Mutual information for the selection of relevant variables in spectrometric nonlinear modelling

Abstract : Data from spectrophotometers form vectors of a large number of exploitable variables. Building quantitative models using these variables most often requires using a smaller set of variables than the initial one. Indeed, a too large number of input variables to a model results in a too large number of parameters, leading to overfitting and poor generalization abilities. In this paper, we suggest the use of the mutual information measure to select variables from the initial set. The mutual information measures the information content in input variables with respect to the model output, without making any assumption on the model that will be used; it is thus suitable for nonlinear modelling. In addition, it leads to the selection of variables among the initial set, and not to linear or nonlinear combinations of them. Without decreasing the model performances compared to other variable projection methods, it allows therefore a greater interpretability of the results.
Type de document :
Article dans une revue
Chemometrics and Intelligent Laboratory Systems / I Mathematical Background Chemometrics Intell Lab Syst, 2006, 80 (2), pp.215-226. <10.1016/j.chemolab.2005.06.010>
Liste complète des métadonnées


https://hal.inria.fr/inria-00174077
Contributeur : Fabrice Rossi <>
Soumis le : vendredi 21 septembre 2007 - 14:36:40
Dernière modification le : vendredi 21 septembre 2007 - 14:49:57
Document(s) archivé(s) le : jeudi 8 avril 2010 - 20:51:19

Fichiers

Chemometrics04_Rossi-Verleysen...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Fabrice Rossi, Amaury Lendasse, Damien François, Vincent Wertz, Michel Verleysen. Mutual information for the selection of relevant variables in spectrometric nonlinear modelling. Chemometrics and Intelligent Laboratory Systems / I Mathematical Background Chemometrics Intell Lab Syst, 2006, 80 (2), pp.215-226. <10.1016/j.chemolab.2005.06.010>. <inria-00174077>

Partager

Métriques

Consultations de
la notice

337

Téléchargements du document

372