Une adaptation des cartes auto-organisatrices pour des données décrites par un tableau de dissimilarités

Abstract : Many data analysis methods cannot be applied to data that are not represented by a fixed number of real values, whereas most of real world observations are not readily available in such a format. Vector based data analysis methods have therefore to be adapted in order to be used with non standard complex data. A flexible and general solution for this adaptation is to use a (dis)similarity measure. Indeed, thanks to expert knowledge on the studied data, it is generally possible to define a measure that can be used to make pairwise comparison between observations. General data analysis methods are then obtained by adapting existing methods to (dis)similarity matrices. In this article, we propose an adaptation of Kohonen's Self Organizing Map (SOM) to (dis)similarity data. The proposed algorithm is an adapted version of the vector based batch SOM. The method is validated on real world data: we provide an analysis of the usage patterns of the web site of the Institut National de Recherche en Informatique et Automatique, constructed thanks to web log mining method.
Type de document :
Article dans une revue
Revue de Statistique Appliquée, Société française de statistique, 2006, LIV (3), pp.33-64
Liste complète des métadonnées


https://hal.inria.fr/inria-00174272
Contributeur : Fabrice Rossi <>
Soumis le : samedi 22 septembre 2007 - 16:16:13
Dernière modification le : mercredi 18 mai 2016 - 01:09:11
Document(s) archivé(s) le : vendredi 9 avril 2010 - 02:40:37

Fichiers

RSA.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00174272, version 1
  • ARXIV : 0709.3586

Collections

Citation

Aïcha El Golli, Fabrice Rossi, Brieuc Conan-Guez, Yves Lechevallier. Une adaptation des cartes auto-organisatrices pour des données décrites par un tableau de dissimilarités. Revue de Statistique Appliquée, Société française de statistique, 2006, LIV (3), pp.33-64. <inria-00174272>

Partager

Métriques

Consultations de
la notice

198

Téléchargements du document

123