Worst Cases and Lattice Reduction

Damien Stehlé 1 Vincent Lefèvre 1 Paul Zimmermann 1
1 SPACES - Solving problems through algebraic computation and efficient software
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : We propose a new algorithm to find worst cases for correct rounding of an analytic function. We first reduce this problem to the Real Small Value Problem --- i.e. for polynomials with real coefficients. Then we show that this second problem can be solved efficiently, by extending Coppersmith's work on the Integer Small Value Problem --- for polynomials with integer coefficients --- using lattice reduction. For floating-point numbers with a mantissa less than N, and a polynomial approximation of degree d, our algorithm finds all worst cases at distance $
Type de document :
Communication dans un congrès
16th IEEE Symposium on Computer Arithmetic 2003 - ARITH-16'03, 2003, Santiago de Compostela, Espagne, pp.142-147, 2003
Liste complète des métadonnées

https://hal.inria.fr/inria-00099572
Contributeur : Publications Loria <>
Soumis le : mardi 26 septembre 2006 - 09:38:49
Dernière modification le : mardi 25 octobre 2016 - 17:02:03

Identifiants

  • HAL Id : inria-00099572, version 1

Collections

Citation

Damien Stehlé, Vincent Lefèvre, Paul Zimmermann. Worst Cases and Lattice Reduction. 16th IEEE Symposium on Computer Arithmetic 2003 - ARITH-16'03, 2003, Santiago de Compostela, Espagne, pp.142-147, 2003. <inria-00099572>

Partager

Métriques

Consultations de la notice

103