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Abstract—We propose an efficient broadcast algorithm for
wireless sensor networks, based on network coding: we introduce
a simple rate selection and analyze its performance (through
computation of min-cut). By broadcast, we mean sending data
from one source to all the other nodes in the network, and our
metric for efficiency is the number of transmissions necessary to
transmit one packet from the source to every destination.

We address this problem, in some special cases of wireless
“homogeneous” sensor networks contained of the plane: wireless
lattice networks, and dense unit disk networks. Our results are
based on the simple principle of Increased Rate for Exceptional
Nodes, Identical Rate for Other Nodes (IREN/IRON), for setting
rates on the nodes (wireless links) of the network. With this rate
selection, we give a value of the maximum broadcast rate of the
source: our central result is a proof of the value of the min-cut
for such networks.

I. INTRODUCTION

Seminal work from Ahlswede, Cai, Li and Yeung [1] has

introduced the idea of network coding, where intermediate

nodes are mixing information from different flows (different

bits or different packets): one result was that, in the general

case, network coding may achieve the maximum information-

theoretic capacity for multicast. It is higher, in some cases,

than what classical store-and-forward routing could achieve.

One logical domain of application is wireless sensor net-

works, and indeed network coding has been used in wireless

networks. In particular, some results include a generalization

of the results in [1]: when the loss rates and the capacity of the

links are known and fixed, the maximal multicast capacity of

the wireless network, can be computed, as shown in [6], [12].

Essentially, for one source, it is the min-cut of the network

(see section III-A) from the source to the destinations, as for

wired networks [1], but considering hypergraphs rather than

graphs.

However in wireless sensor networks, a primary constraint

is not necessarily the capacity of the wireless links: because of

the limited battery of each node, the limiting factor is the cost

of wireless transmissions. Hence a different focus is energy-

efficiency, rather than the maximum achievable broadcast rate:

• given one source, minimize the total number of

transmissions to achieve the broadcast to destination

nodes.

With network coding, the problem turns out to be solvable in

polynomial time: for the stated problem, [16], [17] describe

methods to find the optimal transmission rate of each node

with a linear program. Once the optimal rates are computed,the

performance can be asymptotically achieved with distributed

random linear coding for instance [5], [20]. However, this

does not necessarily provide direct insight about the optimal

rates, or the optimal cost: those may be obtained by solving

the linear program on instances of networks.

Another angle to tackle this problem, would be to explicitly

specify the network coding protocol, based on some intuitive

foresight, and be able to compute the performance ; for

instance [18] starts with exhibiting an optimal algorithm for

some simple regular networks.

In general specifying the network coding protocol reduces

to specifying the transmission rates for each node [11]. Then

the cost is known, and the central element for computing the

performance is the estimation of the min-cut of the network.

Some results exist about the expected value of the min-cut

on some classes of networks: for instance [7] explored the

multicast capacity networks where a source which is two hop

from the destinations, through a one network of relay nodes ;

[21] studied the some classes of unit disk graphs in the plane.

Our approach in a similar spirit. For large-scale sensor net-

works, one assumption could be that the nodes are distributed

in an homogeneous way, and a question would be: “Is there a

simple near-optimal rate selection ?” Considering the results

of min-cut estimates for random graphs [7], [21], [22], one

intuition is that most nodes have similar neighborhood, hence

the performance, when setting an identical rate for each node,

deserves to be explored. This is the starting point of this paper,

and we will focus on homogeneous networks, such as lattice

graphs, or random geometric graphs:

1) We introduce a simple rate principle where most nodes

have the same transmission rate: IREN/IRON principle

(Increased Rate for Exceptional Nodes, Identical Rate

for Other Nodes).

2) We give a proof the min-cut for some lattice graphs

(modelled as hypergraphs).

3) We deduce an estimate of the min-cut for unit disk

hypergraphs.

4) We show that this simple rate selection achieves “near

optimal performance”, in some classes of homogeneous

networks, based on min-cut computation.

5) We illustrate the results obtained by simulations.



The rest of this paper is organized as follows: section II de-

tails the network model and related work; section IV describes

the main results (min-cut and near optimality) ; section V gives

proofs of min-cut and section VII concludes.

II. NETWORK MODEL

In this article, we study the problem of broadcasting from

one source to all nodes. We will assume an ideal wireless

model, infinite capacity: lossless wireless transmissions with-

out collisions or interferences. We also assume that every node

has an infinite queue.

Our focus is on large-scale wireless sensor networks. Such

networks have been modeled as unit disk graphs [27] of the

plane, where two nodes are neighbors whenever their distance

is lower than a fixed radio range ; see figure 1(a) the principle

of unit disk graphs.

An important assumption is that the wireless broadcast

advantage is used: each transmission is overheard by sev-

eral nodes. As a result the graph is in reality a (unit disk)

hypergraph1: (it is slightly different from random geometric

graphs [28] where links are independent). Precisely, the

L



A

B

C
D

(a) Unit disk graph - neighbors of
A are B and C since they are
within range ρ

L

(b) Lattice

Figure 1. Network Models

sensor networks considered will be:

• Random unit disk graphs with nodes uniformly dis-

tributed (Fig. 1(a))

• Unit disk graphs with nodes organized on a lattice

(Fig. 1(b)), special case of the following:

• Lattice sensor networks where the neighborhood of one

node is not necessarily the set of nodes within disk like

on Fig. 2(a), but may any arbitrary set R such as the one

on Fig. 2(b).

Hence for lattice sensor networks, the set R is fixed for one

origin node, and all the nodes of the lattice have a similar

neighborhood by translation. For simplicity in later proofs,

R must include the node itself ((0, 0) ∈ R). The following

requirement should also be met:

Requirement 1: {(−1, 0), (1, 0), (0,−1), (0, 1)} ⊂ R

1by abuse of language, the term “unit disk graph” will be used in this article
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III. NETWORK CODING FUNDAMENTALS

A. Performance of (Wireless) Network Coding : Min-cut

The starting point of network coding is the celebrated work

from [1], showing that coding in networks could achieve

maximum broadcast capacity (given by the min-cut), while in

the general case, it is out of reach of traditional transmission

methods (i.e. without network coding).

It is possible to model the wireless network as an hy-

pergraph, as done in this section. The benefits of using an

hypergraph model, is that it models closely the wireless

broadcast feature of wireless network, and that there exists

a powerful generalization of the results of [1] for network

coding for normal graphs. It expresses the maximum broadcast

capacity of the graph, when the rates Cv are fixed:

The maximum broadcast (multicast) rate for a source

s to all destinations, is given by the minimum of

the maximum flow capacity from the source to every

individual destination of the network, of the hyper-

graph [6], [8], [12]2. This is the max-flow which is

also to be the min-cut.

Of course, this requires the definition of an hypergraph, in

section III-A1, and of the max-flow/min-cut, in section III-A2.

1) Hypergraph Notation: Given any set of nodes in a net-

work where the same transmission can reach several neighbors

simultaneously, such as with wireless networks, it is possible

to describe the connectivity graph as an (oriented) hypergraph,

following the formalization used in [6], [12] and [8].

An hypergraph is a graph where edges are replaced by

hyperedges: instead of having one edge linking one head node

to one tail node, an hyperedge links one head node to several

tail nodes. Precisely,

Following the formalization of [6], [12] and [8], the hyper-

graph and its min-cut with respect to source s are defined as

follows:

• Hypergraph: G = (V,H), with V and H defined as follows:

• Nodes: V = {vi, i = 1, . . . n}, set of vertices (nodes) of the

graph (source is s ∈ V)

• Hyperedge: hv = (v,Hv) where Hv ⊂ V is the subset of

nodes which are reached by one transmission of node v Hence

Hv is the set of neighbors of node v.

• Set of hyperedges: H = {hv : v ∈ V}

2actually their results are more general



• Rate: Each node v emits on the hyperedge (v,Hv) with a

fixed rate Cv .

2) Min-cut of an Hypergraph: Let us consider the source

s, and one of the multicast (broadcast) destinations t ∈ V .

A cut is a defined by a partition of the set of vertices V in

two sets S, T such as s ∈ S and t ∈ T . Precisely, because it

depends on s and t, it is an s-t cut.

Let Q(s, t) the set of the all the s-t cuts (S, T ).
We denote ∆S, the set of nodes of S for which there is at

least one node of T within range. Formally, ∆S is:

∆S , {v ∈ S : Hv ∩ T 6= ∅} (1)

The capacity of the cut is defined as the maximum rate from

the nodes in S to the nodes in T . That is, the capacity of the

cut is:

C(S) ,
∑

v∈∆S

Cv (2)

It is the maximum rate that nodes in the set T taken as a

whole, can receive from the nodes in the set S (also taken as

a whole). Note that this expression differs from the capacity

of a cut when the topology is not an hypergraph, but a graph

with simple edges: here, if a node v ∈ ∆S can transmit to

several nodes of T , its contribution to the capacity is counted

only “once”, because it is the same transmission (hyperedge),

hence same information, that reaches the different nodes.

With this definition of an s− t cut, the s− t min-cut is the

following:

The min-cut between the source s and the destination t is

denoted Cmin(s, t), and is the minimum of the capacity of all

the s − t cuts:

Cmin(s, t) , min
(S,T )∈Q(s,t)

C(S) (3)

When multicasting, there are several destinations t for the

same source s, hence the min-cut is the minimum of the s− t
min-cuts for all t. When broadcasting to all nodes, the min-cut

is the minimum for all nodes other than s, and we denote the

broadcast min-cut Cmin(s):

Cmin(s) , min
t∈V\{s}

Cmin(s, t) (4)

As indicated in section III-A, Cmin(s) is the maximum

broadcast rate with which the source s can transmit to all

the nodes in the network.

B. Related Work

In general specifying the network coding protocol reduces

to specifying the transmission rates for each node [11].For

minimum-cost multicast, [17] contains several methods (cen-

tralized or distributed), to compute the optimal rate selec-

tion.However This article is in the spirit of [18] which starts

with exhibiting an energy-efficient algorithm for simple net-

works. The central element for computing the performance is

the estimation of the min-cut of the network. We are inspired

by the existing techniques and results about the expected value

of the min-cut on some classes of networks: for instance [7]

explored the multicast capacity networks where a source is

two hop from the destinations, through a network of relay

nodes ; [21] studied some classes of random geometric graphs.

Recently, [22] gave bounds of the min-cut of dual radio

networks.

C. Practical Implementation of Wireless Network Coding

It has been shown that a simple form of coding, linear cod-

ing [2], (using linear combinations of data symbols belonging

to Galois fields Fp - see also [3]), is sufficient to achieve

the bounds of [1]. Furthermore, [5] presented one method

which does not require coordination of (the coding at) the

nodes, by introducing random linear coding and by showing

that sufficient field size results in high probability of success.

With random linear coding, the coding inside the network is

no longer predetermined, since it uses random coefficients for

the linear combinations.

These works set the path to practical foundations, which are

described for instance in [4], [20], and that are used for the

simulations given in this article, in section VI.

Vectors: second, the packets are equally sized and are

divided into blocks of symbols over a field Fp: content

= (s1, s2, ..., sh). As in [4], the packets include a header which

is the list of coefficients. Hence the packet format is actually

a vector of the format: (g1, g2, . . . , gD; s1, s2, . . . , sh).
Transmission: at any point of time, a node of the network

has a list of vectors, linear combinations of initial source

packets. When the node transmits, it generates a random

linear combination of the vectors v0, v1, ..., vk it currently has:
∑

i αivi (where the (αi) are random coefficients of Fp), and

transmit it by wireless broadcasting.

Decoding: once a node has received D linearly independent

vectors, it is able to decode the D packets of the generation.

The performance of wireless network coding, when the

topology is fixed, and when each node as a fixed rate is know.

As shown in [6], it turns out to be the min-cut of the wireless

network, exactly like for wired networks, except that in this

case the wireless network is modelled as an hypergraph.

Similarly the random distributed network coding (see al-

gorithm 1) introduced in [5], can be used, and achieve the

maximum given by the min-cut.

Moreover, although the algorithm 1 assumes exponential

interarrival for the packets, it has been shown that any trans-

mission process with an average rate also achieve optimal rate

[8], [11].

Algorithm 1: Random Distributed Network Coding

Nodes’ scheduling: Poisson retransmission; the nodes1.1

retransmit linear combinations of the vectors that they

have, with an exponential interarrival

IV. OUR APPROACH: IREN/IRON

A. Overview

As described in the introduction, our approach is to choose

an intuitive transmission rate for the each node: essentially,



the same rate for most nodes. The rate selection is described

in section IV-C. Then, we determine the maximum broadcast

rate that can be achieved to transmit from the source to every

node in the network as the min-cut of the hypergraph, for both

lattice graphs in section IV-D. And finally, from the expression

of the cost in section IV-E, we deduce asymptotic optimality

(section IV-F).

B. Further Definitions

Consider a network inside a square area such as the one

on figure IV-B. We denote L the edge length of square G

L

s

t

∆G

G

G
i

W

Figure 3. Sample of network inside a square

containing the network. We define the border area as the

area of fixed width W near the edge of that square, and border

nodes as the nodes lying in that area. The area L×L of G is

partitioned into:

• ∆G, the border, with area A∆G = 4W (L − W ) on

figure IV-B, the hatched area ∆G
• Gi, the “interior” Gi , G \ ∆G, with area AGi

= (L −
2W )2

Let M be the “expected” number of neighbors of one node.

For a lattice network, it is exactly the number of points in the

neighborhood R minus one (see Fig. 2(a) and 2(b)): M =
|R|−1. For a random disk unit graph with N nodes, the radio

range for disk unit graph is denoted ρ. M is related to the

density µ = N
L2 and range as follows: we will take M as the

expected number of neighbors M = πρ2µ = πρ2 N
L2 of a node

which is not in the border area.

One requirement on W is that all nodes in the interior of

the square Gi, are out of range of the outside of the network.

This is achieved by making W sufficiently large ; for unit disk

graph for instance, if the radio range is ρ, then W = ρ satisfies

this requirement ; for lattice disk, if R is included in the disk

of radius ρ, W = ρ is also a good choice.

C. Rate Allocation with IREN/IRON

The principle IREN/IRON amounts to setting the following

transmission rates:

• IREN (Increased Rate for Exceptional Nodes): the rate

of transmission is set to M , for the following nodes:

the source, and all the border nodes (the “exceptional”

nodes).

• IRON (Identical Rate for Other Nodes): every other node,

except the source and all the border nodes, transmits with

rate 1.

Notice that these rates can be globally scaled by the same

amount: the cost and the achieved broadcast rate would

linearly increase, and the efficiency would be identical.

1) Rationale for IREN/IRON: .

There are some reasons for the above rate selection. The

rationale is the following: we start by imagining an average

transmission rate of 1 for mode nodes, the “IRON” part. Then

most nodes will receive an average rate of M transmission

from their neighbors. With or without network coding, this

implies that the maximum achievable broadcast reception rate

with this setting is upper-bounded by M .

Now there are two additional issues: the source and the

border nodes. For the first, in order to achieve a broadcast

reception rate equal to M in the network, the source need

to transmit at least with that rate, otherwise it would be a

bottleneck.

For the second issue, nodes near the border, one can notice

that they have smaller neighborhoods (less than M neighbors).

Nevertheless, if they are connected to the network they have

at least one neighbor: by setting a rate of M for that neighbor,

they are guarantee to received a sufficient rate. Since, in large

networks, border nodes represent a minority of nodes, this

could have (and does have) limited impact on the efficiency.

After following the steps of the rationale, the main issue

is determine whether this insights are sufficient for achieving

broadcast rate of M . In this article, we prove that it is the case

(see section IV-D) for lattice network, and asymptotically the

case for dense unit disk graphs.

However note that this property is not true for general

graphs, and that the rate selection hinted here is not absolutely

optimal.

D. Performance: Min-Cut (Achievable Broadcast Rate)

The essence of our main result is the following:

Property 1: The min-cut of a lattice graph with the rate

selection IREN/IRON is exactly equal to Cmin = M (with

M = |R| − 1).

See section V-A for the proof of this property in Th. 2.

For random unit disk graphs, by mapping the points to an

imaginary lattice graph (embedded lattice), as an intermediary

step, we are able to find bounds of the capacity of random

unit disk graphs. This turns out to be much in the spirit of

[22].

Precisely we prove the following property:

Property 2: The min-cut Cmin(s) of the source s of a

random unit disk graph V , is bounded with the min-cut

C
(L)
min(sL) of some point of the embedded lattice sL as follows:

Cmin(s) ≥ mminC
(L)
min(sL)

where mmin is a random variable related to the number of

nodes of the graph mapped to one point of the lattice.



Refer to section V-B3, Th. 3 for details, the property is only

quoted here to give this general implication: under some as-

sumptions and definitions, is mminC
(L)
min(sL) actually “close”

to M . This is used to deduce an asymptotic result for unit

disk graphs:

Property 3: Assume a fixed range. For a sequence of ran-

dom unit disk graphs (Vi), with sources si, with size L → ∞
and with a density M → ∞ such as M = Ω(Lθ), for any

fixed θ > 0, we have the following convergence in probability:
Cmin(s)

M

p
→ 1

This property is proved in section V-B, Th. 5.

E. Performance: Transmission Cost Per Broadcast

Recall from section I, that the metric for cost is the “number

of (packet) transmissions per a (packet) broadcast from the

source to the entire network”.

The energy cost of broadcasting with IREN/IRON rate

selection, can equivalently computed from the rates as the ratio

of the number of transmissions per unit time to the number of

packets broadcast into the network per unit time. Let us denote

Ecost this cost per broadcast. Notice that the number of packets

broadcast per unit time with (adequate) network coding is

the min-cut Cmin(s). Then Ecost is deduced from the min-

cut Cmin, from the border and interior the areas A∆G, AGi
,

the associated node rates (along with the rates of the nodes of

in the border and in the interior) and the node density µ. For

fixed W , M,L → ∞:

Ecost =
1

Cmin
µL2

(

(1 + O(
1

L
) +

4MW

L
(1 + O(

1

L
))

)

For random unit disk graphsV , Ecost is an expected

valueEcost = E(Ecost(V)), and µ = N
L2 . For a lattice, µ = 1.

F. Near Optimal Performance for Large Networks

The sections IV-D and IV-E gave the performance and

cost with the IREN/IRON principle. As indicated previously,

for a given (hyper)graph, the optimal rate selection, and the

optimal (minimum-cost) total rate of the network may be

computed with a linear program [17]. The optimal cost is not

immediately computed and in this section an indirect route is

chosen, by using a bound.

Assume that every node has at most Mmax neighbors: one

single transmission can provide information to Mmax nodes

at most. Hence in order to broadcast 1 packet to all N nodes,

at least Ebound = N
Mmax

transmissions are necessary.

This is compared to the Ecost transmissions per packet

broadcast. W.r.t. this bound, let the relative cost be:

Erel−cost = Ecost

Ebound
≥ 1,

We will prove that Erel−cost → 1 for some (sequences of)

networks:

1) Lattice Graphs.: For lattice graphs, we will assume a

constant range, hence a constant neighborhood definition set

R, and a constant M , number of neighbors for any node which

is not in the border.

The width of the border W is such as, the border includes

all nodes that are at distance lower than 2 from the border.

Since the size of the neighborhood is kept constant, the width

of the border stays also constant. For lattice graphs, W and

the neighborhood R are kept fixed (hence also M = |R| − 1),

whether it is a unit disk lattice graph or not), and only the size

L of the network increases to infinity. The number of nodes

is N = L2, and µ = 1. The maximum number of neighbors

Mmax is exactly Mmax = M .

From section IV-E, and from property 1, we have:

Erel−cost = Ecost
Mmax

N
=

=

(

(1 + O(
1

L
) +

4MW

L
(1 + O(

1

L
))

)

= 1 + O(
1

L
)

2) Random Unit Disk Graphs.: For random unit disk

graphs, first notice that an increase of the density M does not

improve the relative cost Erel−cost(due to the cost of border

nodes). Now consider a sequence of random graphs, as in

property 3, with fixed radio range ρ, fixed border width W ,

size L → ∞ and with a density M → ∞ such as M = Ω(Lθ),
for some arbitrary fixed θ > 0, with the additional constraint

that θ < 1. We have:

Erel−cost = Ecost
Mmax

N
=

=
M

Cmin

Mmax

M

µL2

N

(

1 + O(
1

L
) +

4MW

L
(1 + O(

1

L
))

)

Each of part of the product converges towards 1, either

surely, or in probability: using property 3, we have the

convergence of Cmin

M

p
→ 1, when L → ∞ and similarly with

Th. 5 we have Mmax

M

p
→ 1. By definition N = µL2. Finally,

M = Ω(Lθ) for θ < 1 implies that 4MW
L

→ 0.

As a result we have:

Erel−cost
p
→ 1

in probability, when L → ∞
3) Near Optimality.: The asymptotic optimality is a conse-

quence of the convergence of the cost bound Erel−cost towards

1. Since it is not possible to have a relative cost Erel−cost lower

than 1, the rate selection IREN/IRON is asymptotically opti-

mal for the two cases presented when L → ∞. Note that, this

indirect proof is in fact a stronger statement than optimality

of the rate selection in terms of energy-efficiency: it exhibits

the fact that asymptotically (nearly) all the transmissions will

be innovative for the receivers. Note that it is not the case in

general, for a given instance of an hypergraph. It evidences the

following remarkable fact for the large homogeneous networks

considered: network coding may be achieving not only optimal

efficiency, but also, asymptotically, perfect efficiency - achiev-

ing the information-theoretic bound for each transmission.

V. PROOFS OF THE ACHIEVABLE CAPACITY WITH

NETWORK CODING

In this section, we provide a formal proof for both prop-

erty 1 and property 3 of section IV-D.



A. Proof for Lattice Graphs

1) Overview of the Proof:

We first start with a proof for a lattice graph (such as the

one Fig. 1(b)). Our objective is to compute prove Th. 2

(section V-A4), which indicates that for one source s, the min-

cut Cmin of the lattice graph is M (with IREN/IRON).

In order to compute the global min-cut Cmin(s), we start

with considering one destination node t in the network, and we

will provide a bound the min-cut of the (hyper)-graph between

s and t, that is, Cmin(s, t).
The proof proceeds as follows: we first link the capacity of

the cut between nodes in S and nodes in T with the number of

nodes in S which are neighbors of nodes in T . The number of

these nodes decide the the capacity of the cut. Then we use the

fact that the neighbors are obtained with a Minkowski sum.

As a result, the inequality on on Minkowski sums could be

applied to compute that number of neighbors. However with

the effect of the border ∆L there are several special cases

for applying the inequality, and each time, we prove that the

capacity of the cut has the desired bound. The theorem will

follow.

2) Preliminaries.: Let Γ be full, unbounded, integer lattice

in n-dimensional space; it is the set Z
n, where the lattice

points are n-tuples of integers.

For lattice graphs, only points on the full lattice are relevant;

therefore in this section, the notations L,Li,∆L will be used,

for the parts of the full lattice Γ that are in G, Gi,∆G respec-

tively.Formally: L = Γ ∩ G,Li = Γ ∩ Gi, and∆L = Γ ∩ ∆G
The proof is based on the use of the Minkowski addition,

and a specific property of discrete geometry (6) below. The

Minkowski addition is a classical way to express the neigh-

borhood of one area (for instance, see [25] and the figure 3(a),

and figure 4 of that reference).

Given two sets A and B of R
n, the Minkowski sum of

the two sets A ⊕ B is defined as the set of all vector sums

generated by all pairs of points in A and B, respectively:

A ⊕ B , {a + b : a ∈ A, b ∈ B}

Consider a subset R of Γ, defining neighborhood, such

as the ones on Fig. 2(a) and Fig. 2(b), with origin at the

point (0, 0). We denote this set R as the lattice neighborhood

definition set. Then the set of neighbors N (t) of one node t,
with t itself, is:

N (t) ∪ {t} = {t} ⊕ R

This extends to the neighborhood of a set of points.

The neighbors of t are given with:

N (t) = ({t} ⊕ R) \ {t}

The rewriting of neighborhood in terms of Minkowski sum,

has the advantage that several results of discrete geometry ex-

ists, including Brunn-Minkowski-Lysternik type inequalities.

The Brunn-Minkowski-Lysternik inequality gives a bound on

the size of Minkowski sum of two compact sets of R
n; for

integer lattice, there exist several integer variants, including

the following one [29]: for two subsets A,B of the integer

lattice Z
n,

|A ⊕ B| ≥ |A| + |B| − 1 (5)

where |X| represents the number of elements of a subset X of

Z
n For Minkowski sums on the lattice Γ, there exist variants

of the Brunn-Minkowski inequality, including the following

one [29]:

Property 4: For two subsets A,B of the integer lattice Z
n,

|A ⊕ B| ≥ |A| + |B| − 1 (6)

where |X| represents the number of elements of a subset X
of Z

n

3) Bound on the capacity of one cut C(S).:
Consider a lattice L and a source s. We start with the definition

of Cmin(s, t) of (3): it requires considering the capacities of

every s-t-cut S, T . Let C(S) be the capacity of such a s-t cut

S, T ∈ Q(s, t).
We have the following lemma linking the capacity of the cut

and the size of ∆S, the set of nodes of S which are neighbors

of nodes of T
Lemma 1: C(S) ≥ |∆S| (with ∆S defined in (1))

Proof. With the definition in (2), we have:

C(S) =
∑

v∈∆S Cv

⇒ C(S) ≥
∑

v∈∆S 1, because with IREN/IRON, Cv ≥ 1
⇒ C(S) ≥ |∆S|
which is the lemma. �

Lemma 2: If U ⊂ Li then U ⊕ R ⊂ L
Proof: The requirement on W in section IV-B translates

into: for any node x ∈ Li, {x} ⊕ R ⊂ L, hence the result.

Lemma 3: When the requirement V-A3 (in section II) is

met, for any two nodes U, V inside the border area, there

exist a path using only points for the border area.

Proof: Recall that requirement for the set R which

defines the neighborhood (requirement 1 in section ??) is the

following:

The set R is a subset of Γ and should include the

origin point (0, 0) as well as the 4 fours points which

are immediate neighbors on the lattice: (1, 0), (0, 1),
(−1, 0), (0,−1)

The requirement is that R should include the 4 immediate

neighbors in the directions “left, right, up, and down”. Since

the border area is a connex area (using this reduced immediate

neighborhood definition), the lemma follows.

Theorem 1: The capacity of one cut C(S) is such that:

C(S) ≥ M

Proof : There are three possible cases, either the set T has no

common nodes with the border ∆L, or T includes all nodes

of ∆L, or finally T includes only part of nodes in the border

area. Formally:

• First case: T ∩ ∆L = ∅
• Second case: ∆L ⊂ T
• Third case: T ∩ ∆L 6= ∅ and δL 6⊂ T



We will prove inequality of theorem 1 in all 3 cases.

First case, T ∩ ∆L = ∅:

With lemma 2, we know that T ⊕ R ⊂ L, hence we can

effectively write the neighbors of nodes in T as a Minkowski

addition (without getting points in Γ but out of L):

∆T , (T ⊕ R) \ T

It follows that:

|∆T | ≥ |T ⊕ R| − |T |
Now the inequality (6) can be used:

|T ⊕ R| ≥ |T | + |R| − 1
Hence we get:

|∆T | ≥ |T | + |R| − 1 − |T |, and therefore:

|∆T | ≥ |R| − 1 (7)

Recall that S and T form a partition of L ; and since ∆T
is a subset of L, by definition without any point of of T , we

have ∆T ⊂ S. Hence actually ∆T ⊂ ∆S (with the definition

of ∆S in (2)). We can combine this fact with lemma V-A3,

lemma 2, and (7), to get:

|C(S)| ≥ |R| − 1 and the Th. 1 is proved for the first case.

�

Second case, ∆L ⊂ T :

In this case, all the points of the border area are included

in T , and as a consequence, the complementary set of points

S has no nodes on the border, i.e. S ∩ ∆L = ∅. As a result

S ⊂ Li.

We will show that a set S has equal or greater number

of nodes which are neighbors of nodes in T than |R| − 1.

The method to prove it is similar with the method of the first

case, but we consider neighborhood in the opposite way: we

consider the nodes in S that are neighbors of nodes in T .

Let us denote Si the “interior” of S, that is, the set of nodes

of S, which are not in within range of the set T Precisely:

Si , {x : x ∈ S and (x ⊕ R) ∩ T = ∅}
By definition of ∆S in eq. (2), ∆S is the sets of nodes of

S which are within range of the set T , and hence the subsets

Si and ∆S form a partition of S
Additionally, because Si ⊂ S and S ⊂ Li, we know with

lemma 2 that Si ⊕ R ⊂ L. Since by definition of S, Si ⊕ R
has no common element with T , and since S and T are a

partition of L, the property follows:3

Si ⊕ R ⊂ S (8)

Now there are two possibilities: either Si = ∅ or not.

• If Si = ∅, the implication is that S = ∆S, hence in

particular, s ∈ ∆S. Going back to the definition of a cut in

(2), we had:

C(S) =
∑

v∈∆S Cv by definition,

⇒ C(S) ≥ Cs because s ∈ ∆S
⇒ C(S) ≥ M because Cs = M with IREN/IRON. and the

theorem 1 is proved for the second case, first possibility. �

3Alternatively the reader familiar with mathematical morphology [24] could
notice that Si is the erosion of S by the structural element R. As a result
Si⊕R is actually the opening of S, and the following property of the opening
is known: Si ⊕ R ⊂ S (see [30] p.40).

• Otherwise, Si 6= ∅.

Starting from eq. 8, we had:

Si ⊕ R ⊂ S
⇒ |S| ≥ |Si ⊕ R|, and as a result, with ineq. 6:

|S| ≥ |Si| + |R| − 1 (9)

We had established that Si, ∆S was a partition of S, hence

∆S = S \ Si

⇒ |∆S| ≥ |S| − |Si|
⇒ |∆S| ≥ |R| − 1

Therefore with lemma , we deduce the capacity of the cut

is such that:

C(S) ≥ |R| − 1
and the theorem 1 is proved for the second case, second

possibility. �

Third case: T ∩ ∆L 6= ∅ and ∆L 6⊂ T :

Again, since T and S are a partition of L, we deduce that

S ∩ ∆L 6= ∅ ; hence both T and S have nodes in the border

area ∆L.

Let us consider such nodes: ut ∈ T ∩∆L and us ∈ S∩∆L.

With the lemma 2, there exist a path from us to ut with only

nodes in the border.

Let us start with us, and iterate on the nodes of the path.

Since us is in S and ut is in T , we will ultimately find a node

of the path u such that u is still in S and that its successor

v in the path is not (is in T ). By definition of ∆S, u ∈ ∆S,

and also u ∈ ∆L by property of the path.

Hence now, the contribution of u to the capacity of the cut

C(S) can be used: C(S) =
∑

v∈∆S Cv (from def. 2)

⇒ C(S) ≥ Cu, because u ∈ ∆S
⇒ C(S) ≥ M because Cu = M

and the theorem 1 is proved for the third case. �

4) Value of the Min-cut Cmin(s): The results of

the previous section immediately result in a property on the

capacity of every s-t min-cut:

Theorem 2: For any t ∈ L different from the source s:

Cmin(s, t) = M

; and as a result: Cmin(s) = M
Proof: Let Smin/Tmin be one cut with minimal capacity,

one such as: C(Smin) = Cmin(s, t). Applying, the theorem 1,

it appears that C(Smin) ≥ M , hence: Cmin(s, t) ≥ M
Conversely let us consider a specific cut, Ss = {s} and

Ts = L \ {s}. Obviously s has at least one neighbor, which

has to be in T , hence ∆S = {s}. The capacity of the cut is

C(Ss) =
∑

v∈∆S Cv = Cs = M and thus Cmin(s, t) ≤ M ,

and the theorem follows.

B. Proof of the Value of Min-Cut for Unit Disk Graphs

In this section, we will prove a probabilistic result on the

min-cut, in the case of random unit disk graphs, using an

virtual “embedded” lattice. The unit graph will be denoted V ,

whereas for the embedded lattice the notation of section V is

used: L (along with ∆L and Li). The elements of V are still

called “nodes”, but the elements of L are called “points” to

emphasize the fact that they are virtual.



We will assume W > ρ (for instance W = 2ρ)

1) Embedded Lattice: Given the square area L × L, we

start with fitting a rescaled lattice inside it, with a scaling

factor r. Precisely, it is the intersection of square G and the

set {(rx, ry) : (x, y) ∈ Z
2}.

We will map the points of G to the closest point of the

rescaled lattice L: Let us denote λ(x), the application which

transforms a point u of the Euclidian space R
2 to its closest

point of L. Formally, for u = (x, y) ∈ Z
2,

λ(x) , (r⌊
x

r
+

1

2
⌋, r⌊

y

r
+

1

2
⌋)

For u ∈ L, λ−1(u) is the set of nodes of V that are mapped

to u. This area of R
2 which is mapped to a same point of the

lattice, is a square r × r around that point. We choose r so

that G fits exactly so that such squares are not truncated. This

is achieved by taking the origin point of R
2 as the center of

the square G, and by selecting r = 2k+1
L

where k is a positive

integer.

Let u be a point of the lattice L, and let denote the m(u)
the number of points of V that are mapped to u with g (they

are in the square around u ; and m(u) , |λ−1(u)|). Since V
is a random graph, m(u) is a random variable.

Let us denote:

mmin , min
u∈L

m(u) and mmax , max
u∈L

m(u)

2) Neighborhood of the Embedded Lattice: We start by

defining the neighborhood R for the embedded lattice. The

desired property is to have some relationship between neigh-

borhood on the unit graph, and, after mapping, neighborhood

on the embedded lattice.

For this, we choose R to be the points of the lattice inside

a disk of radius ρ − 2r:

R(r) = {(rx, ry) : (rx)2 + (ry)2 ≤ (ρ − 2r)2; (x, y) ∈ Z
2}

The following lemma shows that we have the desired

property.

Lemma 4: Let us consider two nodes of u, v of V that are

mapped on the lattice L to uL and vL respectively:

• if uL and vL are neighbors on the lattice, them u and v are

neighbors on the graph V
Proof: We have ‖ u−v ‖≤‖ u−uL ‖ + ‖ uL−vL ‖ + ‖

vL − v ‖ using triangle inequality of the Euclidian distance

‖ . ‖.

By definition of neighborhood on the lattice, uL − vL ∈
R(r), hence, ‖ uL − vL ‖≤ ρ − 2r

Moreover since uL is the closest point on the lattice of u,

and we have ‖ u−uL ‖≤
√

2
2 r (the length of the half-diagonal

of a r× r square), which is implies ‖ u−uL ‖≤ r. The same

reasoning applies to v and vLat, and as a result:

‖ u − v ‖≤ 2r+ ‖ uL − vL ‖≤ ρ. Hence the lemma.

Lemma 5: |R(r)| ≤ π ρ2

r2

Proof:

In a similar spirit to the mapping to the lattice, let us

consider the square of size r × r around each point of R(r).

Such squares are disjoint for different points of R(r) ; let us

denote ˆR(r) the union of all such squares of every point of

R(r).

We have, for every point of u ∈ ˆR(r): there exists a point

v ∈ R(r) such that u is in the square around v. Then by

a similar argument to lemma 4, ‖ u − v ‖≤
√

2
2 r ≤ r ; in

addition ‖ v ‖≤ ρ−2r, from the definition of R(r). Therefore

‖ u ‖≤ ρ, hence ˆR(r) is included in the disk of radius ρ.

Therefore its area A( ˆR(r)) verifies A( ˆR(r)) ≤ πρ2.

In addition, by definition of ˆR(r) as union of dis-

joint squares, we also have another expression of its area:

A( ˆR(r)) = |R(r)|r2. Using this equality with the previous

inequality with A( ˆR(r)) gives the result.

Lemma 6: |R(r)| = π ρ2

r2 + O( 1
r
) when r → 0,

Proof: We can rewrite the definition of R(r) as:

R(r) = {(rx, ry) : x2 + y2 ≤ (
ρ − 2r

r
)2; (x, y) ∈ Z

2} (10)

It is the number of points in |R(r)| is the number of lattice

points within a circle of radius fixed around the origin (the

“circle problem”). From [30] p. 133, Gauß has shown that

Nc(d) = πd2 + O(d) , for a circle of radius d, when d → ∞.

Here d = ρ
r
− 2, hence |R(r)| = π(ρ

r
)2 + O( 1

r
), and the

lemma.

3) Relationship between Capacities of the Cuts of the

Embedded Lattice and the Random Disk Unit Graph.: The

idea here is to show that the relationship with a cut of the

random unit graph, and a cut of the lattice graph.

Let us consider one source s ∈ V , one destination t ∈ V
and the capacity of any S/T cut. Every node of S and T is

then mapped to the nearest point of the embedded lattice. For

the source, we denote: sL = λ(s).
An induced cut of the embedded lattice is constructed as

follows:

• The border area width WL is selected so as to be the

greatest integer multiple of r which is smaller than W ;

and r < W−ρ, so that the requirement V-A3 of section II

is met.

• For any point of the lattice vL ∈ L, the rate C
(L)
vL

is set

according to IREN/IRON on the lattice: C
(L)
vL

= |R(r)|−
1 when vL is within the border area of width WL, and

C
(L)
vL

= 1 otherwise.

• SL is the set with the point sL and with points of the

lattice L, such as only nodes of S are mapped to them:

SL , {sL} ∪ {uL : λ−1(uL) ⊂ S} (11)

• TL is the set of the rest of points of L.

Note that t ∈ TL ; that all the points of the lattice, to which

both points from S and T are mapped, those points are in TL
; and that the points to which no points are mapped are in SL:

SL/TL is indeed a partition and a sL − tL cut.

Recall that definition of a cut in eq. 2, we have:

C(S) =
∑

v∈∆S Cv and C(L)(SL) =
∑

v∈∆SL
Cv where

∆S and ∆SL are subsets of S and SL respectively.

We have the following relationship between these two sets:



Lemma 7: Excluding sL and s, the nodes of V that are

mapped to points of ∆SL , are in ∆S ; that is:

λ−1(∆SL \ {sL}) ⊂ ∆S \ {s}

Proof:

λ−1(∆SL) = ∪uL∈∆SL
λ−1(uL) hence it suffice to prove

the property for λ−1(uL) for every uL ∈ ∆SL.

Let us consider one such point uL ∈ ∆SL \ {sL}. By

definition of ∆SL, there exists a point vL ∈ TL within range

for L (that is: (uL − vL) ∈ R(r)).
If λ−1(uL) = ∅, then the property λ−1(uL) ∈ ∆S \ {s} is

verified. Hence let us consider the case where λ−1(uL) 6= ∅:

Since vL ∈ TL, by the definition of this set, there exists at

least one node of T mapped to vL and thus: λ−1(vL)∩T 6= ∅.

Now consider two points of these non-empty sets, u ∈
λ−1(uL) and v ∈ λ−1(vL) ∩ T :

• From lemma 4, we know that u and v are within range

(‖ u − v ‖≤ ρ).

• Recall that ∆SL ⊂ SL. By definition of SL, since uL is

in SL, u must be in S.

• v ∈ T
These three conditions imply that u ∈ ∆S. Also s is mapped

to the unique λ(s) = sL, therefore uL 6= sL implies u 6=
∆S \ {s}. It follows that λ−1(uL) ⊂ ∆S \ {s}, and, as a

consequence, the lemma.

It is now possible to use this subset of ∆S to prove the

following lemma on relating the cut of V and its induced cut:

Lemma 8: The capacity C(S) of the cut S/T and the

capacity of the induced cut C(L)(SL) verify:

C(S) ≥ mminC(L)(SL)

Proof: First note that if mmin = 0, the lemma is proved.

Hence, in the rest of the proof, we can assume that this integer

verifies mmin ≥ 1.

In this case, notice that there are L2

r2 squares of size r ×
r, each with at least mmin nodes, therefore the total number

of nodes verifies: N ≥ L2

r2 mmin, and then µ ≥ 1
r2 mmin by

definition of µ. Combining this with lemma 5, we get:

|R(r)| ≤ πρ2µmmin (12)

Now consider again the definition of a cut in eq. 2, that can

be split in two parts, one without the source, with the source:

C(S) =
∑

v∈∆S Cv =
∑

v∈∆S\{s} Cv +
∑

v∈∆S∩{s} Cv

With lemma 7, we know a subset of ∆S, hence:

C(S) ≥ Cinterm. + Csrc

with Cinterm. =
∑

v∈λ−1(∆SL\{sL}) Cv and Csrc =
∑

v∈∆S∩{s} Cv

• The first sum Cinterm. can be rewritten as:

Cinterm. =
∑

vL∈∆SL\{sL}
∑

v∈λ−1(vL) Cv

Let us consider all the nodes in the square area λ−1(vL),
and their rates compared to the rate of vL:

• If C
(L)
vL

= 1, then since IREN/IRON assigns only

rates ≥ 1, we have Cv ≥ C
(L)
vL

for any v ∈ V .

• If C
(L)
vL

> 1, vL is a border node for L (and WL), and

C
(L)
vL

must actually be |R(r)|−1. Since WL is chosen so

that WL < W , we have also: λ−1(vL) is a set of border

nodes of V . Their rate is Cv = πρ2M by definition.

From eq. 12, we have Cv ≥ mmin|R(r)|, hence Cv ≥

|R(r)|, and finally: Cv ≥ C
(L)
vL

As a result, in both cases, ∀v ∈ λ−1(vL), Cv ≥ C
(L)
vL

, and:
∑

v∈λ−1(vL) CvL
= |λ−1(vL)|C

(L)
vL

≥ mminC
(L)
vL

Hence Cinterm.(S) ≥ mmin

∑

vL∈∆SL\{sL} C
(L)
vL

• The second sum Csrc reduces to 0 or 1 term:

• If sL ∈ ∆SL, then ∆SL ∩ {sL} = {sL}.

With the same reasoning as in the proof of lemma 7,

necessarily s ∈ ∆S as well, and: ∆S ∩ {s} = {s}.

Csrc = Cs = πρ2µ. As before, from eq. 12, we get

Cs ≥ mmin|R(r)|, hence Csrc ≥ mminC
(L)
sL

• If sL /∈ ∆SL, then ∆SL ∩ {sL} = ∅, and obviously
∑

vL∈∆SL∩{sL} C
(L)
vL

= 0

In both cases, Csrc ≥ mmin

∑

vL∈∆SL∩{sL} C
(L)
vL

Putting together both inequalities for Cinterm. and Csrc, the

result is:

C(S) ≥ Cinterm. + Csrc ≥ mmin

∑

vL∈∆SL\{sL} C
(L)
vL

+

mmin

∑

vL∈∆SL∩{sL} C
(L)
vL

Hence:

C(S) ≥ mmin

∑

vL∈∆SL
C

(L)
vL

The right part of the inequality is actually the defini-

tion of the capacity of the sL − tL-cut, hence: C(S) ≥
mminC(L)(SL), which is the lemma.

Theorem 3: The min-cut Cmin(s) of the graph V , verifies:

Cmin(s) ≥ mmin(|R(r)| − 1)

Proof:

From lemma 8, any cut C(S) is lower bounded by

mminC(L)(SL). Since C(L)(SL) is the capacity of a cut

of a lattice with IREN/IRON, Th. 2 also indicates that:

C(L)(SL) ≥ C
(L)
min = |R(r)| − 1. Hence the lower bound

mmin(|R(r)|−1) for any C(S), and as a result, for the min-cut

Cmin(s)
4) Nodes of V Mapped to One Lattice Point.: In Th. 3,

mmin plays a central part. In this section, a probabilistic bound

is given for the variation of mmin.

We start with the following property on random variables:

for a variable X which is the sum of n random variables Xi,

i.e. X =
∑i=n

i=1 Xi, which are independant and identically

distributed, we have the following inequality, which is a

Chernoff bound [26]:

Pr(X ≤ (1 − δ)E[X]) ≤ exp(−
E[X]δ2

2
) (13)

for 0 ≤ δ ≤ 1
Symetrically, a similar Chernoff bound exists for the upper

tail [26]:

Pr(X ≤ (1 + δ)E[X]) ≤ exp(−
E[X]δ2

4
) (14)



Since V is a random graph, where points are uniformly

distributed, for uL ∈ L, the number of points of V mapped to

it, m(uL), is random variable which is the sum of N Bernoulli

trials Xv:

m(uL) =
∑

v∈V
Xv

where Xv is the indicator variable, equal to 1 when v is

mapped to uL, and equal to 0 otherwise.

For all v, E(Xv) = r2

L2 , and hence: E(m(uL)) = r2N
L2 =

µr2. The m(ui) are identically distributed for all ui ∈ L. By

applying the Chernoff bounds (13) on this sum, we get:

Pr[m(uL) ≤ (1−δ)E[m(uL)]] ≤ exp(−
E[m(uL)]δ2

2
) (15)

for δ ∈]0, 1[.
We can deduce a bound on the probabilities for

the minimum mmin of all m(u). For the points

ui ∈ L, the event (mmin ≤ K) implies the event
(

m(u1) ≤ K or m(u2) ≤ K or ... m(u|L|) ≤ K
)

:

Hence:

Pr[mmin ≤ K] ≤ Pr[m(u1) ≤ K or m(u2) ≤ K or . . .]

Now the different m(ui) are identically distributed, but are

not independent because their sum is exactly N ; but we can

use the fact that for two events A and B, Pr[A or B] ≤
Pr[A] + Pr[B], and then:

Pr[mmin ≤ K] =
∑

u∈L
Pr[m(u) ≤ K] = |L| Pr[m(u1) ≤ K]

And it follows, with eq. 15:

Pr[mmin < (1 − δ)E[m(u)]] ≤ |L| exp

(

−
E[m(y)]δ2

2

)

for δ ∈]0, 1[. Hence, since |L| = L2

r2 , we have the following

theorem 4:

Theorem 4:

Pr[mmin ≤ (1 − δ)µr2] ≤ exp

(

(log
L2

r2
)(1 −

µr2δ2

2 log L2

r2

)

)

The Th. 4 could be used with Th. 3, to get probabilistic

bounds of the min-cut for an instance of a random graph.

Likewise, if we consider the maximum of m(u), mmax ,

minu∈L m(u), with the upper tail Chernoff bound, the same

expression as in Th. 4 is true with δ ∈] − 1, 0[.
5) Asymptotic Values of the Min-Cut of Unit-Disk Graphs.:

Theorem 5: For a sequence of random unit disk graphs

and associated source (Vi, si ∈ Vi), with fixed radio range

ρ, fixed border area width W , with a size Li → ∞, and a

density M = Lθ with fixed θ > 0, we have the following

limit of the min-cut Cmin(si):

Cmin(si)

M

p
→ 1 in probability. Additionally :

Mmax

M

p
→ 1

Proof: The starting point is Th. 4, which involves several

variables: L, µ, δ, and r.The theorem is a result when the size

of the network L → ∞ (so that the relative area of the border

decreases). We also want:

• µ → ∞ (that is: M → ∞): the density increases

sufficiently fast, so that each square r × r receives more

points and the Chernoff approximation becomes tighter.

• δ → 0: this ensures mmin converges to its average value

as in Th. 4.

• r → 0: in order to have |R(r)| converge to its limit of

lemma 6.

By hypothesis, we already have µ = M
πρ2 = 1

πρ2 Lθ for some

θ > 0.

We propose the following settings:

• δ = L− θ

8 ; r = L− θ

8

In that case, using Th. 4, we have, for δ ∈]0, 1[:

Pr

[

mmin

µr2
≤ (1 − δ)

]

≤ exp

(

(2 −
θ

4
)(log L)(1 −

L
θ

2

(4 − θ
2 ) log L

)

)

The right side of the inequality converges towards 0 as L →
∞, hence this is a lower bound in probability for mmin

µr2 .

For the upper bound, notice that mmin is the minimum of

the (m(uL), u ∈ L), and µr2 is exactly their average. The

minimum cannot be greater than the average hence:

Pr[mmin > µr2] = 0

,

Hence, we have mmin

µr2

p
→ 1 in probability, when L → ∞. In

a similar way, mmax

µr2

p
→ 1.

Consider the bound of Th. 3: the min-cut Cmin(s) of the

graph V , verifies: Cmin(s) ≥ mmin(|R(r)| − 1), hence:

Cmin(s)

M
≥

mmin(|R(r)| − 1)

M

The right side of the inequality is:

a = mmin(|R(r)|−1)
M

= mmin

µr2

µ
M

r2(|R(r)| − 1)
We have:

• mmin

µr2

p
→ 1 in probability,

• µ
M

= 1
πρ2

• r2(|R(r)| − 1) = πρ2(1 + O( 1
r
)), from lemma 6.

Therefore the right side a
p
→ 1 in probability. This gives an

lower bound of Cmin

M
for L → ∞.

Let us show that this lower bound is also an upper bound

(in probability). Recall that the min-cut Cmin is lower than

any cut, for instance one cut with only neighbors of a node t
(T = {t}). Let us consider the node t ∈ V with the maximum

number of neighbors Mmax, and hence Cmin ≤ Mmax

We have: the maximum number of neighbors Mmax is at

most mmax|R
+(r)|, where R+(r) is similar to R(r), except

considering squares of around within a point of the lattice with

radius ρ + 2r. Like for |R(r)|, one can prove:

R+(r) = π
ρ2

r2
(1 + O(

1

r
))

and like mmin, one can show that mmax

µr2

p
→ 1 in probability.



Collecting these properties, we get:

Cmin

M
≤

Mmax

M
≤

mmax|R
+(r)|

M

where the right side of the bounds : is such that
mmax|R+(r)|

M

p
→ 1 in probability.

Hence upper bound, and the theorem.

VI. SIMULATIONS

The previous sections have focused on the asymptotic value

of the min-cut for large networks. Then random linear network

coding can achieve asymptotically the maximum capacity

known as the min-cut, when running for an asymptotically

infinit time.

In this section, we provide an illustration of the performance

of network coding with simulations.

We performed the following types of simulations:

• Performance comparison with store-and-forward bounds:

the objective is to show that the performance of broad-

casting with network coding with IREN/IRON may out-

perform what be achieved without network coding (the

traditional store-and-forward broadcast), on some exam-

ples.

• Min-cut comparison with the average number of neigh-

bors: it illustrates the fact that when broadcasting with

IREN/IRON the min-cut approaches the average number

of neighbors in wireless networks as the density increases.

A. Comparison with Store-and-Forward

1) Metric for Comparison: For the broadcast of one packet

to the entire network, any traditional broadcast method (non-

network coding) is characterized by a Connected Dominating

Set (CDS): it is the set of the nodes which transmitted the

packet. Note that the traditional methods need not to explicitly

use a such a CDS (like in the case of MPR-flooding technique

used in [23], which is self-pruning), although several efficient

methods do (such as [10]).

To compare network coding and IREN/IRON with tradition-

nal store-and-forward broadcast, we will proceed following

the steps and the logic of [9], as section IV-E also did: the

metric for efficiency is the number of transmissions necessary

to broadcast one packet to the entire network. In section IV-E,

the relative cost Erel−cost was the ratio of the total number of

transmissions to a bound of the a lower bound number neces-

sary of transmissions Ebound = N
Mmax

. Here, in homogeneous

networks, Mmax ≈ M , hence in this section, we will use M
instead of Mmax in the expression of the bound.

Then the expression of the relative cost
Erel−cost

Ebound
, can be re-

interpreted as follows: from the point of view of a given node,

it is the average ratio of the non-redundant packets received

to the number of received packets.

For store-and-forward, “non-redundant packets” means

“packets not already received”. For network coding, it means

“innovative packets” (the ones which that increase the dimen-

sion of the vector space of receivers).

We will compare the cost of broadcasting with Network

Coding E
(nc)
rel−cost and with the one of any Connected Domi-

nated Set E
(cds)
rel−cost. The following notations are used:

NC: E
(nc)
rel−cost = T

G× N

M

CDS: E
(cds)
rel−cost = T

N

M

• N : the total number of nodes

• M : the average number of neighbors

• G: the number of packets broadcast (generation size)

• T : the total number of transmissions

With the argument of [9], in any CDS, except for the source,

every node must be connected to another node of the CDS:

therefore for any common neighbor, the transmission of the

second node will be redundant with the transmissions of the

first node. A bound on the number of transmission T (cds) can

then be computed.

2) Simulation Scenario: In the simulations of this section,

we used examples of lattice networks where R (lattice neigh-

borhood definition set) is the four closer neighbors of the

lattice).

Precisely R = {(0, 0), (−1, 0), (1, 0), (0,−1), (0, 1)}. The

neighborhood of each node fits exactly the minimum require-

ment 1. This scenario of nodes on a grid with at most four

neighbors corresponds to one scenario of [9] (except the lattice

considered here is not a torus), and their bound on E
(cds)
rel−cost

is 4
3 .

The nodes are on lattice of width L = 70 (70 × 70) and

the simulations were performed while increasing the size of

generation (total number of broadcast packets), and the border

width is W = 2.

The source s is chosen in the middle of the network.

In general all nodes have same constant transmission rate
M
2 except the source and nodes which are near the border and

have less than M neighbors. The source sends original packets

at rate M , and the nodes near the border also send encoded

packets at rate M .

For simplicity, the transmissions of nodes in the network are

“synchronized”, that is, if the transmission rate of one node v
is Cv , then the every transmission occurs periodically with a

period equal to 1
Cv

The figure 4 shows the performance of E
(nc)
rel−cost and the

bound on E
(cds)
rel−cost with N = 70 × 70 = 4900, M = 4 and

G = 20, 40, 60, 80, 100.

Figure 4. Performance of broadcast with NC and CDS with increasing
generation size



As shown in figure 4, the lower bound performance of Bcds

is constant. (it is the bound of 4
3 )

The performance of Bnc becomes better as the generation

size increases. The reason that the larger generation size brings

the better performance, is the following. At the beginning of

the simulations, only the source has new packets, initially only

the only transmissions that could bring novel informations are:

transmissions from the source, then after that, transmissions

from the immediate neighbors of the source, and so on. Hence

there is a start-up duration, during which the transmission of

nodes further from the source are less likely to bring innovative

information to the nodes closer from the source. Similarily,

at the end, a similar problem occurs: consider for instance

one node which has all the packets from the sources ; then

any transmission from a neighbor will bring non-innovative

packets. This phenomem explains why efficiency decreases at

the end.

This start-up and termination interval durations are inde-

pendant on the generation size: hence, the efficiency increases

together with the size of the generation.

From the figure, we can see confirm that, with our sim-

ulations settings, network coding (with IREN/IRON) will

outperform any method based on CDS (hence on store and

forwards). Notice that [9] established identical results for

M = 4, but in a scenario where each node had one packet

to transmit to every other node. Here we have a single source

with several packets to broadcast.

In general, it is not difficult to see that the connectivity

constraint gives a lower bound E
(cds)
rel−cost > 1. For instance, in

a unit disk graph, two neighbors share a neighborhood area

at least equal to ( 2π
3 −

√
3

2 )ρ2, hence E
(cds)
rel−cost ≥ 6π

2π+3
√

3

with 6π

2π+3
√

3
≈ 1.6420 . . ., and as a result, one can expect

broadcast with network coding and IREN/IRON to outperform

CDS, when the generation size is sufficient, as illustrated by

the simulations.

B. Efficiency with Increasing Density in Random Unit Disk

Graphs

The previous simulations illustrated the performances on a

lattice. For random unit disk graphs, our results have shown

that the min-cut, the performance of broadcasting with network

coding with IREN/IRON approaches the average number of

neighbors in wireless networks as the density increases, that

is, with Th. 5, Cmin

m

p
→ 1.

Notice that for a given instance of a random graph, some

efficiency is lost when because the min-cut is usually lower

than M - unlike for lattices where IREN/IRON results exactly

in Cmin = M .

To give an illustration of this convergence Cmin

m

p
→ 1, we

computed the min-cut of random graphs with increasing den-

sity. To do so, we modeled oriented hypergraphs as oriented

graphs, in the spirit of [16] (refer to the elementary graphs

and also figure 2 of that reference).

Then, the min-cut was computed from the software library

implementing the maxflow algorithm from [32]. The optimiza-

tions for tree reuse from [33] were also used.

The network size is L = 1 × 1 ; the radio range ρ is such

that it covers 1
25 of the network, that is ρ = 1

5
√

π
≈ 0.1128 . . ..

We compute the min-cut increasing the network density M ,

from 125 to 400. As seen in figure 5, the min-cut increases

exponentially as the networks become denser and the ratio
Cmin

M
approaches to 1, as expected.
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Figure 5. Performance when Increasing Density

VII. CONCLUSION

We have presented a simple rate selection for network

coding for large sensor networks. We computed the broadcast

performance from the min-cut with networks modelled as

hypergraphs. The central result is that selecting nearly the

same rate for all nodes, achieves asymptotic optimality for the

“homogeneous” networks that are presented, when the size

of the networks becomes larger. This can be translated into

the remarkable property: nearly every transmission becomes

innovative for the receivers.
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