Worst Cases for Correct Rounding of the Elementary Functions in Double Precision

Vincent Lefèvre 1 Jean-Michel Muller 2
1 SPACES - Solving problems through algebraic computation and efficient software
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
2 ARENAIRE - Computer arithmetic
Inria Grenoble - Rhône-Alpes, LIP - Laboratoire de l'Informatique du Parallélisme
Abstract : We give the results of a four-year search for the worst cases for correct rounding of the major elementary functions in double precision floating-point arithmetic. These results allow the design of reasonably fast routines that will compute these functions with correct rounding, at least in some interval, for any of the four rounding modes specified by the IEEE-754 standard. They will also allow one to easily test libraries that are claimed to provide correctly rounded functions.
Type de document :
Communication dans un congrès
Neil Burgess and Luigi Ciminiera. 15th IEEE Symposium on Computer Arithmetic - ARITH 2001, 2001, Vail, Colorado, pp.111-118, 2001
Liste complète des métadonnées

https://hal.inria.fr/inria-00100547
Contributeur : Publications Loria <>
Soumis le : mardi 26 septembre 2006 - 14:46:59
Dernière modification le : vendredi 29 septembre 2017 - 13:44:07

Identifiants

  • HAL Id : inria-00100547, version 1

Collections

Citation

Vincent Lefèvre, Jean-Michel Muller. Worst Cases for Correct Rounding of the Elementary Functions in Double Precision. Neil Burgess and Luigi Ciminiera. 15th IEEE Symposium on Computer Arithmetic - ARITH 2001, 2001, Vail, Colorado, pp.111-118, 2001. 〈inria-00100547〉

Partager

Métriques

Consultations de la notice

155