As an input, HTab takes a file containing a set of formulas. The syntax used can

be seen with this sample input file:

begin

<>[](p1 v p2) & []<>(p2 v p1) & <><>(p1) & <><>(p2);

([](-p1 v -p2) & [](p3 <->p1)) & ([](p1 <-> p2 & [](p2 <-> p1)));

(@ n1 (p1 <-> p3) & (@ n2 (p1 <-> p2)) & (@ n1 -n2))

end

Executing HTab on these formulas is done with this call:

$ htab -f test.frm

Reading parameters from .htabrc

The formula is satisfiable.

(final statistics)

begin

----------------------------------

Closed branches: 68

----------------------------------

end

Elapsed time: 3.6002e-2

The argument -gm filename can be added in order to generate a model and write

it into the file filename. The model found for the previous formula is:

Model{

worlds = fromList [N0,N1,N2,N3,N4,N5,N6,N7,N8,N9,N10],

succs = [(N2,R1,N3),(N2,R1,N5),(N2,R1,N7),(N3,R1,N4),

(N3,R1,N10),(N5,R1,N6),(N5,R1,N9),(N7,R1,N8)],

valP = [(P1,fromList [N0,N1,N6,N8,N9,N10]),

(P2,fromList [N1,N4]),

(P3,fromList [N0])],

valN = [(N0,N0),(N1,N1),(N2,N2),(N3,N3),(N4,N4),(N5,N5),(N6,N6),

(N7,N7),(N8,N8),(N9,N9),(N10,N10),(N11,N0),(N12,N1)],

sig = Sig {nomSymbols = fromList [N0,N1,N2,N3,N4,N5,N6,

N7,N8,N9,N10,N11,N12],

propSymbols = fromList [P1,P2,P3],

relSymbols = fromList [R1]}}

7 Conclusion

We have implemented a preliminary version of a prover for hybrid logic based on

tableaux method, guaranteeing termination for all input formulas of H(@).

Although we are still at an early stage of implementation, the performance we

get is encouraging. There is still plenty of room for optimisations on both the

internal data structures used and on the tableau algorithm itself. For example,
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although the algorithm we are using to update the equivalence classes of prefixes

and nominals has been optimised, its implementation uses copies of structures. As

the algorithm in itself is already fairly complex, we have decided to first implement a

correct version with unoptimised data types that require copying of big structures,

and this seriously slow down the prover. We can explore two ways to solve this

problem. The first one is to improve this matrix system by using dynamic memory

allocation, and also examining the number of duplications of formulas caused by the

(νId) rule in order to find ways to reduce them. The other solution is, as suggested

in [10], to use a disjoint-set forest to represent equivalence classes instead.

We have not yet implemented some optimisations of the basic tableaux algorithm

which are standards in state-of-the-art tableaux-based provers like racer. (e.g.,

model caching).

Once the basic hybrid logic is tamed, our next goal is to implement frame con-

ditions, like reflexivity or transitivity, by using the current work of Bolander and

Blackburn (see [3]).
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