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Abstract: Let f be a polynomial in Q[Xy,...,X,] of degree D. We focus on testing
the emptiness and computing at least one point in each connected component of the semi-
algebraic set defined by f > 0 (or f < 0 or f # 0). To this end, the problem is reduced
to computing at least one point in each connected component of a hypersurface defined
by f —e = 0 for e € Q positive and small enough. We provide an algorithm allowing
us to determine a positive rational number e which is small enough in this sense. This is
based on the efficient computation of the set of generalized critical values of the mapping
f:y e C”— f(y) € C which is the union of the classical set Ko(f) of critical values of
the mapping f and Ko (f) of asymptotic critical values of the mapping f. Then, we show
how to use the computation of generalized critical values in order to obtain an efficient
algorithm deciding the emptiness of a semi-algebraic set defined by a single inequality or
a single inequation. At last, we show how to apply our contribution to determining if a
hypersurface contains real regular points. We provide complexity estimates for probabilistic
versions of the latter algorithms which are within O(n”D*") arithmetic operations in Q.
The paper ends with practical experiments showing the efficiency of our approach.
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Algorithme efficace pour tester le signe d’un polynéme
univarié et ses applications

Résumé : Soit f un polyndéme dans Q[X1,. .., X,,] de degré D. On s’intéresse au probléme
de tester le vide d’un ensemble semi-algébrique défini par f > 0 (ou f < 0 ou f # 0). Pour
ce faire, on réduit le probléme au calcul d’au moins un point par composante connexe d’une
hypersurface définie par f — e = 0 pour e € Q positif et suffisamment petit. On donne
un algorithme permettant de déterminer un rationnel positif e qui est en ce sens suffisam-
ment petit. Cet algorithme est basé sur le calcul efficace de valeurs critiques généralisées
de lapplication polynomiale f : y € C" — f(y) € C qui 'union de I’ensemble classique
Ko(f) des valeurs critiques de f et de ’ensemble K. (f) des valeurs critiques asymptotiques
de l'application f. Cet algorithme effectue le calcul en O (n7D4") opérations arithmétiques
dans Q. Puis on montre comment utiliser ce calcul de valeurs critiques généralisées pour
obtenir un algorithme efficace décidant du vide (ou calculant au moins un point par com-
posante connexe) d’un semi-algébrique défini par une seule inégalité ou inéquation. Enfin,
on montre comment appliquer cette contribution au probléme de déterminer si une hyper-
surface contient au moins un point réel régulier. Cet article se termine par des résultats
expérimentaux montrant ’efficacité pratique de notre approche.

Mots-clés : calcul formel, résolution de systémes polynomiaux, inégalités, solutions réelles,
valeurs critiques généralisées
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1 Introduction

Let f be a polynomial in Q[X1,...,X,] of degree D and S; C R™ (resp. S— and S) be
the semi-algebraic set defined by f > 0 (resp. f < 0 and f # 0). The aim of this paper
is to provide an efficient algorithm in practice which computes at least one point in each
connected component of S (resp. S_ and S).

This question is of first importance since solving parametric polynomial systems of equa-
tions and inequalities is reduced to compute at least one point in each connected component
of the complementary of a real hypersurface (see [28]). This question also appears as a black
box used in algorithms solving quantifier elimination problems (see [1]).

Algorithms computing a Cylindrical Algebraic Decomposition (see [I0]) allow us to pro-
duce one point in each connected component of S, S_ or S. Nevertheless the complexity of
such algorithms is doubly exponential in the number of variables and their implementations
are limited to problems having 3 or 4 variables.

Algorithms based on the critical point method are provided in [2T], 22), 23| B3, B, 6]. The
classical strategy is to exhibit a hypersurface such that each connected component of S,
(resp. S— or S) contains a connected component of the real counterpart of the exhibited
hypersurface. Indeed, given an infinitesimal e, denote by H. C C{e)" the hypersurface
defined by f — e = 0. By the mean value theorem, each connected component of the
embedding of S; in R{e)" contains a connected component of H. N R{(e)"”. Hence, the
problem is reduced to compute at least one point in each connected component of the real
counterpart of the hypersurface H..

Computing at least one point in each connected component of a real hypersur-
face. Consider a hypersurface H C C". We focus now on the state of the art on algorithms
computing at least one point in each connected component (i.e. sampling points) of HNR™.
This problem is tackled by the critical point method. Its principle is the following: choose
a polynomial mapping ¢ : H NR"™ — R reaching its extrema in each connected component
of HNR™ and such that its critical locus is zero-dimensional or empty. When H is smooth,
¢ can be the square of the euclidean distance to a generically chosen point of Q™. When,
additionally, H N R"™ is known to be compact, ¢ can be the projection on a line.

In [5], computing sampling points in HNR™ is reduced to computing sampling points of a
smooth hypersurface whose real counterpart is compact by introducing several infinitesimals.
Thus, projection functions are used. The algorithms are deterministic and their complexity
is (2D)°(™) arithmetic operations in Q. Algebraic manipulations are performed to avoid
a computation of Grobner bases and lead to encode critical points as solutions of a zero-
dimensional polynomial system generating an ideal having always a degree 2D(2D — 1)™.
Moreover, all the computations are performed over a Puiseux series field. Thus, there is no
hope to obtain an efficient practical behaviour of these algorithms.

In [36} 01, 4 3], the authors use the square of the euclidean distance to a generically chosen
point A in Q™. Algorithms dealing with the case where H is not smooth are provided in [36,
T]. The one of [36] uses infinitesimal deformations. The one of [I] processes by performing
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4 Safey El Din

a recursive study of the singular locus until it has dimension 0 or is empty. Because of the
choice of A, the deterministic complexity of the algorithm of [36] is DO(""). Nevertheless, in
practice, the first choice is suitable to obtain zero-dimensional critical loci, so that under this
assumption, which is satisfied in practice, the complexity of [36] is D™, The complexity of
[1] is not well-controlled even if in singular situations it behaves better than the ones based
on infinitesimal deformations. The algorithms of |4} B] use the geometric resolution algorithm
which is probabilistic. Their complexity is polynomial in n, the evaluation complexity of
the input polynomial and an intrinsic geometric degree § which is dominated by D™.

In the smooth case, these contributions are improved in [39]: generic projection functions
are used even in non-compact situations instead of distance functions to a generic point. The
genericity of the choice of projection functions is necessary to ensure properness properties.
As in the case of algorithms using distance functions, in practice, the first choices are suitable.
Using elimination algorithms based on the geometric resolution, this leads to a probabilistic
algorithm whose arithmetic complexity is polynomial in n, the evaluation complexity of the
input polynomial, and an intrinsic geometric degree  which is dominated by D(D —1)"~ 1,
One can also use Grébner bases. Making the assumptions that the first choice of projections
is suitable, the complexity becomes D). This work is generalized to the case of singular
hypersurfaces in [41]. The algorithms relying on [39] are the most efficient in practice and
are implemented in [41].

The output of all these algorithms are critical points encoded by a rational parameteri-
zation:

_ an (T)
Xn T q(T)
; @ (T)
X T qo(T)
o) = 0
where T' is a new variable, and ¢, qo, q1, - - ., ¢, are univariate polynomials in Q[t]. Such a

rational parametrization can be obtained either by linear algebra computations in a quotient-
algebra (see [B3]) or directly by the geometric resolution algorithm (see |19, [I'7, I8, 20), BT]).

As recalled above, the classical strategy to compute at least one point in each connected
component implies to apply the aforementioned algorithms in the case of a hypersurface
defined by a polynomial with coefficients in Q(¢). Thus, the output is a rational parameter-
ization with coefficients in Q(g). Once it is obtained, a small enough specialization for ¢ is
obtained by computing the discriminant of ¢ with respect to 7" and choosing a specialization
less than the smallest absolute value of the real roots of this discriminant. Thus, the final
output is smaller than the rational parameterization with coefficients in Q(¢). Moreover,
computing rational parameterizations with coefficients in Q(¢) is hard in practice: infinites-
imal arithmetics spoil the practical behaviour of elimination algorithms due to problems
appearing in memory management and the over-cost of arithmetic operations.

INRIA



Testing Sign Conditions on a Polynomial 5

Substituting infinitesimal deformations by a pre-computation of generalized crit-
ical values. Remark that in order to obtain one point in each connected component in S
(resp. S— or §), it is sufficient to substitute a priori the infinitesimal ¢ appearing in f — ¢
by a small enough positive rational number e € Q. The problem is to ensure that the chosen
rational number is small enough which means here that for each connected component S of
S, there exists a connected component of the real counter part of the hypersurface defined
by f —e = 0 which is contained in S. This can be done by determining ey € R such that for
all e €]0, eg[, there exists a diffeomorphism ¢ such that the following diagram commutes:

F(e)x]0, eo ——= F~1(]0, eo])

\]Olef[

where 7 is the canonical projection on the second member of the cartesian product f~1(e)x]0, eg].
Such a topological property is obtained by ensuring that the interval I =|0, e[ has an

empty intersection with the set of generalized critical values of the polynomial mapping

f:x €R™ — f(x) € R. This set of generalized critical values is denoted by K (f) in the

sequel. This set is defined and studied in [32]. A real number ¢ € R is a generalized critical

value of a mapping fNif and only if it is either a critical value of f~or there exists a sequence

of points (z¢)sen such that f(z¢) tends to ¢ when ¢ tends to oo, ||z¢|| tends to oo when ¢

tends to co and ||z¢||.||d, f]| tends to 0 when ¢ tends to co. In the latter case, c is said to be

an asymptotic critical value. Degree bounds are provided in [26]. An algorithm computing

them is described in [32]. This algorithm works as follows: denoting by I the ideal

of of
I:<f_T7 (—_az) 7(Xi—_a’7;7‘) >
0X; ie{1,...,n} 8Xj ! (4,5)€{1,...,n}2?

where a1,...,a1,1,...,an,, and T are new variables, compute
J=INQ[T,a1,...,an,01,1,.-,0nn].
Generalized critical values are solutions of
J + <0,1, ce.yQp,011, an’n>.

Thus, this algorithm requires to perform algebraic elimination of variables on the ideal I
defined with polynomials involving n? + 2n + 1 variables. Moreover, the degree of I can
equal D™ (where D is the degree of f). Obviously, its practical behaviour is inefficient.

We provide here an algorithm computing efficiently the set of generalized critical values
of a polynomial mapping from R™ to R. A probabilistic version of this algorithm has a
complexity within D™ arithmetic operations in Q which is polynomial in the size of the
output in worst-cases.

RR n° 5995
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This allows us to substitute the use of infinitesimal deformations by a pre-computation
of generalized critical values in order to compute at least one point in each connected com-
ponent of a semi-algebraic set defined by a single inequality. The algorithm we obtain is
efficient in practice and its probabilistic versions have a complexity within O(n”D*") arith-
metic operations in Q. We also show how to apply our contribution to the problem of
deciding if a hypersurface contains real regular points. Our algorithmic contributions have
been implemented and we describe at the end of the paper how they have been applied on
concrete applications which are unreachable with anterior methods.

Plan of the paper. The paper is organized as follows. In Section ] we recall the def-
inition and basic properties of generalized critical values which can be found in [32]. In
Section B, we provide geometric results which, up to a generic linear change of the vari-
ables X1,...,X,, characterize generalized critical values as the set of non-properness of a
projection on a line restricted to a 1-dimensional polar variety. In Section Bl we show how
to obtain a first algorithm computing generalized critical values which is directly based on
the geometric results of Section Bl Then, we prove that these computations reduce to com-
puting classical critical values on the one hand, and critical values at infinity on the other
hand. In Section |, we describe an algorithm computing at least one point in each connected
component of a semi-algebraic set defined by a single inequality, which is based on the com-
putation of generalized critical values. In Section B, we show how to apply our contributions
to determining if a hypersurface contains real regular points. Finally, Section [d contains
some benchmarks illustrating the practical efficiency of our algorithms and showing these
methods are already promising to deal with problems having more than 4 variables.

Acknowledgments. The author thanks E. Schost and P. Trébuchet for fruitful discussions
and comments about this work.

2 Definition and first properties of generalized critical
values

In this section, we recall the definitions and basic properties of generalized critical values
which can be found in [32].

Definition 1 A complex number ¢ € C is a critical value of the mapping f : y € C* — f(y)
if and only if there exists z € C™ such that f(z) = ¢ and 88—){1(2) == %(2) =0.

A complex number ¢ € C is an asymptotic critical value of the mapping f : y € C* — f(y)
if and only if there exists a sequence of points (z¢)eeny C C™ such that:

o f(z¢) tends to c when { tends to co.

e ||z¢|| tends to +o00 when £ tends to co.

INRIA



Testing Sign Conditions on a Polynomial 7

e for all (i,5) € {1,...,n} |\X¢(Zg)||.||aa—)€(zg)|| tends to 0 when ( tends to co.

Remark 1 Remark that any statement of the following kind: given a polynomial mapping
¢ : R®™ — R? and a point y € RY, there exists a sequence of points (z¢)¢ lying in a semi-
algebraic set S C R™ and a point y € R? such that:

e ||z¢|| tends to co when ¢ tends to oo;
e ©(ye) tends to y when ¢ tends to oc;

can be rephrased using a quantified first order formula © over the reals. Then, from
Tarski-Seidenberg’s Theorem, the set of points satisfying ® is a semi-algebraic set whose
Zariski-closure is not zero-dimensional (since ||z¢|| is supposed to tend to oo). Thus, using
the curve selection Lemma, the sequence of points in the above statement can be substituted
by the existence of a semi-algebraic curve v :]0,1[— R™ such that ||y(t)|| tends to co when
t — 1 and p(y(t)) tends toy when t — 1.

Example 1 Consider the following polynomial in Q[ X1, X2]
f=X1(X1Xo-1)

and the mapping f: (x1,22) — f(x1,22). This mapping has obviously no critical value

since (f — T, 88_){17 aa—)é> = Q[X1, X2, T]. Suppose now that there exists a sequence of points

zp such that:
e ||z¢|| tends to +oco when ¢ tends to co.
e for all (i,75) € {1,2} HXZ(Zg)HHaanJ(Zz)H tends to 0 when ¢ tends to oo.

This implies that X?(z,) tends to 0 when { tends to oo, which implies that X1(z,) tends to
0 when { tends to oo, and X2X?(z¢) tends to O when ( tends to co. Finally, f(z¢) tends to

0 when £ tends to co. Thus, 0 is an asymptotic critical value of the mapping f. We will see
further that it is the only one.

Consider now the following example in 3 variables:
f=X1+X7Xo + X1 X2 X5
In [32)], the authors prove that the set of generalized critical values of the mapping sending

x € C™ to f(x) is {0} by using a similar reasoning as the above.

In [32], the authors prove the following result which can be seen as a generalized Sard’s
theorem for generalized critical values.

Theorem 1 Let f be a polynomial in Q[X1,...,X,] of degree D. The set of generalized

critical values K(f) of the mapping f : x € C* — f(x) € C is Zariski-closed in C.
Moreover, DiK o (f) + 4Ko(f) <D™ —1

RR n° 5995



8 Safey El Din

Given f € Q[X;,...,X,], consider a mapping fc : © € C" — f(x) € C and an open
subset Fr of C. We say that fc realizes a locally trivial fibration on C"\ fz'(F¢) if for all
connected open set (for the euclidean topology) Uz C C\ Fg, for all e € Uc denoting by 7
the projection on the second member of the cartesian product f Y(e) x Ug, the following
diagram

faH(e) x Ue — fz'(Ue)

\ lf

Uc
The above definition is also used for polynomial mappings from R"™ to R. Consider a mapping
fr : R™ — R and an open subset Fr of R. We say that fr realizes a locally trivial fibration
on R\ fz'(Fc) if for all connected open set (for the euclidean topology) Ug C C \ Fg, for

all e € Ug denoting by 7r the projection on the second member of the cartesian product
fz'(e) x Ug, the following diagram

fit(€) x Up = f'(Un)
\ l ;
Ur
is commutative.

The main interest of the set generalized critical values relies on its topological properties
which are summarized below and proved in [32].

Theorem 2 The mapping fc realizes a locally trivial fibration in C™ \ f(gl(K(fc)).
The mapping fr realizes a locally trivial fibration in R™\ fz (K (fr)).

Example 2 Consider the examples given above. We have proved that for both examples 0
is an asymptotic critical value. Remark that the fiber of both considered mappings above 0
is reducible while a generic fiber is irreducible. This is characteristic to a change of topology
and is easily visualized on Figure [ illustrating the example f = X1(X1 X2 — 1).

Nevertheless, note that o mapping can realize a locally trivial fibration even if there exists a
generalized critical value in I. To illustrate this fact, consider the following example:

f=—-X2(2X2X2 - 9X, X, +12)

which realizes a locally trivial fibration around 0 as shown in Figure @ but is such that

K(f) = {0}.

INRIA
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Figure 1: Existence of generalized critical values and change in topology

Figure 2: Existence of generalized critical values and no change in topology
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Thus, K(f) is Zariski-closed, degree bounds on K (f) are Bézout-like degree bounds and
its topological properties ensure that there is no topological change in the fibers of f taken
above any interval of R which has an empty intersection with K(f).

Denote by GL,(C) the set of n-square invertible matrices with coefficients in C. Consider
now A € GL,(C) and denote by f# the polynomial f(AX) where X denotes (X1,...,X,).
Moreover, given {f1,..., fs} in Q[X1,...,X,] and an algebraic variety ¥V C C" defined by
fi == fs =0, we denote by V2 the algebraic variety defined by f* =-.- = f& = 0.

The following lemma is an immediate consequence of Definition [l and will be used in
the sequel.

Lemma 1 For all A € GL,(Q), K(f) equals K(f%), Ko(f) equals Ko(f*) and Ko (f)
equals Koo (f2).

If ¢ is a critical value (resp. an asymptotic critical value) of f, then for alle € Q, c—e
is a critical value (resp. an asymptotic critical value) of f + e.

Using Remark [, the following lemma is also immediate and is used further.

Lemma 2 Let f be a polynomial in Q[X1,...,X,]. Consider c € C and (z¢)een C C™ be a
sequence of points such that:

e f(z¢) tends to ¢ when ¢ tends to oo;
e ||z¢|| tends to co when ¢ tends to oo;
o ||z¢||.||dz, f|| tends to O when { tends to cc.

Denote by X the vector X1,...,X,,. There ezists a Zariski-closed subset A C GL,,(C) such
that for all A € GL,(Q) \ A, ||AX(2¢)|| tends to co when { tends to co.

In the sequel, for the sake of simplicity, we identify a polynomial f € Q[X7, ..., X,] with
the mapping fc:z € C" — f(z) € C.
3 Geometric results

Let f be a polynomial in Q[ X1, ..., X,,], H C C"*! be the hypersurface defined by f—T = 0
(where T is a new variable). Given x = (z1,...,2,) € C", we denote by F; : C* — C"T!
the polynomial mapping sending x to:

((0f/0X;) (x), (X10f/0X;) (2),...,(Xn0f/0X;) ())
and by F; : C" — Ci"+i+1 the polynomial mapping sending z to:

(F1(2), Fa(x), ..., Fi(x), f(x)).

INRIA



Testing Sign Conditions on a Polynomial 11

We consider in the sequel the polynomial mapping ¢ : C* — C"*+7+! sending = =
(3}1, . ,Jﬁn) to

(Fl(m)a cee aFTL(x)7 f(I))
which coincides with F,. For any polynomial mapping v, we denote by I'y, the image of 1
and by T its Zariski-closure. For (i,j) € {1,...,n}?, we introduce new variables a;, and
a;,; such that I'y is defined by a set of generators of the ideal:
(f=T,(0f/0X; — ai)ie{l n}o (Xi.0f/0X; — ai7j)(i7j)€{l7...7n}2>

.....

intersected with the polynomial ring Q[T a1, ..., an, @11, .., Gn,nl.
Let L; C C"*i+1 be the coordinate axis of T, i.e. the line defined by:

alz"':ai:al,l:“':an,l:“':al,i:“':an7izo'

The line L,, is denoted by L in the sequel.

Kurdyka and its collaborators prove that 'y, N L equals the set of generalized critical
values of f (see [32, 26]. The set of asymptotic critical values of f, denoted by Koo (f), is
characterized as the intersection of the set of non-properness of ¢ with L.

3.1 Geometric characterization of generalized critical values under
properness assumptions

In the sequel, for i = n, ..., 2, we consider projections:
II; : crtt — C?
(T1,...,Zn,t) — (Tp_ito,...,Tn,t)
Fori=1,...,n—1,let W,_; C C"*! denotes the Zariski-closure of the constructible
set defined by:
of of of
T = == =0 0.
f 5X1 aXl ’ 5X1‘+1 7&

For simplicity, W,, denotes H.

In the sequel, we consider maps between complex or real algebraic varieties. The notion
of properness of such maps will be relative to the topologies induced by the metric topologies
of Cor R. A map ¢:V — W of topological spaces is said to be proper at w € W if there
exists a neighborhood B of w such that f~!(B) is compact (where B denotes the closure of
B). The map ¢ is said to be proper if it is proper at all w € W.

Given A € GL,(Q) and j € {2,...,n}, we say that the property P;(A) is satisfied if and
only if for all 4 € {4,...,n}, the mapping II; restricted to W/ is proper and the restriction
of the map II;; 1 to W; is birational onto its image.

In the sequel, we suppose that there exists a Zariski-closed subset A C GL,(Q) such
that for all A € GL,(Q) \ A and j € {2,...,n}, the property P;(A) is satisfied.

RR n° 5995
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Remark 2 Remark that from the algebraic Bertini-Sard theorem [{4)], if P(A) is true, II;
restricted to W; is a finite map and then WiA has dimension i.

We prove below that if Po(A) is satisfied, given ¢ € K (f), there exists a sequence of
points (z¢)sen in W such that:

e f(z¢) tends to ¢ when ¢ tends to oo
o ||z|| tends to co when £ tends to co
o ||z¢||-||d, f]| tends to O when ¢ tends to co

so that the existence of asymptotic critical values can be read off in WW; which has dimension
1.

Proposition 1 Consider ¢ € Ko (f). There exists a Zariski-closed subset A C GL,(C)
such that for all A € GL,(Q) \ A, there exists a sequence of points (z¢)een such that:

o forall{ €N, zp € WA |;

o fA(z) — c while £ — oo;

e ||z¢|| tends to oo when ¢ tends to oo;
e ||z¢|].|dz, f2]] — O while £ — oco.

Proof. For the sake of simplicity, suppose that P, (I,,) is satisfied.
Consider the mapping ¢ : H C C**!' — C?"*+2 which associates to a point z =
(x1,...,Zn,t) € H the point:

of of of of 2
e Tty = (2), 1 (T), . ., Ty o (), e € C2nt2
(200w e (1 @) )
Denote by (ag,...,an, Gnt1,00,1,41,1,---,0n4+1,1) the coordinates of the target space of ¢.
Sincefori =2,...,n, X; = a;, T = an11 and X; = =L X,,..., X,, and T can be expressed

ap,1’?
as rational functions of coordinates in the target spacg of ¢ and then, the map ¢ is birational
onto its image. Moreover, the graph of ¢, denoted by I'y is an irreducible algebraic variety
of C3713 of dimension n. Then, there exists a Zariski-closed subset Z C C?"*2 of maximal
dimension n — 1, such that specializing n coordinates outside Z, determines a unique point
in the pre-image of ¢.

In the sequel, given a point a = (aa,...,a,) € C"! (resp. a complex number 0 €
C), such that (a,8) ¢ Z, we denote by y(a, 3) the point in the image of ¢ obtained by
specializing the first (n — 1) coordinates (corresponding to zs,...,z,) to « and the n+ 2-th
coordinate (corresponding to 66—){1). Since ¢ is birational and since o and 3 are chosen
generically, one can define z(«, 3) as the unique pre-image of y(«, 3).

Consider ¢ € K (f), then there exists a sequence of points (z¢)eeny C C™ such that:

INRIA



Testing Sign Conditions on a Polynomial 13

o f(z¢) tends to ¢ when ¢ tends to oo
o ||z|| tends to co when ¢ tends to occ.
o ||z¢||-||dz, f]| tends to 0 when ¢ tends to oco.

Consider the images by ¢ of the points (z¢, f(z¢)) and their first n — 1 coordinates «y and
their n + 2-th coordinates 6,. Note that such a choice implies that 6, tends to 0 when ¢
tends to co. Since f(z¢), 1/]|z¢|| and ||z¢||.||dz, f|| are Cauchy sequences, the doubly-indexed
sequence q,, 0 is such that:

o (a) f(z(e;,0r)) tends to ¢ when 4 and ¢ tend to oo;
e (b) [|de(a,.0,)f| tends to 0 when i and ¢ tend to oo.
o (¢) ||xz(ey, 0¢)|| tends to co when ¢ and ¢ tend to oo.
e (d) [|z(ay;, 00)[|-||dz(a, 0, f tends to O when i and £ tend to oco.

Moreover, without loss of generality, by disturbing infinitesimally o, and 6,, one can suppose
that:

e (e) for all i € N, @; is chosen outside the Zariski-closed subset defined as the Zariski-
closure of the projection of W, _s onto Xo, ..., X,.

e (f) from Lemma B one can suppose that up to a generic linear change of coordinates,
X1(a, 6;) tends to oo when ¢ and ¢ tend to oo.

Since the map ¢ is birational, there exists an n-variate rational fraction @ such that
X1(z(a, 0)) is obtained by evaluating this rational fraction at «, 6. Then, for a fixed integer
i0, X1 (z (_10,94)) has either a finite limit or tends to co when ¢ tends to co. In the sequel,
we prove that in both cases, y(a; ,0¢) tends to a point whose last n + 2 coordinates are null
when ¢ tends to oo.

Suppose first that X;(x(a;,,0)) has a finite limit when ¢ tends to co. Up to a generic
linear change of variables, due to property (f), one can suppose that || X7 (z(c;, 0¢))|| tends
to co when i and ¢ tend to co. Thus, one can choose iy large enough to ensure that,
if Xy(w(a;,,0¢)) has a finite limit when ¢ tends to oo, this limit is not 0. This implies

that the n 4+ 1-th coordinate of y(«; ,6¢) (which corresponds to a X (—mv 6¢)) tends to zero

’Lo’
when ¢ — oo since one has seen that (X1 a—xl) (w(ay,,00)) tends to 0 and X (x(a,,,0)) is

supposed to have a finite limit which is not null.
This also implies that for j =n+3,...,2n + 1, the j-th coordinate of y(qa, ,0,) tend to
0 when ¢ — oo since these coordinates can be rewritten as the product of one coordinate of
a;, (which is fixed) and the (n + 1)-th of y(q;,,0,) which tends to 0 when / tends to co.
Moreover, f(x(a,,,0¢)) remains bounded (since X;(x(q;,,0¢)) has a finite limit), and
has consequently a finite limit. Finally, this allows us to conclude that the last coordinate
of y(a; ,0¢) (which corresponds to taﬁXLl( w(a;,,0¢))) tends to 0 when / tends to oo. Thus,

=g
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in this case, one has proved that y(a; ,0¢) tends to a point whose last n + 2 coordinates are
null.

Suppose now that X;(x(a;,, ,0¢)) tends to co when ¢ tends to co. This immediately
implies that the n + 1-th coordinate and, for j = n + 3,...,2n + 1, the j-th coordinates
of y(a;,,0¢) tend to 0 when £ tend to oo. It remains to prove that the last coordinate of
y(e;,,0¢) tends to 0 when £ tends to oo.

Since X1(x(ay,,0e)) tends to co when £ tends to oo, and using Remark [ from the
curve selection Lemma at infinity (see [32, Lemma 3.3, page 9], this implies there exists a
semi-algebraic arc ~;, : [0, 1[— R" such that

B
|17io ()| — 00 and II%D(p)II.Ila—)é(%o(p))ll —0

when p tends to 1. From Lojasiewicz’s inequality at infinity [9, 2.3.11, p. 63], this implies
that there exists an integer NV > 1 such that:

W€ 0L I3 Gio (D) < i)l

Following the same reasoning as in [32, Lemma 3.4, page 9], one can re-parameterize ;, such
that v;, becomes a semi-algebraic function from [0, +oco[ to R™ and lim, .1 ||, (p)|| = 1.
Thus, the following yields:

¥p € 0.+00l, It (DIH o < i~ i)

and there exists B € R such that

/0 o (DI~ 11 i (o) ldp < B.

Since o7
i i dp > i i (P)d
| Il e = 1 [ G i)
one has finally
1] 5 oo ool < B
This implies that f(X1,q; ) is bounded along v;,. Hence we have proved that y(a,,,0¢)
tends to a point whose last n + 2 coordinates are null.

9@) and let Pi € C" be (Qigacio) and

0¢). We prove

Let yi, = (Q4,,Ci, 0. .,0) be the limit of y(a, ,
pe € C™ be the point whose coordinates are the n-first coordinates of y(«a
now that y;, belongs to the image of ¢.
Since the restriction to H of II,, is supposed to be proper, for all £ € N, II 1 (p,) " H # 0
and there exists a ball centered at p;, such that II,,1(B) is compact. Moreover, remark that
(e, 0¢) belongs to 11, (py).

_10 )
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Testing Sign Conditions on a Polynomial 15

Thus, one can extract a converging subsequence from (x(q; ,0¢))cen and let z;, be
the limit of the chosen converging subsequence. Note that we have proved above that the
evaluation of 88—){1 at z(q;,, 0¢) tends to 0 when £ tends to oo which implies that 86—)?1 vanishes

at z;,. Moreover, from property (e), 66—){2 does not vanish at z;,. Hence z;, belongs to W,,_;
and ¢(z;,) = yi, which implies that y;, belongs to the image of ¢. To end the proof, note
that, from properties (a), (c) and (d), (f(xi,));,en (resp. (|zipl]);, ey and (||dggiof||)iDeN
and (||xig||.||dxi0f||)i0€N) has the same limit when 7o tends to oo as (f(2(e;,0))) ;.0)enxn

(resp. ||da(a, 00)|| and [|z(a, 00)]|-||de(a,

o) o)

60 /1| and ||z(q;

s

9,)f1]) when i and ¢ tend to oco.
O
The following result tells that under some assumptions on the properness of some pro-
jections and the dimension of a polar variety, generalized critical values can be read off in
the polar variety Wj.

Proposition 2 Consider ¢ € Ko (f). There exists a a Zariski-closed subset A C GL,,(C)
such that for all A € GL,(Q) \ A, there exists a sequence of points (z¢)ren such that:

e forall (€N, z, € W{;

e fA(z) — c when £ — oo;

e ||z¢|| tends to oo when ¢ tends to oo;
e ||z0]].||d-, f2]] — O when £ — oo.

The proof of the above result uses the same techniques than the ones used in the proof
of Proposition [

Proof. Given an integer j in {n,...,2}, we say that property P, is satisfied if and only
if the following assertion is true: let ¢ € K (f), if the property P;(I,,) is satisfied, then
there exists a sequence of points (z¢)sen such that:

o forall /€N, z, € W;_q;

e f(z¢) — ¢ when ¢ — oc;

e ||z¢]| tends to co when ¢ tends to oo;

e ||z¢|]-||dz, fI| — 0 when ¢ — oo.

The case j = n is already proved in Proposition [l

Suppose now P is true and P;(I,) is satisfied. We show below that this implies ;.

Since B,41 is supposed to be true and P;1(I,) holds, then there exists a sequence of
points (z¢)¢en such that:

o forall /€ N, z, € Wy;

o f(2z¢) — ¢ when ¢ — oc;
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e ||z¢|| tends to oo when £ tends to oo;
e ||z¢||.|ldz, f]| — 0 when £ — cc.

We prove below that one can choose such a sequence (z¢)¢en in W;_1 by using similar
arguments to the ones used in the proof of Proposition [

Consider the mapping ¢ : W; C C""' — C%*2? which associates to a point z =
(x1,...,2pn,t) € W; the point:

_ of 4 of of
(xn—J-‘er coey Xn, €, 5Xn—j+1 (33)7 (mn—]+r 5Xn—j+1 (x)>r—17,,,7j 7taXnij+1 (33))

Denote by (an,j+2, ceesny 41, A0,n—j+15 An—j+1,n—j+1y - - - ,an+17n,j+1) the coordinates
of the target space of ¢. Since for i =n—754+2,...,n, X; = a3, Xp_jqy1 = %
T = an41, and, since Pj1(I,) holds, for i = 1,...,n —j + 1, X; can be expressed as a
rational fractlon lying in Q(X,—j41, ..., Xn), X1,..., X, and T can be expressed as rational

functions of coordinates in the target space of ¢ and then the map ¢ is bi-rational onto its
image. Moreover, since W; has dimension j, the graph of ¢, denoted by I'y is an irreducible
algebraic variety of C"t2*3 of dimension j. Then, there exists a Zariski-closeed subset
Z C C?%*2 of maximal dimension j — 1, such that specializing j coordinates outside Z, in
the target space of ¢ determines a unique point in the pre-image of ¢.

Given a point @ = (ap—j12,..., ) € C771 (resp. a complex number 6 € C), such that
(o, 8) ¢ Z, we denote by y(«, 3) the point in the image of ¢ obtained by specializing the
first (j — 1) coordinates (corresponding to z,—jy2,...,%,) to a and the j 4 2-th coordinate
(corresponding to x,— ;i1 #fﬁl). Since ¢ is birational and since o and [ are chosen
generically, one can define z(a, 5) € W; as the unique pre-image of y(a, ).

Consider ¢ € K(f), then, as in the proof of Proposition [l one can choose sequences
and 6, such that:

* (a)
)

¢ (b) [|de(a,.0,)f| tends to O when i and £ tend to oo.

f(x(a;,0¢)) tends to ¢ when ¢ and ¢ tend to oo;

e (¢) ||z(ay, 8¢)|| tends to oo when i and ¢ tend to oo.

e (d)
Note that such a choice implies that 6, tends to 0 when /¢ tends to co. Moreover, without
loss of generality, by disturbing infinitesimally a, and 6,, one can suppose that:

(i, 00)||-[|de(a, 0,) f|| tends to O when i and £ tend to oo.

e (e) for all i € N, ¢, is chosen outside the Zariski-closed subset defined as the Zariski-
closure of the projection of W;_s onto X,,_j12,..., Xp.

e (f) from Lemma [ one can suppose that up to a generic linear change of coordinates,
Xn—j+1(as,8;) tends to oo when ¢ and ¢ tend to oo

INRIA
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Since the map ¢ is birational, there exists an n-variate rational fraction @) such that
Xn—j+1(z(a, 8)) is obtained by evaluating this rational fraction at ¢, 6. Then, for a fixed
integer 49, X, j11(7(e;,,0¢)) has either a finite limit or tends to oo when / tends to oc.
In the sequel, we prove that in both cases, y(a;, ,0¢) tends to a point whose last j + 2
coordinates are null.

Suppose first that X, ;1(2(q;,,0¢)) has a finite limit when £ tends to co. Up to a generic
linear change of variables, due to property (f), one can suppose that || X, —;+1(z(a;,60))|]
tends to co when i and ¢ tend to co. Thus, one can choose i( large enough to ensure that
if X, j11(2(ay,,0)) has a finite limit when £ tends to oo, this limit is not 0. This implies
that the j + 1-th coordinate of y(q; ,0¢) tends to zero when ¢ — oo.

This also implies that for & = j + 3,...,2j + 1, the k-th coordinate of y(a; ,0:) tend to
0 when ¢ — oo since these coordinates can be rewritten as the product of one coordlna’ce of
a;, and the (j + 1)-th of y(a, ,0;) which tends to 0 when ¢ tends to oo.

Moreover J(x(a;,,0¢)) remains bounded (since X,,_jy1(2(a;,,0¢)) has a finite limit and
the pre-image of C**2 by ¢ lies in W;), and has consequently a finite limit. Finally, this
allows us to conclude that the last coordinate of y(q; ,¢) tends to O when ¢ tends to oo.
Thus, in this case, one has proved that y(a; ,0,) tends to a point whose last j+2 coordinates
are null.

Suppose now that X,,_;11(z(a;,,0¢)) tends to oo when £ tends to co. This immediately
implies that the j + 1-th coordinate and, for £k = j 4+ 3,...,2j + 1, the k-th coordinates
of y(a;,,0¢) tend to 0 when £ tend to oc. It remains to prove that the last coordinate of
y(e;,,0¢) tends to 0 when £ tends to oo.

Since X,,—jy1(2(a;,,0¢)) tends to oo when £ tends to oo, from the curve selection Lemma
at infinity (see [32, Lemma 3.3, page 9], this implies there exists a semi-algebraic arc v;, :
[0, 1[— R™ such that ~;, ([0, 1]) is included in the intersection of WW; and of the linear subspace
defined by Xy = Xy () for k=n—j+2,...,n and

of

o (Pl = 00 and [ Xn—j41 (%o (Ol 55— (i0 ()] — O
n—j+1

when p tends to 1. From Lojasiewicz’s inequality at infinity [9, 2.3.11, p. 63], this implies
that there exists an integer IV > 1 such that:

af 11
Vo € 0,1 g0 (DIl < [[Xn—j41 (o ()77
n—j+1
Following the same reasoning as in [32, Lemma 3.4, page 9], one can re-parameterize ;, such
that 7, becomes a semi-algebraic function from [0, +oo[ to R™ and lim, 1 ||¥;, (p)|| = 1.
Thus, the following yields:
of .
VP € [0, 400, g% ¥io (PDII-11Fi0 (D) < 11 Xin—j1 (i0 () i (o)
n—j+1

and there exists B € R such that

/ooo”%o( I o (0)ldp < B.

RR n° 5995



18 Safey El Din

Since
e N S . & 1L .
/0 7o (0|7 N-||%‘o(/’)||df)2/0 X1 (io ()% [ ()|

and
> of . < of ,
| 1= oDl @ldo = 1 [ 522 G o) 1

one has finally

”/OO #{jl(%o () Fio (p)dpl| < B

Thus, the restriction of f is bounded along v;,. Hence we have proved that y(a; ,0¢) tends
to a point whose last n + 2 coordinates are null.
Let yi, = (Qj,,Cis,0,-..,0) be the limit of y(«, ,0¢) and let p;, € C" be (q;,,c;,) and

pe € C" be the point whose coordinates are the n-first coordinates of y(ay ,0¢). We prove
now that y;, belongs to the image of ¢.

Since the restriction to W; of II; is supposed to be proper, for all £ € N, H;l(p[)ij #0
and there exists a ball centered at p;, such that H;l (B) is compact. Moreover, remark that
z(ay,, 0e) belongs to IL; L(py).
Thus, one can extract a converging subsequence from (v(a; ,0¢))ren and let z;, be
the limit of the chosen converging subsequence. Note that we have proved above that the

evaluation of 5 Xff 7 at x(a;,,0¢) tends to 0 when £ tends to co which implies that Xaf

_10 )

vanishes at x;,. Moreover, from property (e), 8)(37 does not vanish at z;,. Hence z;,
belongs to W,_; and ¢(z;,) = y;, which implies that Yi, belongs to the image of ¢. To
end the proof, note that, from properties (a), (c) and (d), (f(ziy));,en (Tesp. ([|zio )i, en
and (||d$‘0f||)ig€N and (||xi0||.||d$,i0f||)i0€N) has the same limit when iy tends to co as

(f(x(s,00))) (i oyenxn (resp. [|du(a, 0, f|| and ||z (e, 0c)|| and [|z(a;, 0¢)||.||ds (a0, f]]) When
1 and ¢ tend to oo.

O

3.2 Ensuring properness properties

We prove now that there exists a Zariski-closed subset A € GL,, — C) such that for all A €
GL,(Q)\ A, the property P;(A) holds, which is summarized in the following proposition.

Proposition 3 There exists a Zariski-closed subset A C GL,(C) such that for all A €
GL,(Q)\ A and for all j € {1,...,n—1}:

e II; restricted to W; is proper.

e the restriction of 11,11 to W; is bi-rational onto its image.
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In [39], the authors prove that given a hypersurface H C C"*!, there exists a Zariski-
closed subset A C GL,11(C) such that for j € {1,...,n—1} and for all A € GL,;+1(Q)\ A,
II; restricted to WJ-A is proper and satisfies a Neether normalization property.

This result can not be used as stated in [39], since we consider here the hypersurface
defined by f — T = 0 and allow only change of variables on X3, ..., X,,. Nevertheless, the
incremental intersection process, originate from [19, &, [17], which is used in the proof of
[39] allows us to state:

Proposition 4 For i =1,...,n, denote by A® the ideals associated to the Zariski-closure
of the constructible set defined by:

A A A
off ot ot
0X4 0X; 0Xi1
There exists a Zariski-closed subset A C GLy,(C) such that:
e foralli€ {1,...,n} and for all prime P associated to A2, the extension C[X>, 1] —

C[X]/PA is integral, where X>it1 denotes Xij1,..., X, and X denotes X1,...,X,.

o foralliec {2,...,n—1}, the restriction of the projection 7; : (x1,...,2n) — (Ti, ..., Ty)
C"=*1 to the algebraic variety defined by A% is birational onto its image.

Using mutatis mutandis the proof of [39, Proposition 3, Section 2.5], which is based on
[24, Lemma 3.10] relating the properness of m; to the fact that the above extensions are
integral yields the following result:

Lemma 3 Denote by 7; 1 the projection (x1,...,1,) € C* — (zi41,...,2,) € C""%. There
exists a Zariski-closed subset A C GL,,(C) such that for all A € GL,(Q) \ A and for all
i € {1,...,n}, miy1 restricted to the algebraic variety defined by A® is proper.

Now, we prove that if 7; restricted to the algebraic variety associated to A# is proper,
then TI; restricted to W/ is proper. Indeed, suppose there exists (z,¢) € C'~! x C such that
II; restricted to W/ is not proper at (z,t). This means that there exists a ball B x U C
C'~! x C containing (z,t) such that IT; *(B)NW/ is not compact. Remark that in that case,
the only variables which can tend to infinity are X1,..., X,,_; or X,, ;1. This implies that
the projection of II; 1(B) N WA onto Xy, ..., X, is not compact. Moreover, the projection
of Hi_l(B) N WiA onto Xi,...,X,, is contained in the pre-image by m; of B which contains
x. Thus, the non-properness of II; restricted to W/ at (z,t) implies the non-properness of
m; restricted to A® at .

The fact that the restriction of II; to W is birational comes immediately from the fact
that the restriction of 7; to A is birational.

This ends the proof of Proposition Bl

We are now ready to state our main geometric result which characterizes the set of
generalized critical values of f.
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3.3 Main geometric result
The combination of Proposition ], Proposition Bl and Lemma [ leads to the following result.

Theorem 3 (Geometric characterization of generalized critical values) There ezists
o Zariski-closed subset A C GL,(C) such that for all A € GL,(Q) \ A the set Koo(f) of
asymptotic critical values of f is contained in the set of non-properness of the projection
restricted to the Zariski-closure of the constructible set defined by:
A A A
fA_TzaL:...: of =0, %#0

0X2 00X, 0X1
Remark 3 Remark that the above result only states that K (f) is contained in the set of
non-properness Z of the projection 11 : (x1,...,7,,t) € C"*1 — t € C restricted to W;.
The latter set is zero-dimensional (see [Z4]). Nevertheless, this inclusion can be strict since
some points in Z can depend on A.

Example 3 In [{0)], the authors use [24), Lemma 3.10] to compute the set of non-properness
of a projection restricted to an algebraic variety. Denoting by I the ideal associated to
Wi, this algorithm specializes in our case to computing the characteristic polynomial of the
multiplication by X, in Q(T)[X1,...,X,]/I®. The set of non-properness of the projection
on T is the reunion of the zero-sets of the denominators of this characteristic polynomial
seen as univariate in X .

Consider the polynomial which is already studied in Section[d

f=X1+X7Xo + X1 X2 X5
Performing the linear change of variables below

X1 — X1—|—X2—|—X3
XQ — X1—|—2X2+3X3
X3 — X1+4X2+9X3

one finds as a set of non-properness for the projection on T the zero-set of the univariate
polynomial below
256 T2 (20T + 1)

Performing the linear change of variables below

X1« 10213 X; + 41543 X5 + 51532 X3
Xy «— X; 444904 X5 4 10334 X3
X3 «— X1 +58200X9+ 1597 X5

one finds as a set of non-properness for the projection on T the zero-set of the univariate
polynomial below
T2 (898540 T 4 117941) .

Thus Ko (f) is the ged of these univariate polynomials and is {0}.
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4 The algorithm and its complexity

Given f € Q[X1q,. .., X,], we show now how to compute the set of generalized critical values
K(f) of the mapping x € C" — f(x) € C. Since K(f) = Ko(f) U Ko (f), we focus first on
the computation of Ko(f) and then we deal with the computation of K. (f).

Our algorithms rely on tools coming from polynomial system solving. We use Grobner
bases and the Geometric resolution algorithm. Groébner bases are a standard tool in poly-
nomial system solving since it allows to test the membership of a polynomial to an ideal,
to compute elimination ideals, and to reduce the computation of rational parameterizations
of the roots of a zero-dimensional ideal to linear algebra computations in a polynomial ring
quotiented by the considered ideal. Grébner bases have a complexity within D) arith-
metic operations in Q when the input polynomial family generates a zero-dimensional ideal
(see [300)).

The geometric resolution algorithm |20} BT] is more recent and goes back to |19, 17, [18].
The input is a polynomial system of equation and inequations encoded by a straight-line
program and defining a constructible set. It returns generic points in each equi-dimensional
component of the Zariski-closure of the constructible set defined by the input. These generic
points are encoded by rational parameterizations

— dn (T)

Xn = q0(T)

_ o«

X1 = qfl)(T)
oT) = 0

where T is a new variable. Thus the output of the geometric resolution algorithm is a list
of n + 2-tuples of univariate polynomials (g, go,q1, - --,q,). This algorithm is probabilistic,
but its complexity is well-controlled. We denote by M (z) the cost of multiplying univariate
polynomials of degree = and the notation p € Oioq (x) means that p € O(xlogz®) for some
constant a.

Theorem 4 (Complexity result for geometric resolution) [71)] Let g1,...,95 and g
be polynomials of degree bounded by D in Q[X1,...,X,], represented by a Straight-Line
Program of length L. There exists an algorithm computing a geometric resolution of the
Zariski-closure V (g1, .- .,9s) \ V(g) whose arithmetic complezity is:

Olog (Sn*(nL + n*)M(Dv))?

where 0 is the mazimum of the sums of the algebraic degrees of the irreducible components of
the intermediate varieties defined as the Zariski-closures of the constructible sets g1 = --- =
gi=0,9#0 foriinl,.... S.

Remark 4 In [71), the author proves that the bit complexity of his algorithm is
7O10g (Sn* (nL + n*)M (Dd))*
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where T bounds the bit-size of the coefficients of the input polynomial system.

In practice, Grobner bases remain, in general, the fastest tool to solve polynomial sys-
tems, in particular when the algorithms [14} [15] are used. The geometric resolution algorithm
is implemented as a Magma package by G. Lecerf (see [29]).

Hereafter, we describe how to compute Ko(f) and K (f) using Grobner bases and the
geometric resolution algorithm. When using Grobner bases, one obtains a deterministic
algorithm and an efficient behaviour in practice (see Section ). When using the geometric
resolution algorithm, we obtain a probabilistic algorithm whose complexity is well-controlled.

Computation of Ky(f). The first step of an algorithm computing K (f) is obviously the
computation of the set of critical values Ko(f) of f. This is encoded as the set of roots of a
univariate polynomial. Denote by I the ideal

of of
T, —,... .
<f ) 8X1’ Y 6Xn>

Sard’s Theorem ensures that there exists P € Q[T] such that: (P) = I N Q[T] and, by

definition, the set of roots of P is Ko(f).
Grobner bases allow such computations of elimination ideals.

Algorithm computing Ky(f) using Grobner bases

e Input: a polynomial f in Q[X,...,X,].

e Output: a univariate polynomial P € Q[T] such that its
zero-set is Ko(f).

e Compute a Grobner basis G for an elimination ordering
[X1,...,Xn] > [T] of the ideal generated by:

or o

-T R i
<f 78X17 78Xn

).

e Return the element of G belonging to Q[T].

Remark that $K,(f) < (D — 1)" since it is defined as the values taken by a polynomial
on each isolated primary component of an ideal defined by n polynomials of degree D — 1.
So, one could expect to obtain an algorithm computing Ko(f) having a complexity within
(D —1)°(™), This aim can be reached by using the geometric resolution Algorithm. The
first step is the computation of rational parameterizations of generic points in each equi-
dimensional component of the algebraic variety defined by:

of .9 _

ox, T ox, 0-
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Once they are obtained, one can obtain the values taken by f at these points which are
encoded by a univariate polynomial.

Probabilistic Algorithm computing K((f) using the
Geometric Resolution Algorithm

e Input: a polynomial f in Q[X7,...,X,].

e Qutput: a univariate polynomial P € Q[T] such that its
zero-set is Ko(f).

e Let GG be the rational parameterizations returned by the ge-

ometric resolution algorithm taking as input aa—){l, ceey aa)gn'

e For each element g = (q,q0,¢1,.-.,qn) of G, substitute for
1=1,...,nin f — T the variables X; by %. Put the result
to the same denominator and compute the resultant of the
obtained polynomial with respect to the variable T'.

e Return the product of the computed polynomials.

The complexity of the above algorithm is dominated by the cost of computing a geometric
resolution of the algebraic variety defined by:
of of

ox, " Toax, 0

Computation of K (f). It remainstoshow how to compute K (f). Following Remark[l
and Example Bl this task can be achieved by linear algebra computations in the quotient
ring Q(T)[X1, ..., X,]/I* where I is the ideal associated to Wi.

Deterministic Algorithm. In order to obtain a deterministic algorithm, we must check
that the chosen linear change of variables A is generic enough. Given f € Q[X7, ..., X,], de-

note by deg(f, [X1, ..., X;]) the degree of f when it is seen as a polynomial in Q(X; 42, ..., Xn)[X1,. ..
and denote by ¢; the mapping sending f € Q[X1,..., X,] to Xgeg(f’[xl"“’x”l])f())g—é, ceey X)gl s Xty

From [40), 28], the properness of II; restricted to the Zariski-closure of

g Oh L _oh g
0Xy 0X;  0X;i1

#0

can be tested by computing the intersection of the projective closure of WA . in P*+1(C) x
C" and the hyperplane at infinity. This can be done by Grdbner bases computations
(see |I]). A preliminary test consists in applying ¢; to the system defining W, instantiating
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Xo to 1 and check that when substituting X by 1 (for k¥ = 1,...,i — 1), the obtained
polynomial system generates (1). Using Grobner bases, such computations are particularly
efficient when the choice of A is a correct one. Modular computations can also be used to
perform some preliminary tests on sparse matrices A € GL,,(Q).

In the sequel we denote by Set0fNonProperness a subroutine taking as input a poly-
nomial system of equations and inequations and a set of variables and computes the set of
non-properness of the projection on the variables given as input restricted to the Zariski-
closure of the constructible set defined by the input polynomial system. Such a procedure
is described in [0, 28)].

Algorithm computing K. (f) using Grébner bases

e Input: a polynomial f in Q[X,...,X,].

e Output: a univariate polynomial P € Q[T] such that its
zero-set is Ko(f).

e Choose randomly A € GL,(C) and check if it is generic
enough until this test returns true.

afh

e Return SetOfNonProperness([fA — T = e

A A
s— =0, 5= #0,{T})

Probabilistic Algorithm. As in the case of the computation of K (f), Grobner bases do
not allow to obtain complexity results even if the first choice of A is supposed to be correct.
To reach this aim, one also uses extensions of the geometric resolution algorithms allowing
to lift the parameter. Here, in the input polynomial system

afA_ _ afA 0 afA

A _p_ - .= —
I =T=3% ox. ., Vox,

£0

T is considered as the parameter. From [2], if A is generic enough, this defines a zero-
dimensional system generating a radical ideal in Q(T")[X1, ..., X,]. The output is a geomet-
ric resolution

_ qn (X1,T)

Xn - QO(X117T)

(X7

X2 - Zi(XLT)
q(Xl ) T) = 0

The set of non properness of the projection on T restricted to the Zariski-closure of the
constructible set defined by the input polynomial system is contained the least commun
multiple of the denominators of the coefficients of ¢.
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Probabilistic Algorithm computing K. (f) using the
Geometric Resolution Algorithm

e Input: a polynomial f in Q[X,...,X,].

e Output: a univariate polynomial P € Q[T] such that its
zero-set is Ko(f).

e Consider T as a parameter in the polynomial system f4 —
T = 8§(1 == aXJ;_l = O,aan # 0 and compute a

geometric resolution.

e Lift the parameter.

e Return the least common multiple of the denominators in
the coefficients of the polynomial q.

Complexity estimates. Using Theorem H (see [31]), the probabilistic versions of the
algorithms computing Ko(f) and K (f) allow to perform a complexity analysis. Indeed,
using strong versions of Bézout theorems (see [16]), the sum of the degrees of the primary
components of the ideal generated by :

or . _or_,

X X,
is bounded by (D — 1)™ (where D is the degree of f). Thus, the polynomial returned by the
probabilistic algorithm computing Ky(f) has a degree bounded by (D — 1)".

We focus now on the computation of K (f). Our algorithm computed a polynomial
encoding the set of non-properness of a projection restricted to the curve defined as the
Zariski-closure of the solution set:

ors 0 A ofA

A_p_ I
/ r 0X, 0X,_1 00X,

£0

which has a degree bounded by (D — 1)"~! since, from Bézout’s theorem the Zariski-closure
of the complex solution set of .
ory oft ofa

A_p_ e
f T 0X1 0X,—1' 00X,

£0

has degree at most (D — 1)"~!. From [43], the lifting of the parameter T has a complexity
which is log-linear in the evaluation complexity of the above system and quadratic in the
degree of the studied curve.

Bounding the evaluation complexity of f by D", this discussion leads to the following
complexity result.
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Theorem 5 (Complexity result) The above probabilistic algorithm computing Ko(f) per-
forms at most O(n” D*") arithmetic operations in Q.

The above probabilistic algorithm computing K..(f) performs at most O(n” D*") arith-
metic operations in Q.

Remark 5 Using Remark [f], the bit-complezity of the probabilistic versions of our algo-
rithms is O(mn” D) where T bounds the bit-size of the coefficients in f.

5 Application I: testing the emptiness of a semi-algebraic
set defined by a single inequality

In this section, we show how to use the above algorithm to compute at least one point in
each connected component of a semi-algebraic set defined by a single inequality.
This result can be proved using classical techniques of real algebraic geometry.

Theorem 6 (Semi-algebraic sets) Let f be a polynomial in Q[X1,...,X,] and S be the
semi-algebraic set defined by f > 0. Let e € Q be such that 0 < e < min(|r|,r € K(f) NR).

Consider the hypersurface H. defined by f —e = 0. Then, for each connected component
S of S, there exists a connected component C of H. NR"™ such that C C S.

Proof.  Let ¢ be an infinitesimal and H. C C(&)™ be the hypersurface defined by
f —¢e =20. From the intermediate value theorem, each connected component S contains a
point zg such that f(zg) = . The connected component C,, C R(e)" of H. N R(e)" is
contained in S since f does not vanish on Cy.

From the transfer principle, this implies that there exist eq > 0 such that for all 0 < ¢’ <
ep and for all connected component S of S there exists a connected component C,s of the real
locus of the hypersurface defined by f — ¢’ = 0 such that C.r C S. Consider such a rational
number ¢’ and a positive rational number e such that 0 < e < min(|r|,r € K(f)). We prove
now that there exists a connected component C,. of the real locus of the hypersurface defined
by f —e =0 such that C. C S for all connected component S of S.

Suppose that €’ is chosen small enough such that K(f)N]0,e¢'[= 0. If 0 < e < ¢/, the
assertion follows immediately.

Suppose now that e > ¢'. In [32], the authors prove that f realizes a locally trivial
fibration on R™ \ f~1(K(f)). This implies that there exists a diffeomorphism ¢ such that,
for all e; €]¢’, e[, denoting by 7 the projection on the second member of the cartesian product
f~1(e1) x]e, €[ the following diagram is commutative

F e xle. e[~ f~ (e, e'])
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This implies that one can link any point z. of C¢/ to a point z. in H, NR"™ via a continuous
path on which f does not vanish. Then, z. belongs to S and if C. denotes the connected
component of H, N R"™ containing x., one has C, C S since f is constant on C..

O

Remark 6 From Theorem @, deciding the emptiness of the semi-algebraic set defined by
f > 0 is reduced to decide if a hypersurface defined by a polynomial with coefficients in Q
contains real points.

Substituting f by —f one can deal with semi-algebraic sets defined by f < 0. At last,
computing at least one point in each connected component of the semi-algebraic set defined
by f # 0 is done by computing at least one point in each connected component of the semi-
algebraic sets defined by f > 0 and f < 0.

The Algorithm. The algorithm relies on Theorem@ Given a polynomial fin Q[X1, ..., X,]
of degree D, the algorithm computes at least one point in each connected component of the
semi-algebraic set defined by f > 0. The first step is the computation of the set of generalized
critical values of the mapping f : x € C" — f(x) € C. Using the probabilistic version of the
algorithm provided in Section ], this can be done within O(n” D*") arithmetic operations
in Q.

We have seen in the preceeding section that the degree of the polynomials encoding
generalized critical values is bounded by O(D™). Thus, isolating the real solutions of the
polynomial encoding the set of generalized critical values of f is done within O(D3") arith-
metic operations in Q using the variant of Uspensky’s algorithm designed in [37]. Choosing
a positive rational number e between 0 and the smallest positive real generalized critical
value is immediate.

It remains to compute at least one point in each connected component of the real coun-
terpart of the hypersurface defined by f — e = 0. This can be done using the algorithm
designed in [39] within O(n”D3") arithmetic operations in Q. This algorithm is based on
computations of critical loci of generic projections. This leads to the following theorem.

Theorem 7 (Complexity result) Let f be a polynomial in Q[X1,...,X,] of degree D
and S be the semi-algebraic set defined by f > 0. The probabilistic version of the above
algorithm computes at least one point in each connected component of S with a complexity
within O(n” D*") arithmetic operations in Q.

6 Application II: determining the existence of real regu-
lar points in a hypersurface

In this section, we focus on the following problem: given a polynomial f € Q[Xj,
.., X,] of degree D, decide if the hypersurface H defined by f = 0 contains real regu-

lar points. Hence, the problem consists in deciding if the real dimension of H N R"™ equals
the complex dimension of H. This problem appears in many applications (in particular
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in automated geometric reasoning or in algorithmic geometry) studying generic geometric
situations.

This can be solved using the Cylindrical Algebraic Decomposition but the complexity of
this method is doubly exponential in the number of variables and, in practice, this method
is limited to problems having 3 or 4 variables.

Such a problem can also be tackled by computing the real radical of the ideal (f) C
Q[X1, ..., X,] (which is the radical ideal of Q[ X1, . .., X,,] whose associated algebraic variety
is the smallest one — for the inclusion ordering — containing H N R™). This can be done
by using the algorithms designed in [8]. These algorithms perform a recursive study on
imbricated singular loci of the studied varieties. Up to our knowledge, bounding the degree
of the singular locus of a variety, the degree of the singular locus of the singular locus and
so on yields doubly exponential bounds in the number of variables. Thus, the complexity
of such methods seems to be doubly exponential in the number of variables and no efficient
implementation have been obtained from these works.

The real dimension of H can be computed using [, Chapter 14]. The complexity of this
algorithm is DO Nevertheless, this algorithm does not provide satisfactory results in
practice due to the use of several infinitesimals and some growth of degree which are difficult
to manage in practical implementations and lead to a high complexity constant (which is
here as an exponent).

All the methods above compute exactly the real dimension of H N R"™ which is stronger
than the expected output. In the case where f is square-free, the problem in which we
are interested can be tackled by deciding if all the semi-algebraic sets S; C R™ defined by
f=0, 88—)1(: #0 (for i = 1,...,n) are empty or not. Each semi-algebraic set S; is studied by
studying the real algebraic sets of R(c)" defined by f = 8‘9—)](: —e=0and f = ;—)J(:—ka = 0. The
complexity of this method is D) but we are lead here to study n distinct semi-algebraic
sets defined by an equation (of degree D) and an inequation (of degree D — 1).

In the sequel, we show how to reduce the problem of determining the existence of real
regular points in a hypersurface defined by f = 0 to the problem of deciding if there exist
(z,2') € R™ x R™ such that f(z) > 0 and f(2’) < 0. The probabilistic version of our
algorithm has a complexity within O(n” D*") arithmetic operations in Q.

Theorem 8 (Existence of regular real points) Let [ be a square-free polynomial in
Q[X1,...,X,] and H C C™ be the hypersurface defined by f = 0. There exist reqular real
points in H if and only if there exist (z,z') € R™ x R™ such that f(z) >0 and f(z') < 0.

Proof. Suppose first that H contains real regular points and let y be such a point. Since
f is square-free, one has grad, (f) # 0. Now, considering the line passing through y and
supported by the vector grad, (f) and a Taylor development of f along this line near y, it
is clear that f is positive and negative along this line.

Suppose now that H does not contain a real regular zero. Then, the real locus of H
(which may be empty) is contained in the singular locus of H. Since the co-dimension of the
singular locus of H is greater than 1, the complementary of HNR™ in R" is connected. This
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implies that either the semi-algebraic set defined by f > 0 is empty or the semi-algebraic
set defined by f < 0 is empty.
]

The Algorithm. The algorithm based on Theorem B works as follows. The input of the
algorithm is a polynomial f in Q[X1,..., X,] of degree D. Compute the square-free part of
f

Determine the sign of f on a randomly chosen point at which f does not vanish. In
practice, this step is immediate while in theory, on has to test each point in a grid of size
D™ to be sure to find a point at which f does not vanish. Since our complexity estimates
are based on probabilistic algorithms, we suppose that the cost of this step is the one of the
evaluation of f, i.e. Oy (D™) arithmetic operations in Q.

If f is found to be positive on the test-point, test the emptiness of the semi-algebraic
defined by f < 0, else test the emptiness of the semi-algebraic set defined by f > 0. Using
the algorithm designed in Section Bl using the computation of generalized critical values, this
is done within O(n” D*") arithmetic operations in Q.

7 Practical results

We have implemented the algorithms presented in Sections B Bl and B using Grébner bases.

The Grobner engine which is used is FGB [13] which is implemented in C by J.-C. Faugére.
Computing rational parametrizations of the complex roots of a zero-dimensional ideal from
a Grobner basis is done by RS which is implemented in C by F. Rouillier. Isolation of real
roots of univariate polynomials with rational coefficients is done by RS using the algorithm
provided in [34].

The resulting implementation is a part of the development version of the RAGLIB Maple
library [38]. We do not describe implementation details allowing us to avoid an ezplicit linear
change of variables by using a choice of generic projections. We also don’t describe modular
tests which allow us to test if the chosen projections are good. However, observe that the
first choices have always been correct.

All the computations have been performed on a PC Intel Pentium Centrino Processor
1.86 GHz with 2048 Kbytes of Cache and 1024 MB of RAM.

7.1 Description of the test-suite.

The following polynomial appears in a problem of algorithmic geometry studying the Voronoi
Diagram of three lines in R3. In [2], the authors focus on determining topology changes of
the Voronoi diagram of three lines in R3. The question was first reduced to determining if the
zero-set of discriminant of the following polynomial with respect of the variable u contains
real regular points. This discriminant has degree 30. This discriminant is the product of a
polynomial of degree 18 and several polynomials up to an odd power whom zero-set could
not contain a real regular point since they are sums of squares. The polynomial of degree
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18 is Lazard II. D. Lazard and S. Lazard have also asked to determine if the following
polynomial which is denoted by Lazard I in the sequel is always positive.

16 a2 (a2 +1+62) ut +16a(—a,8a2 +aza+2aa® +2a + 2a3? +ay,8—a6) ud 4+
((240® +4a*) o® + (—248a® — 240 — 8ya® + 242a® — 8ay) a + 24a?B* + 4 37—
8Bza® +4y2a® + 24yBa? — 8azB + 16 4> +4r2a2) u? + (—4aa3 +4ya®—

4ax —8an +8Fa? +48) (B—aa+y—az)u+ (a2 +1) (8 —aa +y — az)?

In the sequel, we denote by Lazard I the above polynomial and by Lazard II the discrim-
inant of Lazard I with respect to the variable u.

The following polynomial appears in [27]. The problem consists in determining the
conditions on a, b, ¢ and d such that the ellipse defined by:

(P | = _

a? b2
. . . . 2 2 _
is inside the circle defined by z* + y* — 1 = 0.
4a662d2 —+ 2a2b2d6 — Ga2b2d4 —+ a4c4 + 2a4c2d6 — (5(12172c4 — 6a4b2c4 +4a6b2d2 —+
a®b? 1 60%c2d? — 209¢%d? + a%a? + 6020042 — satptd? — 4a%p2d0 —6b%ctd? — satptc? +
6a%b2c? — 8a?b%c? + 6atbtdt — 20%c?dt — 4a%b%c0 — 100022 — 6a2p%at — 2a%cta? +

10a%b2d?* — 2a268c? — 6a2b%c* + 0?63 + 6a%62d% + 6a%b%d? — 4a%6%4? + brat + b2cB 4

10a2b%c? + 60202 +4a%6%c? + a%a® + 46%c2d% + 6a*60c? — 8a%p2d? +

4a4b262 — 2a8b2d2 —+ 6a462d2 —+ 4a2b4d2 — Ga6b2d4 + 6a4b4c4 — 2a662d4 —+

20%c%a2 + 242628 —6a%c?a? + 08¢ +2a%0% — 4a%d® + 0 —20% — 248 448 ¢+

b8 + b +2a%0% + 2058 — 20832 — 600c% + 2% — 240202 — 255 +24%00 —

2a2b8 — Ga4b2c4d2 +2a2b4c4d2 +2a4b2c2d4 — Ga2b4c2d4 — 6a4b2c2d2 — 6@21)462(12 —+
4(12172c4 2b2c2d6 +2a2b2c4d2 +2a2b2c2d4 — 10 a2b2c2d2 + 6a2b6c2d2 —

4

it +2a
6ab? + 24268 — 2482 +2a%2 + 6a%62c2d? — 10a?b?cZa? — 4b%e0 4 6bct + 6602 —
2a%c2 + 2a2b2c%4% 4+ atetd? — 2a%c? —20%4d% — 440%al + 24546 -

2a%4% — 6a%d* + 6a%42% + ptctd? — av?c? +6atd? — 2p%d?

Below, in the column JK we give the timings for computing generalized critical values by
using the algorithm of [32]. We obviously use the same Grébner engine FGb than ours for
this algorithm. The column AlgoHyp corresponds to the maximum of the timings obtained
by

e our algorithm computing at least one point in each connected component of the semi-
algebraic set defined by the positivity of our input;

e our algorithm computing at least one point in each connected component of the semi-
algebraic set defined by the negativity of our input.

The column CAD contains the timings of an implementation of the open CAD algorithm
in Maple which is due to G. Moroz and F. Rouillier. It outputs a set of rational points in
each cell homeomorphic to |0, 1[™ (where n is the number of variables) of a CAD adapted
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to the input polynomial. The symbol co means that the computations have been stopped
after 2 days of computations without getting a result.

The algorithms provided in [7] never end on these examples. The practical behaviour
on this test-suite illustrates what happens in most of the examples we studied: on problems
having at most 4 variables, the open CAD algorithm behaves well (except on polynomials
having a big degree) and our implementation has comparable timings even if it is sometimes
slower. On problems having more variables, our implementation ends with reasonnable
timings while open CAD does not end after 2 days of computations. This is mainly due
to the highest degrees appearing in the projection step of CAD while the degrees of the
polynomials appearing during the execution of our algorithms is better controlled. Note also
that our algorithm is now implemented using a Grobner basis engine which can be strongly
improved for problems having 3 or 4 variables. In these situations, we expect to obtain strong
improvements. At last, remark that the generic choice of projections to compute generalized
critical values induces a growth of coefficients which reduces the practical performances of
our contribution. We plan now to investigate how to compute generalized critical values
without any change of variables. This could strongly speed up our contribution. That’s why
that we are convinced that our method is a promising one.

Pbm fvars | Degree | JK | AlgoHyp | CAD
Lazard I 6 8 00 60 sec. 00
Lazard 1T 5 18 oo | 10 hours. 00

Ellips-Circle 4 12 00 90 sec. 5 min.
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