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ON THE OBSERVATIONAL SEMANTICS OF FAIR PARALLELISM

Ph. Darondeau and L. Kott
IRISA
Campus de Beaulieu

F-35042 RENNES CEDEX

1. INTRODUCTION

The work reported below stems from several remarks upon Milner's calculus of communi-—
cating systems (CCS) [Mi80].

- Among conditions to be fulfilled by observationally equivalent systems S and S', it
is required that for any sequence p of observable actions, and possible state o of S
after experiment p, there exists some equivalent state o' of S' possibly reached after
identical experiment. Systems may happen to be discriminated that way although no ex-
periment makes any difference between them. '

- The observational equivalence is not a congruence, which bears evidence of the
weaknesses of principles assumed for observing systems. _

- The unrestricted power of the programming language entails incompleteness of the
calculus, so that it is impossible to decide wether its parallel composition is fair

‘or unfair. _ L

- Parallelism is reduced to sequential nondeterminism, which involves debts in the

fairness issue.

In the case of finite behaviours, the first remark already led us to enhance an en-
larged equivalence and an associated proof system [Da82]. In the vein of Hoare's theo-
ry of CSP [Ho81], our proposal excludes the sum operator (+) to the benefit of n-ary
guarding operators (ul,...,un) and makes the assumption of a sequential observer
which presents ambiguous action demands such as (ul,...,un); By the way, the observer
is able to simulate any non-deterministic program context, whence the identity bet-
ween the equivalenée and the adjoined congruence : both relations are defined as the
equality between the alternated demand and response languageés which represent the ob-
servations of programs. In that framework, the observational semantics of programs
cannot be expressed by the conditional rewriting systems of Plotkin [Pl 81] in the
exaét-way they are used in [He 80, Mi 80, HeP 80], since actions must be combined with

action demands in the labelling of the rewriting relationms. ' -

'
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The present work aims to extend our previous approach to infinite behaviours and to

achieve fairness of the parallel composition, which requirement has been evaded as
yet in all studies inspiring from asynchronous CCS. The intended kind of fairness is

one of possible derivatives of the original property described by Park, several inter-
pretations of which make sense when applied to communicating systems [KuR 82]. Our

intention is to validate the following statement

PARALLELISM = FAIRNESS # SEQUENTIAL NON DETERMINISM

For example, we take it as granted that the machine H+T which repeats indefinitely
the non deterministic choice between two actions "head" and "tail", equally looked
for by an observer, has some extra behaviours which do not pertain to the para2llel
composition H|T of two machines H and T, each of which.iterates the corresponding
action "head" or "tail". A subtle distinction is. then established between asynchro-
nous parallelism and nbn—determinism, much more refined than the usual difference
which lays in the occasional simultaneity of events [Wi80, Da80, CMF82] : although
asynchronous systems with finite behaviours have always purely sequentlal equivalents,
some infinite asynchronous systems have the prerogative not to support any sequential
equivalent. Nor will be considered here the strong simultaneity of events, taken as a
basic phenomenon in synchronized calculi such as [Mi82, AuB82]. The fact is that, al-
though the history of interactions approach might still be used, strong simultaneity
of events would require a much more refined expression of the condition of fairness,

since a process could be waiting for several resources used one at a time by other

concurrent processes.

By showing that for synchronization programs with bounded parallelism, languages of
observations may be composed according to the structure of programs and still remain
in the well known class of rational languages, this paper establishes the existence
of a decision procedure for the observational congruence of fairly cbmmunicating pro-.
cesses. This result makes it reasonable to search for a corresponding formal préof

system ; the main difficulty lies in the axiomatization of infinitary rational ex~-
pressions.

The remaining sections are organized as follows. Section 2 states our-principles of
observation. Section 3 describes the programming language and builds.its operatiomal
semantics. Section 4 derives the observational semantics of programs from their ope-

rational semantics and contains the main results of the paper.

The proofs of the results are scattered over six appendices which introduce all the
required material.



2. PRINCIPLES OF OBSERVATION

Programs in our scope are pure synchronization programs. A particular system comes
from joining a program with an initial agent. An agent is said composite when it is
prog?ammed as the parallel composition of other agents, else it is atomic. M, the vo-
cabulary of actions {u],...,ui,...}, is the disjoint union of two subsets A and A,re-
lated to each other by a pair of bijections ~ : A e AF A ¢ A ¥ X =Xxe A. Given an
agent p composed of atomic agents 95 i=1,...,n, an operation of p is either anaction
u of one of'qi's, which responds to some demand from the outer, or an interaction
(u,u) between a pair of agénts (qi,qj). Actions of atomic agents are directed accor-
ding to the communication capabilities <“l?""un) allowed by their programs. Waen
using such a capability Hes an atomic agent disappears from the embedding agents to
the benefit of a new agent, possibly atomic or composite. The presentation of capabi-
lities (ul,...,un) by one of the agents amounts for the other agents to a complemen-
tary action demand (ﬂl,...,in) issued from the global environment of the system.

Bounded parallelism and bounded sequential non determinism are assumed.

Experimenting over a system amounts to involve it in an environment made of one or -

- several agents, the observers, which it may consequently interact with. The éysteh of
observers obeys the same communication laws as the observed system‘does‘obey, but the
behaviour of an observer is not constrained by a program. Observers submit to the ob-~
served system freely chosen action demands (ul,...,un), possibly answered by the obv
served agents which display sufficient capabilities to perform one of the actions TP
Since an action demand (ul,...,un) of an observer amounts, for the other observers,

_ to the presentation of complementary capabilities (ﬂl,...,ﬂh) by the observed system,
observers cannot avoid to interact by mutual answering. That property of observers is
quite essential : under the assumption of a fair-execution of the closed system made
of both kinds of agents, infinite sequences of interactions between observers provide
default information upon the observed system. We call an experience any fair proces-
sing of such a closed system : an atomic agent who infinitely often has the possibi-
lity to interact with other agents in the course of an experience will necessarily do
so. We shall assume a constant-number of observers and exclude the case of observers
which could compete on non disjoint action demands. Let the observers date and record
their individual acts, then the history of the system of observers may be gathered
into a finite or infinite word over the alphabet of demands and responses, on condi-
tion that pairs of identically dated responses A,X are confused into simple ele-
ments ; which represent interacthons between observers. For a program p with sort

A €M, let Epr(p) be the set of the words whith are constructed so. Epr(p) will be

called a language of experimenfs.
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Let w in Epr(p) - e.g. w= (Q,B)(Y,5)G(a)(;,8)v - ; let Fail(w) be the set union of

unsuccessful demands which occur in w - e.g. (a) - intersected with (A U 1) ; let
Div(w) be the subset of the action names which infinitely often occur in the demands
of w'intersected with (A U A) ; let Resp(w) be the sequence of respenses My in A
which occur in w, postfixed with a special symbol x and excluding X symbols -'e.g.

ax -. For such a sequence p, let Act(p) - reép. Ult(p) - be the subset of the action
names which occur — resp. occur infinitely often — in p. Using the notations

d = Div(w), 8§ = Fail(w) and p = Resp(w), we define the application ¥ : ¥(w) = (d,8,p)
then the following properties are verified by ¥(w) for any werd of experiments w :
1.dE€AUT, §SAUN, per’UN*

2. Ult(p) € 4d \

3.d n(B U =9

Define Obs(A) as the set of triples (d,6,p) which satisfy conditioms ! to 3, then
Obs(A) may be ordered by the relation (d,8,p) s (d',d',p') if and only if (p = p' and
s <6 and d cd' US') or (p = p"y and p"<p' and d U § = P) where < is the prefix
order over words. We call a language of observations any downwards and non empty sub-
set of Obs(A). A huge amount of combinatorial developments shcws that the fonction V¥
is actually a'bijection between languages of experiments and languages of observa-
tions. Let ObsA(p) denote W(Expﬁ(p)) ; for any program p with sort A, ObsA(p) will be

considered from now on as the observational semantics associated with program p.

3. THE PROGRAMMING LANGUAGE AND ITS OPERATIONAL SEMANTICS

3.1. THE SYNTAX OF PROGRAMS

Given the set M = A U A of action names and a set X of variables, the syntactic cate-
gories of terms and programs in the language are the least families constructed from
the following rules, where we let MS(t) and FV(t) respectively denote the minimal
sort and set of free variables of term t (ui,xi,t-l stand for an action name, a varia-
ble, a term)

- NIL is a term, MS(NIL)=9, FV(NIL)=0_

- x is a term , MS(x)=@, FV(x)={x}

- (“l""’un)(tl""’tn) is a term, let t that term,
MS(t) = {u,,...,u_} U (U MS(t.)), FV(t) = U FV(t,)
1 n i i i i

- Y(x; <t ,...,x «t ) is a term if u FV(t,) € {xl,...,xn},

Let t that term then MS(t) = U MS(t,) and FV(t) = ¢
l .
- (tlitz) is a term if FV(tl) = FV(tz) = ¢, let t that term then



MS(t) = MS(tl) U MS(t,) and FV(t) = o)
- if FV(t) = @ then t[/ul...un] is a term, -let t',
o MS(e') = MSC(ON({uy..on P U {uj..u ) and FU(E') = 9
- 1f FV(t) = @ and MS(t) € A then t is a program with MS(t) as its minimal sort, and
ty is a program with minimal sort A.

Two kinds of construction operations are provided in the syntax :
- - operations which define the elementary behaviours of programs (constant NIL, n-ary
guarded selection (ul,...,u ), recursion (Y))

- flow-operations which allow the comp031t10n of programs (parallel composition |
and restrictions [/ul...un].

3.2. HISTORIES

We call histories of a program the records of operation of the observed system in
every possible experience upon a system initialized with that program. Given an his-

tory hp of some program p of sort A, and an‘action name y in A U'K, we say that p

is : blocked in h_ if some observed agent has remained endlessly inactive while dis-
playing capability u, transient in hp if no observed agent shows cgpability U beyqnd
some step of the execution,-persistent in hp if neither blocked nor transient, satia—
ted in hp if corresponding responses u have been issued infinitely often. From the
assumption of fairness, we take it for granted that satiated labels are persistent
and therefore not blocked. It follows that an history hp of a program p with sort A
may be represented by a triple (d,8,p) : d, resp. 8, is the set of the action labels
.which are persistent, resp. transient, in hp’ so that (A U D\(d U &) contains exact-
ly the labels of actions which are blocked in h . H(A) will denote the set of such
histories (d,8,p) which verify conditions 1 and 2 of section 2 together with condi-
tion (3') :das = $. Define HA(p) as the set of histories of a program p w1§h sort

A ; from now on,‘HA(p) will be regarded as the operational semantics of p.v

3.3. THE OPERATIONAL SEMANTICS

definition 1. For WE M and v ¢ WU {1}, we let Ml s be the leaét binary relation

over programs such that
prog (Mys wees M) s by

- (Ulg LR | un)(tl’A teey tn) 2 > ti: I‘Sisn

_ : ' W, u .
sz(x1 €y ey X ¥ tn) —2——> t iff

W=@g, u=1,t-= tl and tl is the result of flow-operation, or
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where the replacement of free var1ab1es applles for every j, lgjsn.

<

definition 2. For elementary programs of sort A, HA(p) is the least set of histories

determined by the following rules.

W,u

-ifp > q for no W,u and q, then ($, A U X}x)'e H (p)
- 1if p BLITEN q, then (d,8,up) € H, (p) for any (d,8,p) in H (q), and

», (AU A)\W,X) e Hy(p) if w#1

W ,u W,, 1 AR .
- if p LRI P 2’2 > P, _..._;L_._¢ Py - i e IN, then
(lim( U W.), lim(ey (A U A)\W ), Hp Mg eeelg ved) € HA(p)
i 3=zi i g2t

definition 3. Given histories hp and hq in H(A); h and hq are compatible (hp i hq)
iff for any action u blocked in h (resp. h ), nelther K is satiated in h (resp.,hp)
nor u is blocked or persistent in h (resp. hp)

Clearly, given programs p and q, lncompabible histories hp and h_ cannot record the
individual behaviors of p and q in a common experience upon their parallel compound

pla.

definition 4. Let f and g be two words of M*, their parallel composition flg is induc-

tively defined as follows, u,veM : either flg = u(f'|g)+v(flg') with £ = uf', g = vg'
and p £ v or f|g = u(f'|g)+v(flg')+(f'|g') with £ = uf', g = vg' and u = v.

definition 5. Let f and g be two words of Me, their parallel composition f|g is the

greatest subset of M» such that flg “n %)0(f<n>|g<m>)(f>n|g>m)
’

where f<n>is the longest left factor of f of length less than or equal to n, and
f = (f<n>) (f>n).

definition 6. Given compatible histories hp = (dp p,pp) and h ' (dq,6 ,pq) in H (A)
(hplhq) is the set of histories (d,8,0) which verify condltlons i to iii :

i § =6 0§ ii) dU S = (d U ¢ Nn{d Uusd

) b q ) ( o p) ( q q)

iii) p\x € ((op\x)l(pq\x))

Let h_ and hq record behaviours of p and q in a common experience on their compound
plq, then the set of blocked (resp. transient) actions in the history of p|q is the

union (intersection) of their respective sets of blocked (transient) actions.

definition 7. HA(p|q) =y {(hp]hq)|hpeHA(p), hquA(vq), hp # hq}.

definition 8. Let the restriction R = /ul---un and let sets of labels A,A' A" be
such that A' = {ul...un}, A" = AU A" URA', then
H, (@[R]) = ((H,n(q)) + (a' UR'Y) 4+ ((AUR) n (A" URYY)




where (d,6,p) + @ = (d,6 U Q,p) and (d,8,p) + Q is equal to (d\R,8\Q,p) if
Ffs(M\Q)(u U (M\Q)* X or else is empty.

proposition 9. For any program p and for any triple (d,8,p) in HA(p),'E gdUS. (Im

“clear, the complement of a persistent label cannot be blocked).

4. THE OBSERVATIONAL SEMANTICS OF PROGRAMS.

Let the order relation g of section 2 be extended from Obs(A) to H(A) ; we state that
for any possible history h (dp p’pp) of a program p with sort A, the observations
which are produced by experlences in which p behaves according to h_ are exactly the

elements of the set {(d,§,p) e Obs(A)|(d,8,p) < (dp’sp’pp)}'

As-an example, let A be {a,B} and h be (P,a,8%) ; let us consider some pair of com-
plementary labels Y,y which do not belong to A, then a poss1b1e experlence upon p is
described by the infinite word w equal to (B)B(a,y)(y)y(a,y)(y)y veny whlch produces
the observation ¥(w) equal to (o,9,B8x) < (9,2,8x). At the opposite, let now hp be
(aBB,a,B ), then (aBS a,B “y is not an observation of p : no word such as

(u)(a 8, B)B(,B, B)B ... describes a possible experience since one of the observers

would be endlessly deprived of a possible interaction with the other observers,
At the present time, the observational meanings of programs are indirectiy defined by
the law ObsA(p) = {o € Obs(A)l(ihegA(p))(osh)} that has just been assumed. The re-

maining of the paper intends to show that these meanings are in fact a pre-semantics

and to derive a direct calculus of that semantics. Preliminary. definitions are needed.

4.1. PARTIAL OBSERVATIONS AND RATIONAL LANGUAGES

definition 1. pre-Obs(A), the set of pre-observations, is constituted by the triples

(d,&,p) whose elements verify :

1'.deAUTR, § SAUTR, p e AY U Ay U A*.

2'. Ult(p) € d if p is complete, i.e. p e A*x U Am, or else Act(p) g d
3.dné=90

3", Uit(D) nsS=9 if p is complete, or else Act(p) N & =‘¢
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definition 2. We call a language of pre-observations any non-empty subset of pre-

Obs (A) downwards closed for the generalized order < of section 2. We adopt the con-
vention that a language of pre—observations (resp. observations) may be given the no-
tation |L| (resp. L] ) where L is any subset of the language which includes its ma-

ximal elements and | J (resp. | | ) is the downwards closure operation in pre-Obs(A)
(resp. Obs(A)).

definition 3. For any pair of pre-observations 0, (d l,p ) and 0, = (d2,62,p2),
the association 0,:0, of o, and o, is the pre4observat10n o given by :

o= o0, if o is complete, i.e. Py E A¥*x U Am, or else

o= (d 2, 2) if 0,0, are respectively incomplete and complete, or else

o= '

(d1 U d2 U (S\8) U (8,\8)5 §; n8ys PyPy)

definition 4. P-obs(A), the set of partial observations, is the monoid with carrier
pre-Obs(A) U {4}, neutral element 4, concatenation . extending the association . in
pre-Obs(A), and order g defined as the minimal extension of the order < on pre-Obs(A).

By way of enlargement, we call a language of partial observations any non empty and

downwards closed subset|L| of P-obs(A) such that [L] = {8} or 4 ¢ LJ.

definition 5. I : (pre-Obs(-A))co -+ P-obs(A) is the function s.t.
- for finite words 010y« O I(oloz...ok) = 0,.0p. cv -0 if k3l
or else I(4)

= 4, the neutral element of P-obs(A),

- for infinite words 0102...oi..., let o, = (d.,Gi,pi), then
1(0102"'0“") = I(o ) if pk is complete for some k,
or else I(o 0,- ) is the triple (d,6,p) defined by :

4 = Lim( U d. ) U Lim( U 61)\L1m( n Gl) <
i i) j 12 i i3]

§ = Lim( 0 8§, )
i oiz]

p = Olpz...oi...x

proposition 6. I is a monoid homomofphism;

definition 7. According to [Ei74], we note Rat(Z®) the least family of subsets of Z=

which contains the finite subsets-of Z* and is closed under concatenation, set union,

star and w-star operations. (The following characterization is proved in [Ei74]).

proposition 8. Let L be a language over Z, L is a ratlonal set of Z% iff there exist

finitary rational sets of Z*, say B, B1 Ci’ l¢ign, such that L = B + ZB C

i



-9-

deflgltlon 9. For £ < Am U A%y U A%, we define-f= L O (AW U A*x) andcf', =L A, A
response-language { is bi- :

rational if both its complete and incomplete parts {and &
are rational sets in Rat((A U {x})m). L is rational if £is rational and i.is empty.

Notational equivalence will be assumed in the sequel between (d,§,¢) and

{(d,8,0) [pel} for any response-language L.

de

PR ) .
zinition 10. A language of partial observations (resp. observations) is rational if

1t can be expressed as |L] (resp. LLi), L = E(di’di’ci)’ Isin, where the {,'s are

non empty bi-rational (resp. rational) response-languages,

proposition 11, Let X ¢ Rat(pre-Obs(A)®) such that 1 ¢ X and X # 0, then |I(X)]
is a rational language of partial observations. Moréover, there exists an effective
procedure Yhich, given the rational expression of X, computes I(X) in the form

?((di,6i,.£i) + (di,éi,Jli)), where 431'3 are bi-rational response-languages.

proposition 12. If [L| is a ratiomal language of partial observatioms, then

[L] M Obs(A) is a rational language of observations, let l?(L)Jo' Moreover, there
exists an effective procedure which, given the expression of L as in proposition 11,

computes T(L) in the form X(di,di,-ci) where -&i's are rational response-languages.
i

proposition 13. Let S be a system of linear equations over Z%, such as

= . : . + ' [}
Xi A.llxl + ...+ Aian + Ci 3 Isign A.lj g Rat(z™), C.l € Rat(Z®). Let Y(S) denote the
greatest solution of S, then Y(S) is a vector of rational languages, and there

exists an effective procedure for computing that extremal solution.

definition l4. Let L and L' be two languages on M, their parallel composition L|L'
is the set Z((flg), £ in L and g in L').

proposition 15. If L and L' are rational, their parallel composition L|L' is rationalj;

‘moreover, there exists an effective procedure for computing the parallel composition

of rational languages.

4.2, THE SEMANTIC LAWS

definition 16. For any elementary program p of sort A, we let the associated langua-
ge of partial observations P—obsA(p) be equal to LI(/B(p)) Jwhere S is inductively

defined as follows, using Xi's as variables ranging over subsets of (pre-Obs(A))™ :
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/L (NIL) = (@,AUR,X)
S (xg) = (GS,J\LJXA.).X.l
M (Qupsenesu) (Epseeeyt ) = By (AUDND ey 1)+

n —
igl({ii} u {ul,...,un},(AUA)\{ui}\{ul,...',un},ui).oV'(t.l)
where either oﬂYt ) is taken as a constant glven by ObsA(t ) = [oﬂYt )j t.1

is the result of a flow-operation, or else cl’(t ) = cﬁ&(ti).
a‘&(Y(xl+tl,...,xn+:n)) Y, (X, %(tl)',...,Xn da(cn))

where Yl denotes the first component of the greatest solution of the corres-

ponding system of linear equations over (pre-Obs(A))<.

proposition 17. Let p be an elementary program of sort A, then the following rela-
tions hold : ObsA(p) = P—obsA(p) N Obs(A) = [Lf(I(U%(p))JO. Let qy --- 4y be the
outermost subprograms of p which are direct results of flow operations ; if Obs,(q.)
is rational for any i, then 4(p), P-obsA(p) and ObsA(p) are rational, and there
exists an effective procedure for computing Q(I(a«(p)) in the rational form

?(dj,Gj,.ﬁj), given the syntax of p and the rational expressions of the sets
6bSA(qi)'

Next result shows a little more suprising property, since it states that the set of
observations of a system of parallel processes can be synthesized from the sets of
observations of the parallel components : fairness conditions can still be taken
‘into full account despite the loss of information on operational properties which
comes from considering observations instead of histories (for instance, given the
history (a,a,x), none of the corresponding observations (aa,B,x) and (#,a,x) tells

us that the system can indefinitely escape action o without offering a).

proposition 18, Let observations op (d »8 ,D ) and o = (d 8 ,O ) in Obs(A) ()

P!
and o

q are compatible (op*o ) iff the followlng property holds for any A e A @

({32} ¢ p or {A,\} g,dq or i e Gp N §q or i € Gp N Gq or {A,A} s dp o) dq)

definition 19. Given rational response languages £ and L', we let L||L"' stand for

(CLNXI(L'"\X))x , where operations | and \ are respectively the parallel compo-
sition and right division in Rat((A U {xy})™).

o

proposition 20.

If ObsA(p) and ObsA(q) are rational languages of observations, let
Obs,(p) =

lL I Lp = Z(d' , L' ) and Obs (q) = [L I, Lq = Z(d"J ,-C" ) where
the‘C' 's and Lﬂ s aré rat10na1 then Obs (plq) is the ratlonalJlan uage of obser-
i A guag

vatlons leI]Lqu defined by LpHLq =



._11..

'E((dl d". d'. Gll. (S'. H. ] "
% i N J)u( ;N J)u( lndJ),GinGJ.,

li{"j),i and j such that
(@T52875520 % (@"5,8" 5,0,

As a consequence, there exists an effective procedure for computing Obs

A(plq) in the
rational fornp [Z(dk,dk,-f )1

o’ given Obs (p) and Obs (q) in similar forms.

proposition 21. Let programs p and q such that p = q[R] where R

/ul...un. Let sets
of labels A, A', A" ‘be such that A' = {ul u }and A" = AU A UK. If ObsA"(q) is

a rational 1anguage of observations, put ObsA"(q) [L ] and L = E(d ,8. ,4: ) where

the'b s are rational, then Obs (p) is the rational language of observatlons

[(L o (A"UA")) 4+ ((AURD) o (A'UR ))J

» where + is the same as in section 3, and
(d ,6 s &, ;) ¥ Q equals (d, N6\,

L nM\)™)+(9,0, (pref (&£ )AMN\ D)%) X )-pref (L, ;)

is the set of the proper left factors of words ¥ in '£.1 = As a consequence, there ex1sts

an effective procedure for computing Obs ,(P) in the rational form [Z(d'k,d'k,.ﬂ'k)J
given Obs "(q) in similar form.

The lnductlon on the structure of programs- may now be used to prove the following
facts.

proposition 22. For any program pof sort A,Obs (p) is rational
tive procedure which computes Obs

. and there exists an effec-
A in rat10na1 form.

proposition 23. Let programs q and q' withrespective minimal sorts MS(q) and MS(q').
If ObsA(q) = ObsA(q') for A = MS(q) UMS(q'), then Obs '(p[q]) ObsA,(p[q ]) for any
program context p[ ] and for any set A' s.t. MS(plql) v MS(p[q']) € A'.

For our simple language with bounded parallelism, we have precisely proved that lan-
guages of’ observations may be composed according to derived semantic laws, and that
they moreover remain in the well known class of rational languages. The outcome is
two-sided. First, we obtain an observational congruence of programs under the assump-
tion of fairness : programs p and q are observationally congruent iff they are ob-
servationally equivalent, that is ObsA(p) = ObsA(q)for some A including MS(p)uUMS(q).
Second,due to the effectiveness of the semantic calculus,and since there exists a decision

proceduré for the equalityof infinitary rational expressions,we can affirm the following

theorem 24. There exists a decision procedure for the observational congruence

of programs.

This result motivates further work towards the axiomatization of the observational
congruence of programs under the assumption of fairness,which task is perhaps

unfeasible for more general programming lénguages without resorting to arithmetics

or to ordinals.
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5. SHORT EXAMPLES

Let p = Y(x+(a,0)(x,%)), q = Y(y<(a)(y)), r = Y(z+(a) (2)), then the following equa-
lities hold for sort A equal to {a,al.

H, (p) = (8,0, (ata)*y) + (aa,d, (a+a)™)

Hy(@) = (8,a,0%x) + (a,%,a")

Hy(r) = (8,a,a%x) + (a,0,a") _

H,(a]r) = (aa,8, @®[[a™)) = (au,8, (a+a)*x) + (ag,d, (a+a)®)
Obs,(p) = (8,8, (a+a)*y) + <a?.?,¢,(a+§)“’)10

Obs (@) = 1(@,a,a%x) + (aa,8,0)]

Obs,(r) = L(d,a,a%x) + (ax,d,a")| |

Obs, (q|r) l(aE,es,(u“’HEw);o = |(aa,P, (a*a)*y) + (a5,¢,(a+'&)“’jo

p and (q|r) are therefore not equivalent.

Let now p = Y(x+(a,B)(x,x), q = Y(y(a) (¥)), ¥ = Y(z+(B)(2)), with a # B. Taking
A = {o,B}, one gets ObsA(p) = [UJO and ObsA(q[r) = [Vjo with U and V as follows :

\

(8,0 B, (a*B)*x) + (augB,B, (o 8" + B8 a)®) + (8BF,a,(a+B)*8%) + (au,B,(a+p)*a®)

U

]

(P,a B, (a+B)*y) + (aaBB,®, (a+8)”) + (BB,a, (a*+B)*8Y) + (oa,B, (a+B)*a)

As a consequence, (d&éﬁ,ﬁ,am) £ lUjg\‘[Vjo, which shows that parallelism cannot be

reduced to sequential non-determinism.
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APPENDIX 1 : MORE ON INFINITARY RATIONAL LANGUAGES.

The present appendix extends the classical resolution of systems of linear
equations over rational languages to the case of infinitary rational languages,
and gives a proof of the existence and computability of the least and greatest
solutions of such extended systems (as stated by proposition 4.1.13 in the body
~ of the paper). Are also provided additional definitions and propositions about
infinitary rational languages, needed later on for proving the computability of
the parallel composition operation defined in 4.1.14 . For the sake of clarity,
the latter task will be carried out in a separate appendix.

First, we recall the basic definitions and properties of infinite words and

infinitary (rational) languages.

Words‘

Let Z be an alphabet, each element of Z is called a letter. Z* denotes the
set of finite sequences of letters ; such a sequence is called a (finite) word,
say £, and |f| 1is the length of the word f.
7z¥ denotes the set of countably infinite sequences of letters ; elements of z"
are called (infinite) words also.

z” is the union Z*tJ 7Y of the sets of finite and infinite words over Z. That

set may be equipped with a concatenation operation defined as follows :
HNfez” ,‘dgezw s fg = £
* 0
-VfeZ ,¥YgeZ ,L,VYiel:
L1 ig |f] = fg(i) = £(4)
i> |f] => fg(i) = gl - [£])

(where £(i) is the iEh letter of f according to the functional definition of

sequences) .

Clearly, the concatenation operation is associative and admits 1 - the empty word -

as a neutral element.

The following notations will be used in the sequel.

- for any f in z” and for any integer n, £ <n> is the longest left factor ¢ of f
with length |¢| less than or equal to n ; -

- for any f in z” and for any integer n, £ > n is the unique word in z” such

that f = £ <n> £ > n.
Languages

o .. ’ ] . %
A subset L of Z is called an (infinitary) language, and we put Lfln =L N Z
and L1nf =L 0z’ for any L € z” . The concatenation operation is naturally extended
from Z to{?(zw), the set of subsets of Z , according to the definition :

oo

¥ A, BEZ :AB="{fg | fea, geBl.

The following properties obvibusly hold :
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Using the additive notation for the set union, we can define the star-operation

over G?(Zm) by

vacz:a = 1 A",
n20 o
and the omega-oper;tion over ??kz ) by
Vagz®: A=} = a={1)
vaez™ : A#a)} = a¥= @a\@gh”
Vagz : 1¢a = A= (£, 2" |
w .
3 (fi)izl , £, €2 ’3(31)131 NS
(Vi 1) (a,f, = fi—1)}
Roughly speaking, if A # {1} then
l1)—
A" = f{aa,...a ... | (¥n) (ansA\{ﬂ})} .

As a consequence A
A=1{1} orAE .

AY if and only if
7Y

Rational languages

According to (Ei 74) , we define the set of the infinitary rational languages
over Z as the least family Rat(Zw) of subsets of Al which contains the finite -
subsets of Z* and is closed under concatenation, set union, star-operation and
omega-operation (a re-statement of definition 4.1.7) .

In the above referenced volume, Eilenberg gives a rigorous proof of an

important characterization of rational sets, originally due to Mac Naughton :

Proposition 1 Let L be a language over Z, L. is a rational set of z° if and only

3 - I3 3 » * 3
if there exist finitary rational languages of Z , say B, Bi’ Ci 1 £ 1 n such

n

that L is equal to B + I Bi (Ci)w.
i=1

( a re-statement of proposition 4.1.8).

Clearly, for any rational set L of z" , it is always possible to find

. . n
finitary rational languages B, Bi’ Ci such that Lfln = B and Llnf-= r B, (C.)".

The remaining of the appendix is dedicated to the study of syste;s1of linear
equationslover rational sets of Zm. Consider the linear equation X = AX + C where
A and C are subsets of Z* and respectively verify 4 ¢ A and C # ¢. It is well
known that the above equation has a unique solution in Z*, namely the set A*C s
but it is also obvious that several solutionsmay exist in Z*. We shall examine
below that set of possible solutions for generalized equations X = AX + C where A

<o . . .
and C are subsets of Z . Several cases will be considered, according to the verification

or non verification of properties e A and C = @. Next coming lemmas show that the
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solutions of a generalized equation X = AX + C can always be deduced from the
13 . 3 * - -
solutions of a simpler equation X = A'X + C', A' € Z*, whose coefficient A'

and constant C' are rational if A and C are rational.

Lemma 2 Let (1) X = AX + C be a linear equation over ﬁ?(z*) and assume that C 1S
@& non empty set, then the set of solutions of (1) is equal to the set of
Afin - inf '

solutions of the equation (1') X = X+ (A +C).

‘Proof Since C is not empty, neither (1) nmor (1') admits the empty set as a
possible solution.

- Let L be a solution of (1), then the following equalities hold :

L=AL+C (4@

L= @ff e ainhy e .
L=afin | ainf L

L=afin s ainf L

- On the other hand, let L be a solution of (1') , then the following equalities
hold : )

L=afin (L )00f Lo e
aL+c = aftm 4 atnh e
aL+c = afin g L, ainf (g

' AL+ C = Afin L+ A:i.nf + C
L=AL+C a

Lemma 3 Let (2) X = AX be a linear equétibn over @?(Zw), then the set of the non-
empty solutions of (2) is equal to the set of the non-empty solutions of (2')

fin inf
X=A X+ A

Proof rewrite the last proof with the obvious replacements of C by @ and "solution"

by "non-empty solution". O

We can now focus on the solutions in_Zoo of llnear equations X = AX + C which
verify A € Z*,.' _
Lemma 4 Let X = AX + C be a linear equétion over G?(Zé), where A is a subset
of Z and is free from the empty'word, then there exists a least solution A*C and

* ©
a greatest solution A” + A'C in.Z .

Proof The fact that A C and A + A*C are solutions of the equation'is obvious. Now-
let L denote a particular solution of X = AX + C. An easy induction over the

integers shows that A C is included in L for every n inIN , thus A C is included in L.
In order to prove the inclusion L A + A C , it suffices to show that any word

f of Linf which does not belong to A*C.lS an element of Aw. |

Consider such a word f of L nf .

- since-L = A L +.C. and f ¢ A C , there must exist two words a1-in A,andﬂf1,in; L

-
¥

such #hat fo— " f1 3 K
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' R *
- moreover, f1 is in L1nf and does not belong to A C, thus the process may be

iterated endlessly and, by the definition, f. (=a. a,...) is an element of AY ]

0 12

Lemma 5 Let X = AX + C bé a linear equation overq?(zw), where A is a subset of
4* and contains 11, then there exist a least solution A C and a greatest solution
z° in 2z

Proof it is obvious. Q

To sum up the above lemmas 2 to 5, one may state the following

' . . @
Proposition 6 Let X = AX + C be a linear equation over.S(Z?). If A and C are

rational sets of Z , then the extremal solutions of X = AX + C are rat1ona1
languages. The least solutlon is always A C . The greatest solution is A + A C
if 1 ¢ A, or else is A '

Proof it is again obvious. 0O

The remaining of the appendix extends the above results from equations to
systems of linear equations over i?(Zm); which systems always have least and
greatest fixpoints. Only two special kinds of linear syétems will be considered,
namely the y-standard and Y-standard systems accordlng to the
Definition 7 Let S denote the following system of linear equations over ~S(Z )
:

S = {X. = ( Alj Xj) +C; | 1< 1ign} , then

j=1
- S8 is y-standard iff

* o
Y i, Vi : Aij e Rat(Z ) and Vi : C, ¢ (Rat(Z )\ @)
- S-is Y-standard iff
* ©
Vi,Vj : Aij e Rat(Z ) and Vi : CieRat(Z ).

Let us consider first y~standard systems. Letting S as in definition 7, S may be
rewritten in the matrix style into X = AX + C, where A is the n x n matrix with
elements Aij’ and X, C are n-vectors. The least fiied point of S may sti}l be
written A*C as it was the case for a simple equation, since it is possible to
define the star-operation upon language - matrices . Let y(S) denote the least.
fixed point of S, it is obvious that the elements yi(S) of that vector are rational
languages which can be effectively computed by stepwise resolution of the simple

equations X, = AX+C, in any order.

Now turning to Y-standard'syspems, our intend is to establish similar results for
their greatest fixed points. Unhappily, some complicatiéns arise : although the
matrix-style notation can stil; be used for a Y-standard system S, it is not
possible to identify the greatest fixed point Y(S) of S with AY + a%c , since the
w-operator has no adequate extension on’ language matrices. (Notice that infinitary
expressions built upon vectors and matrices would not obey the ordimary laws of

infinitary expressions if A" was defined as Y(X = AX) !).
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Lemma 8 Let S be the followiﬁg Y-standard system made out of two linear equations
[RYR A
over $(Z ) :

X
Y

AX + BY + C 1)
DX + EY + F (2)

Call (X1, Y1) the greatest solution obtained in the following way : éolve Q)
for X , then substitute the result in (2) and solve (2), last substitute the
solution of (2) for Y in the solution of (1).

Similarly, let (Xz, Y2) denote the greatest solution obtained by successively
solving the equations in the converse order. If neither A nor E contains 4,
then (X1, Y1) and (X2
to the greatest fixed point Y(S) of S.

R YZ) are vectors of rational languages and are both equal

Proof Simple calculi lead to the.followiﬁg statements :

%*
X, = AY + A (BY, + C)

. * *
(DA*B + E)? + (DA*B + E) (D(A® + A'C) + F)

T
*
X, = (BE*D + A)¥ + (BE*D + A) (BE® + E*F) + C)
:w *
Y, = E (DX, + )

By separation of the finitary and infinitary parts of these rational languages, one

obtains :
X1f1n _ a% (B(DA#B + E) (DA Cfln fln) + Cfln)
. % % . .
Y1fln _ (DA*B + E) (DA Cfln + Ffln)
. % % £ .
x2f1n _ (BE*D + A (BE Ffln + Cfln)
Yzfln - E*(DE*D + &) “(BE*FI® 4 cfiny , pfiny
. * . * . - .
xinf = A% A"(B ((0A%B + E)® + (A*B + E)T (DAY + a* ¢1PE) + piPEy) 4 (infy
. % % . .
anf - 0A%B + B)Y + (DA% B + B)” (0(A° + a* ¢iPfy 4 pinfy
. % . .
: X;“f = (BE*D + A)® + (BE*D + A)" (B@E" + g* rpinfy 4 cinfy
. % . . .
Y;nf.= g 4+ g* ™ [(BE*D + A)m + (BE*D + A) (B(Ew +E* Flnf) + Clnf)) + Flnf)
ﬂ . 3 - . ‘ N
The equalities X fin _ X2fln and Y1fln = Y2fln are easily ver1f1ed, since (X f1 n’ Y1
“and (X fin , zfln) are both equal to the least fixed p01nt‘yTS ™) of the following
system Sf of linear equations over.S (Z )
. \X' = AX' + BY' + cfln
fin
5 fin

L1}

! DX' + EY' + F .

fin)
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In order to prove (X, , Y,) = (X,, Y,), it is now enough to show that X1mf and
lenf are equal, since the equality Y1lnf = Y2lnf then follows by the consideration

of symmetry. To make the task easier, we rewrite the characteristic equations
11nf and lenf into
] *
x11nf - (A*B(DA*B + E)" D + 1)4” + A*B (Da*B + E)”
+ A%(B(DA*B + B)* DA + 1) C'™E

nf

of X

+ A*B(DA*B + E)* F'

I

x. 1 _ gE*p + &) + BE*D + A)* BE®
+ (sE*p + m* cinf
+ E*D + &) BE* FIPE

We leave to the reader to convince himself that the following equalities hold :

% * %*
A¥(B@a* B + E)* Da* +4) = (A*BE*D)” A% = (BE'D + )

* *
* _ A*B(E*DA*B)* E* = A*B (DA'B + E)

*
(BE'D + A)* BE
Thus, to prove X11nf = lenf , it is sufficient to establish the equality (1) :

* * * %* * * *
BED + A)" A® + A"B(AB + E)” = (BED + A)® + (BE'D + A) BE".
* *
Since U%=U" UY and (Uu+ V)‘Ju = (U+ V) (Uw +v° + (U+ V+)w)
for any U and V in Rat(Z+), (1) is equivalent to each of the following equalities

(2), (3) and (4) :

* * *x . * * *
oy | BED + &) AY + A"B(A™B + E)” (DA'B + E)
% * ®
= (BED + A + (BED + 4) BE®
* * * * * *
(3) | (BED + &) A + BE D+ A) BE (DA'B + E)*
* ’ * * ’
= BED+ A" + (BED + A) BE”
* * *
Gy | BED + 0@ BE~ (DA*B)® + BE'EY+ BE ((DA'B) 'EV)¥)
. * *
= BED + A) T (Y +BE'D)® + (BED)T AT + BEY)
The truth of (4) follows from the truth of the equality
£3 * * * w * * + +w
) (BED +A) (BE (DA'B)” + BE ((DAB) E))

% % * Lk
= @E™D + AT (BEDY + ((BE'D)TANY)
The verification of (5) makes no difficulty and is left to the reader.

One has therefore proved that (X1, Y1) equals (X2 ’ Y2). As a consequence, one
may write down the equalities
(6) X, =AY + A% (BY, + C) and

(7 Y EY + g* (DX, + F).

1
1

There still remains to prove that (X

]

10 Y1) is equal to the greatest fixed point

Y(S) of S, which fact we establish beiow by taking advantage of (6) and (7).
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Put Y(S) = (X, Y). From (6) and (7) , one draws :
(8) ®\x,)) C A*B T \Y)
9) (¥ \ Yi) cED X\X)).

*
((X‘\X ), (Y’\Y )) is therefore a lower bound of the fixed point Y ({Z = A BZ2 ,

Z2 E*DZ }) whlch obv1ously amounts to the vector ((A B E D) (E*D A B) ).

Erom (8) and (9), one can infer :

(10 X g x, + (A*B E*D)¥

) Y€y, + (E*D a*B)Y. | .

Now, by the first series of statements at the beginning of the proof, one has the
inclusions

(BE*D + A)® ¢ X, and DA'B + E)' g ¥, (=7,).

Thus finally X € X, and Y €Y, which implies (X1, Y1) = Y(S) since (X, Y) is the
greatest fixed point of S. 0

Lemma 9 All the properties which have been stated in the above lemma 87remain

valid when either A or E or both contain the empty word 1. '

Proof Suppose first that both A and E contain 9, then (X1 s Y1) = (Zm, z7) =

(X Y, ). Now consider the case where e A+ E)\.(Af)E) For the reason of symmetry,
one can freely assume ﬂs:A The follow1ng equalities are then verified :

(X1,Y) z” ,'E +E (0z" + F)) =
EY + E

of Y = EY + (DX + F) for X rangiﬁg over 6?(Zw) . | ]

Xy s YZ) It is enough to notice that
(DZ + F) is the upper bound of the set made out of the greatest solutions

.

We can now restate proposition 4.1.13 into the more precise

Proposition 10 Let S be the following Y-standard system of - linear equations :
n

S 5{1—(321 Aijx)+c |1\<1$n}.

The greatest fixed point Y(S) of S is a vector of rational languages and can be

computed by stepwise resolution of the equations in any order. More precisely, given
i in (1,n) , Y(S) may be computed according to the following process :
- solve the iEh equation for X, giving

~ W *
X. = (A,,) + (Ai'i) g

p A.. X)) +C.) + (A..nlah 27
1 11 i #i 1] ] 1 11

) ~
- substitute X. for Xi in the remaining equations, giving a new Y-standard system
S. witnh (n-1) equations
i

~ solve S for XJ's , J#1

~

- finelly nub<'f'1fute the resultlng values for XJ in Xi'
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Proof By induction on n. Proposition 6 and lemma 9 give the basis of the induction.

Now consider n > 2 and suppose that the proposition is valid until n-1.

N- A
Take arbitrary different values k and 1 in (1,n). Let expressions Xk, X1

and Y—standérd systems Sk’ S1 be defined as in the proposition. According to the
.induction hypothesis, the greatest fixed points Y(Sk) and Y(Sl) can be computed
by stepwise resolution of the corresponding systems Sk’ S. in any order of the

1

equations. In particular, one is free to solve first the equations with left
4

~

members X1 in Sk resp. Xk }n Sl’ glv;ng solutions X1 resp. Xk . By the way, the
n

Yy . _ - - 3 v =
two-dimensional system S {Xk o1 Akj Xj + Ck’ X1 j£1 A1j Xj + Cl}

has been solved twice, and the induction hypothesis tells us that the greatest
fixed point Y(S') has been reached each time. More precisely, let Y(S') = (§k R

il)’ then the following equalities hold :

AR

. ~ ] N
1= X =X X /%)

> w,x)
]

:x:tl?‘_?dl
1

~
N
N
=<
i

Now let Skl and S1k be the (n—2) dimensional systéms got from Sk

substltutlng X1 for Xl, resp. Xk for Xk, and then dropping the equation w1th left
member X, resp. X,. By the equalities (1) and (2), S K1 and Slk are equivalent

resp. S by

systems and, again by the induction hypothesis, their common greatest fixed point

can be computed by stepwise resolution of the equations in any order. Denote that

fixed point as (§1 g eee i} s eee s in) with k # j # 1.
——D —>
Define x (x / x ) and X, = x (x / X.
Xk 1 1 J
From the equalities (1) and (2), it is not difficult to see
T A IR Y
Xk = X Xj Xj] s X1 = Xl Xj / Xj .

Hence, we have proved that the solution (§1,...,§£), which is obviously a n-vector
of rational languages, does not depend on the order in which the equations are

solved.

There remains to prove that (§1 s eae iﬁ) is the greatest fixed point Y(S)
of S.
Put Y(S) = (§1, e s

>l

).

n

Let us show that the following equation (3) is verified for every i in (1,n)

_ w - * - o
PR VP A, ( Jil A. i xJ. + ci) + (Aiin{ﬂ}) Z

In order to establish the above fact, suppose for a moment that there exists some

< |

(3)

i in (1,n) for which (3) does not hold.
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v = ) o) :
Define Xi =a,.Y 4 A.. (z A. i Xj + Ci) + (Aiirjfﬂ}) Z , then certainly

11 11 J#l

>l

\% v —_
€ X, and define Xj = Xj for j#i . The following inclusions are then obvious :

v v v
(4) X.CSA..X. + L .A,., X. +C.
. 1 11 1

j#i ij 7 i
v v v
(5) X €A .X.+ £ A .X.+C for p #1i
. P Pr 1 '¥' Pl 3 P
J#¥1 ]
The inclusions (4) and (5) make it clear that (X s Xn) is a pre-fixed-point

of S. Slnce Y(S) is also the greatest pre—flxed-p01nt of S, Xi cannot be less
than x , thus X X and (3) holds for every i in (1,n).

In partlcular, (3) holds for i = 1 , which shows that (X cee s i;) is a solution

of S, since X equals A,," + A (( I A XJ) + C ) + (A11r1{1}) A

1 1 1 1 i1 13

Now, By the induction hypothesis , (XZ s een ,lih) is the greatest fixed point of S1,
thus X, € X. for j > 1, and it follows that X, is also included in X by the equality
X I NN 4 1 ‘ 1
X =X (X /x).
1 LI i

Since, (X ey X ) is the greatest fixed point of S, and since (X cee X;) is
also a solutlon of S, one can f1na11y conclude (X cees Xn) =Y(S) . a
Remarks

1- The result stated in proposition 10 is a tight analogue of the well known result

which applies to the finitary rational case.

2- Henceforth, given a linear system X = AX + C written in ﬁatrix style notation,
Y (X = AX + C) and y (X = AX + C) will be used to denote its greatest resp.

least fixed point.

3- It is easy to see that the 1t-Il component of Y(X = AX + C) may be written

[R (A)]i + Z [A*]ij J,where R (A) is a n-vector of languages in Rat (z%)
=1

and does not depend on C.



The goal of the appendix is to characterize the parallel composition of
languages by a combined use of least and greatest fixed points of systems of

linear equations.

For technical reasons, we shall in fact introduce two different kinds of
operations over infinitary rational languages : a parallel composition and

a quasi-parallel composition respectively denoted by | andl .

The finite alphabet Z used in the sequel is assumed to be the disjoint
union of two subsets Z' and Z', related to each other by a pair of rec1proca1
bijections named overbar. We shall also assume of‘spec1a1 symbol T not in Z

: , * %
and an associated erasing morphism ¢ from (Z\ 1) to Z such that

Vzez ¢(z) =z and () =

Definition 1 Let f and g be two words of Z , their parallel composition flg

is the subset of Z given by
- if g = 4 then flg = {f}

- if f =4 then flg = {g}
*
~ otherwise, let f = xf' and g = yg' with x,yeZ and f', g' ¢ Z then

| x (£'|g) + y(£lg") if x #y
fig = _ 3
x (£'|g) + x(£|g") + (£']g") if x =y

Definition 2 Let f and g be two words of Zw, their parallel compositon flg

is the subset of Z defined by

o . . + *
VheZz heflg iff VielN Bfi,gir—:z Bhiez s.t.

(1.) f f0f1 v o fn ce e o g=gog1 LY gntut
(1].)h=hoh1 ...hn...
(iii) hiefi!gi

%
Definition 3 Let f be in Z and g be in z¥ ,their parallel composition flg
is the subset of z“ defined by

flg = ¢ (flg <n>) (g>n)
n20

’

Definition 4 Let f and g be in Z*, their quasi-parallel composition ,flg is
the subset of (Z U ‘l‘)* given by |

- if g = 4 then flg = {£}

- if £ =1 then f]g = {g}

- otherwise let f = xf', g = yg' with x,y€Z and £',8' ¢ Z* then
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x (') +vy (Elg") ifx+#y

fle ={ _ o
x (£']g) + X (Elg") + ('l ifx=y

. L. . . . .
Definition 5 Let f and g be in Z , Ehelr quasi-paraliel cowposition flg

is the subset of (Z u 1)¥ defined by

vh ez w0 heflg iff VieN 3£ g, ¢ z"3h, e@vD)’ 5.t
(i) £ =f£ £
(ii) h = h

(iii) h, ¢
i

ofq «-- fn et s 8T BBy v B ee-
Oh1 ‘oo hn oo
fi'gi
*

Definition 6 Let f be in Z and g be in Zw, their quasi-parallel composition
f}g is the subset of (zut)” defined by

e = & (Elg<n>) (g>n) °

n20
Following these definitions the parallel composition may be viewed as a

fair shuffle with erasing rendez-vous whereas the quasi-parallel composition

appears as a fair shuffle with flagged rendez-vous.

Proposition 7 Let f and g be in z” then v(Elg) = flg

proof obvious. DO

Lemma 8 Let f and g be in " , 1f h belongs to flg (resp. flg) then, for any
integer p, p ¢ |h|, thereexists at least one pair of integers m and n such

that h<p> belongs to f<n>|g<m> (resp. £<n>jg<m>).

proof obvious., O

Proposition 9 Let f and g be in z" , then the following identities hold :

flg = T (f<n>|g<m>) (£>n]g>m)
n,m>0
flg = I (f<n>|g<m>)(f>n|g>m)

n,m>0

proof : This statement is a corollary of lemma 8 with the convention (see

appendix 1) : if f is a finite word and n is an integer greater than [£]

then f<n> = £f and £ > n = 1. (]

Proposition 10 The parallel composition is an associative and commutative

» o > ’ » 3 . 3 *
operation over Z . The quasi-parallel composition is a commutative operation

. (s <]
over Z .
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Definition 11 The parallel composition L|L' of two languages, L and L', of

z” is defined as L|L' = {f]g‘ fel, gelL'}.

The quasi-parallel composition L'L' of two languages, L and L', of 2" is

defined as LJL' = {f{g l felL, gel'}.

Proposition 12 The parallel composition of languages is a commutative and

associative operation. The quasi-parallel composition of languages is a commutative

operation. Both composition operations distribute over the set union.

It should be clear from proposition 9 that our current definition of the

parallel composition agrees with the earlier statements of section 3.3.

In order to proceed we need to introduce the notions of residuals and co-

residuals.

o *
Definition 13 Let L be a subset of Z and let f be a word of Z , the residual

of L by £ is the language defined by

I\f = {ge¢ z |fg e L}

Definition 14 Given two languages L and L', let L' be the residual of L by

some word f, then the co-residual of L' w.r.t. L is the language K defined by

K= {geZ* | L\ g=1"}

Proposition 15 Let L be an infinitary rational language, then L admits a finite

number of residuals.

where B, Bi’ Ci are finitary rational languages. Now for any finite word f,the

“following identity holds

N =8\f+ I (BC NE.C

1€ign

and it is well-known that any finitary rational language has only a finite

number of residuals (it is even a characteristic property). 0

corollary 16 Let L be in Rat (Zm), let {L1, eees Ln} be the set of non empty
residuals of L and let {K1, vees Kn} be theset of the respective co-residuals, then

the following holds

L= I K. Li (residual normal form)
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Proposition 17 Let L and K be in Rat (Z°) such that there exist B, C, B',

* ' .
C' in Rat(Z ) satisfying
(i) L = B¢” and K = B'¢c"”
(ii) C and C' do not contain the empty word

(1ii) 'C and C' are given in residual normal form

C= % D.,C, andC'= f D', (',
. i7i

then

* *
BC}B'c'™= & (BCD,JB'C’ D'.).(c.c’]c'.c'®)
. . 1 ] 1 J

1,]
w v oW M TR RS Wa~r 10
c.chlc i€ r (c,c'p e iC D). (cC c )
k,1 _
proof : obvious from proposition 9 and corollary 16. =

From now on, we shall make precise a systematic way to compute the
(quasi) parallel composition of two rational languages L1 and L2. Owing to the
distributivity of the (quasi) parallel composition over set union, it is

sufficient to study the three following cases :

%

(i) L1 and L2 are both elements of Rat(Z )
%

(ii) L1 is an element of (Z ) and L

(iii) L1 and L2 are both in Rat(Zw)

- w
, is an element of Rat(Z )

In cases (i) and (ii), both the parallel composition and the quasi-parallel
composition are computed as least fixed points of linear systems ; but only the

quasi-parallel composition may be computed as a greatest fixed point in case (iii).

Let us go further in the presentation of the involved system of linear

*
1 be an element of Rat(Z ) and L2 be an

element of Rat(Z") , let n, (resp. n2) be the number of non empty residuals of L

equations for cases (i) and (ii). Let L

1
(resp. LZ)’ and let n be equal to n .o, . A pair of corresponding applications

-1 {1,...,n}->{1,...,n1} and 2 : {1,...,n}—>{1,...,n2}- are assumed to define
a one-to-one correspondence - i <> (1(i), 2(i)) - between {1,...,n} and the car.-

tesian product {1,..'.,n1} X {1,...,n2}.

Given the above elements, let us define three n x n matrices, A,B,C :

for any integers i, j in {1,...,n},



A,.
1]

=
i

ij

(@]
[}

1]

Let us

.¢

Lihy * B2
p, = & Dagi)

{'c} iff J3ze Z s.t. L1 (j) = L1 (i)\z’ LZ(j) = LZ(i) z

@ otherwise

{zez |L }

1) S @Y 3 G T @)

(zez'|Ly 5y = Lygg) 3 Lygy) = Lo M 2

last define the n vector D : for any integer i in {1,...,n},

if 1 ¢ L1(i) and 1 € LZ(i)
if 1 € L1(i) and 4 ¢ L2(i)

if 1 ¢ L1( ) and £ € L2(i)

L) ‘ i

if 41 ¢ L1( ) and 1 ¢ L2(i)

i

We shall name’SI the following system of linear equations

(s])
and X | the

% * + + : * *
X=(B +C)A+BC+CB) X+ (B +C¢C )D

n-vector of languages :

vielt,....n} x|, = L1(i)|L2(i)

lemma 18 For any integers i,j in {1,...,n} the following identities hold :

* * :
.. ={feZ .« =L ,.\\f N = .
B ij ttez | L1(_]) 1(1)\\ i L2(J) L2(1)}
+ +
.. =1{fel .\ = A\ f .\ = .
By = ez 1Ly = LN Lo = Ty
X e {fez | L \ £}
Cys = el Al Thw 2 T 2w
¢t ={fez | L, .y =L, iys Logoy = Lo \ £}
ij 1(3)  T1@ 2D 2(i)
proof : By definition of the concatenation operation over language matrices
and by construction of B and C. ju
proposition 19 Let y(S|) be the least fixed point of (s]) then x| is equal to

y(sp.

proof : We
(1) to
other words

X}, =

show both inclusions Xl y(sl) and y(S))€ X} A
prove y(S|)c x| , we check that Xl is a fix point of sh). or, in
:¥vie{1,...,n}
* * + + ' : * %*
r (® +c)a+sc+csB).x|. + 2 (B +C).D
1<ign Y ggn 3]
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and this equality clearly holds by lemma 18 and proposition 9.

(2) the converse inclusion XIg;y(SI) may be rephrased into
* * + + % * *x, .
Xl €((B +C)A+BC + C B) (B +C M or, in other words.

* * * * *
Viell,...,n} X},sI {(® +cHa+sc+c’B B +cH} . D,
Y gign 3]

and this inclusion is proved by using lemma 18 and proposition 9. (8]
1f (SI) is the system

) x= (@ +cHya+scscBx+ B +cHD

and XI the n-vector such that Xli is equal to L1(i)|L2(i)’ then we get the

Proposition 20 Let y(S|) be the least fixed point of (S|) then X| is equal
to y(8}]).

proof analogous to the proof of proposition 19. a

Now turn to the case where both L1 and L2 are elements of Rat(Zw). It is

. . _ w _ W .
sufficient to assume L1 = B1C1 and L2 BZCZ with B1,.BZ,C1,C2 elements of

Rat(Z+) (not containing the empty word).

We let n, (resp. n2) be the number of non empty residuals of C

and n be equal to n

1 (resp. CZ)’

{*Dy 3 We assume corresponding applications, 1 and 2, defined

as ‘above from {1,...,n} to {1,...,n1} respectively {1,...,n2}. For any integer

iin {1,...,n} , we let K1(i) (resp. Kz(i)) be the coresidual associated to Li(i)

(resp. L2(i))' Now define E, the n-vector such that, for any integer i in {1,...,n},
* *

B i . o . N s

E, 1s the quasi-parallel composition of B1C1K1(1) and B2C2K2(1) Last define F,

the n x n matrix such that, for any integers i,j in {1,...,n} , Fij is the

. - + + *
quasi-parallel composition of L1(i) C1 K1(j) and Lz(i) C2 K2(j)' Clearly, Fii F..

1]
is included into Fij for any i and j in {1,...,n}. We shall name S the
following system of linear equations :

X =t x
Sy - F x

(where X and Y are n-vector variables).

' Proposition 21 Let Y(S) be the greatest fixed point of (S), then Y(S) is
' w

equal to the quasi-parallel composition of B,C “ and B2C2 .

171
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subsystem X' = FX'.
By proposition 17, a fixed-point of (S8') is given by the n-vector X'} with

elements, for any i in {1,...,n} :

X'I. =L

w [0}
i 1(1) C1 i L ¢

2(i) "2

Therefore the inclusions X'} g Y(S') holds.
To prove the converse inclusion, assume for a moment that there exists an
integer i in {1,...,n} and a word f such that f belongs to Y(S')i and does not

‘belong to X'l i Let us show that these assumptions lead to non sense.

As mentionned in proposition 10 of appendix 1, since Fii does not contain
the empty word (by definition of the quasi-parallel composition), the following

equality must hold

w *
Y(S')i = F, + F.. (

. . F.. Y(S") ..
11 - 11 1] J

j=1
jFL

SO [ o B -

So, either f belongs to F?i or f = f1f1 with f1 in Fij ( for some j) and f1

in Y(S'). and not in X'|.. By iterating this process one can construct a

*
sequence {fj}(j>0) of words f__.| in (Zv1)  such that
(i) V. f.eF. . i =1)
. i. . )
R o

(ii) £ = £ £. ...

1o by

From (i), there must exist two sequences {gj} ‘and {hj} , j > 0, of words, gj

* %
e Z and hJ. € Z , such that
iii) V.. f.eg.|h.
( ) J 3] gJI J

+ +
raxci . L R . N . - .
{iv) S TG, _ ) ¢ K and h_] e Lo, » RSTEN
3 - ]
from (iv) we draw
‘ +
(v) Vj 81-~-8j€L1 (i) C1 K1(ij) and
+

h ...hjeL C2 KZ(ij)

1 2(1)
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Let g be the infinite word g1...gj... (=lim g ...gj) and let h be the infinite
j> 4o

word h,...h....(=lim h1...h.).

W
From (iv) and (v), we know that g and h respectively belong to L1(i) C1 and

w w w . . .
to L2(i) C2 s thus f belongs t? L1(i) C1 | LZ(i) C2 . Since the last expression

amounts to X'|i , the required contradiction has been reached. a

TO compute the parallel composition of B1C1w and BZCZM’ it is not adequate to
take the greatest fixed point of the system obtained from (S) when replacing
the quasi-parallel composition operator with the parallel composition operator.

But proposition 7 leads to the following

w w . .
1C1 and B2C2 is the morphic

image ¢y (Y(S)) of the greatest fixed point Y(S) of (S).

Proposition 22 The parallel composition of B

To complete this appendix, the following points must be quoted.

1. Llet B1C1wlB2C2w be equal to ZKiLiw with K, and L. elements of Rat
*
((Zut) ) ; we define L'i and L"i such that Li = L'i + L"i with L'i e Rat

((zu1)™) and 1", e Rat(z") ; then B,C,°[B.C.° = y(B,C.°}B.C.%)
i 171 15272 171 95272 . . .
=ZP(R) Q@) WL )T+ ) v )37

2. All the comstructions we have suggested for computing the (quasi)
parallel composition of infinitary rational languages can be achieved in a

“purely syntactical way, given the rational expressions of the languages.

3. InPark's article (Pa80) , the fair shuffle of two infinite words is
computed as a greatest fixed point. The same fact may be observed here as regards
‘the quasi-parallel composition of languages, but not their parallel composition.
The reason lays in the intrinsic discontinuity of the latter operation which

&snay involve an infinite erasure of complementary letters inside the fair shuffle.



The main purpose of this appendix is to show that the operational semantics of an
elementary program, as defined in section 3, may be equivalently characterized as
the morphic image, in a monoid of '"partial histdries", of the greatest fixed poiai
of an associated system of linear equations over Zm(for Z a finite alphabet of

"action records").This alternative characterization will be later used for proving

the results of section 4. The proof of proposition 3.9 may also be found here.

Let us first define the monoid of partial histories and the needed morphism.

A is assumed a fixed finite -subset of M.

. 3 . I3 * * .
Definition 1 Let p in APy x UA ,Pls a complete sequence (of responses)

s e % e .
if it belongs to AP X, else it is incomplete.

Definition 2 pre-H (A), the set of pre-histories, is the set of triples (d,$,p)

which verify the following conditions :

1".dS AUR , e AUT A ua* * .
. = s b3 s P E X U A *

2'.Ult (p) € d if p is complete, or else Act(p) € d
3'.da s =0 . ‘ .

Definition 3 pre-h (A), the set of action records, is the subset of pre~histories

(d,8,p) for which p ¢ AU{x} W {1}.

Definition 4 P-h(A), the set of partial histories, is the monoid with carrier pre~

H(A) U {4}, neutral element 4, and concatenation 4 as follows :

(d,8,p) o (d',8",p") = (d,8,p) if p is complete, or else
(d',8',pp") if p' is complete, or else (dUd', §NS', pp') .

Definition 5 K : (pre—H(A))ao - P-h (A) is the function s.t.

- for finite words h1 h.k , K(h1 h'k) = h1 o coe o h'k if k 21, or else
K(4) = 4, the neutral element of P-h(A)

- for infinite words h1 h2 hi ceey let hi = (di,éi,pi), then K(h1 h2 hi) =
K (h1 h 9 - h'k) if oy is complete for some k_, or els(e K(h1 h2 hi"') is the
triple (d, 8, p) given by :

d = lim (U d.)
i 32
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(o]
1]

lim (M) 6.)
J

i 3

P =Py Py eee Pyoeee X

Proposition 6 K is a surjective monoid homomorphism ; moreover, the restriction

of K to (pre-h (M) is also a surjective monoid homomorphism.

Proof We shall first verify that K is a total function, i.e. K (h1 h2 . hi ees)
is univocally determined and belongs to P-h (A). This fact is immediate for finite

words h, ... h . Let % be the infinite word h, h. ... hi «ess by = (di’ Gi’ pi)

1 72
e pre-H(A). Suppose that there exists k and 1 such that P and py are complete
sequences, let k < 1, then h . .hk oo o h h1.h2. ces .hk e P-h (M)

by definition 4. Suppose now that ) is incomplete for any i and put p = PyPgreePyerax
p is a complete sequence. By the hypothe51s Act(p ) ¢ j , Ult (p) = 11m ( LJ Act (p ))

j2i
is included in lim ({J 4d.) ; by the hypothe31s d ()6 =@, lim ( O d. )f\llm (N s.)
i §2 i J>1 ] i j3i

is empty ; thus K (#) ¢ P-h(4A).

Let us prove that K is a monoid homomorphism.

It is enough to show K(uv) = K(&),K(v) for non empty words u and v in (pre-H(A))m.
The fact is immediate for u and v in (pre—H(A))*. For u in (pre-H(A))" , K(u) is a
complete history in H(A), thus K(u),K(v) = K(u), and the result follows by the
identity uv = u in (pre—H(A))w. Now consider the remaining case u = h1 h2 .o hk ,
ve=h,, h o ..c (pre-H(1))"

- Suppose ( 3 n ¢ k) (hns:H (A)), then K(uv) = K(h1 e hn) is in H (A), thus
K(h1 cee hn). vV = K(h1 cen hn) for any V in P - h(A). In particular, K(u) = K(h1 . hﬁ)o

K(hn+1 ';'hk)’ whence K(uv) = K(u) = K(u)eK(v).

- Suppose (I n > k) (hne:H(A)), then-K(uv) = K(hj ces hk cee hn) = K(u).K(hK+1 - hn)

= K(uw)eK(v).

- Suppose at last ( 3'1) (h e H(A)). Let K(u) = (d,68,p) and K(V) (d',8",p"), then
K(uv) = (d',8",pp"') may be ver1f1ed from definition 5, whence K(uv) = K(u)eK(v)
by definition 4,

In order to complete the proof, there remains to show that P-h(A) is the K-image
of (pre-h(n))”, Clearly, it is sufficient to verify that for any h = (d,8,p) in pre-
H(A), h-equals K(Wh) for some correzsponding W in (pre-h(A))”. Cases are as follows :

- if [p] ¢ 1, then K(h) = h ¢ pre-h(A).
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- if p = My eee B with L A for.any i, then (d,G,pi) belongs to pre-h(A)
for any i (since My o€ Act(p) € d), and letting hi = (d,G,ui), K (h1 ves hn) =h

- if p = My wee B X with o€ A for ‘any i, then (pi, Gj, pi) belongs to pre~h(A)
for any i, and letting hi = (ui, @, pi), one has h =K (h1 . hn(d,d,x))

- if p is the infinte sequence My Hy oee M ooy o€ A , then there exists some
integer k such that (¥n 3 k) (pne d) - since Ult (p) € d -, and.letting

h, = (ui , @, ui) for i < k, hi = (d,6,pi) for i 3 k, one has h =K (h1 h,..h:..)

1 2 1
'We turn now to the solving of equational systems over sets of partial

histories. Let X = A.X + C be a system of linear equations over 27(P-h(A)), where
elements of the matrix A and vector C respectively range ove;LQz(K(pre-h(A)+)) and
2 (P-h(4)). Since the above defined K is onto, one can always build an associated
system of linear equations ovérkéw(pre-h(A)m), let X' = A'X' + C', which verifies
K(A'(i,j)) = A(i,j) and K(C'(i)) = C(i) for any values of the indexes. Since K is
a monoid homomorphism, it is clear that K(Y(X' = A'X' + C')) does not depend on the
particular choice of A' and C' ian-1(A) resp. K_1(C), and 1s moreover a solution
of the original system (X = A.X+C). Henceforth, we let Y(X=A.X+C) denote that
solution whenever the equations bear upon sets of partial histofies. It is worth

- noting that Y(X=A.X+C) is not the greatest solution of X = A.X+C, at least for>the
inclusion of subsets. Consider for instance the elementary system of equations

5 = (X = (w,b,m)e Xy + (B,0,5)). One has Y(S) = (u,m,u") + (@,5n'x) , whereas
another possible solution is (u;,u,uw) + (u,ﬁ}uw) + (¢,H,u*x).

Equipped with the above tools, we shall supply programs with an alternative
_ operational semantics J%X appealing to fixed points, before proving it equivalent

to HA . Definitions below make use of a new set ;Z°of meta-variables Xi in one-

one correspondance with the syntactic var lables X, € X.

Definition 7 TFor t a term or a program of sort A which is not the result of a

flow-operation, é%i(t) is inductively defined by the following set of rules, where
Xi's range over 9F(P-h(A))

%\(NIL) = (¢, AUR,x)
A (x;) = (B, MK, 0)eX,
5’?;((“1’ cee ) (B, e, e ) = (Q,'(AUT\-)\"{;” e b )

Gy eee n )y (WA N {p, ul, o) féjui)

=]

z

1=1

B Qs cens x et)) =Y (K = F(e), o, X = He))



N.B. FE(Y(xex)) = Y (X = (8, AUL, 1). X)

R(Y(X'=(¢, AURA, 1)X"))
R((@, AUT, 1))
(@, AUR,X)

Definition 8 given programs p and q, é%i(plq) = L){(hplhq)l hpe:H(A)l\ é%i(p),
thH(A)n%K(q), h, # hq}-

Definition 9 Let the restriction R = /u1 cee M and let sets of labels A,A",A",
be such that A' = {p, ...m b, A" = AULA'UR', then FZ(q(R)) =.((H(A")na‘{§,,(q))+
(AU T 4 ((WUE) N (A'uRY).

Proposition 10 For any program p of sort A, ézZ(p) is a set of histories, i.e.

S, (p) € H(N)

Proof By induction on the structure of programs, using the definition of Y fixed

points and the fact that K(W) belongs to H(A) for any. word W in (pre—h(A))Q a

Before proving the equivalence between HA andé%ﬁ , we shall first establish

separate properties of these two independently defined semantic functionms.

Proposition 11 For any program p of sort A,}{A(p) is not empty.
Proof Using induction on the structure of programs, we show that for any program p,

HA(p) contains at least one history (d;é,p) which verifies dUs = AUA.

Induction basis

Let p be an elementary program, with none of its proper subprograms defined by
recursion or resulting from a flow-operation.
- If p has no (W,u) rewriting, then (@, AUNR, x) € HA(p) by definition 3.2

W1 ’“1_ Wn ,l-‘n .
- If p——>.... ——— q where q has no (W,u) rewriting, then

(¢, ANUR, My cee By X) € HA(p) by repeated application of definitions 3.2 and 4.

vee ces i infini iti n b
- If p N n n is an infinite rewriting sequence, then by

the third rule in defintion 3.2, (4,8, uy... un--.) € HA(p)for d = 1im(U Ww,) ,
_ _ i3 =
§ =1lim (O (AUN)\W.), thus dUS = AUA.
i g ]
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Induction step. Three cases have to be examined.

- p is an elementary program. The only ﬁewriting %equences of p which have not
e ' T 5 M1 2, Hp
yet been considered are of the form P ’ e >

where either My #4 for 1 & n and q is a recursively defincd bQDprouxam of p,

or u. #1 for i < n, By = 1, and q is the result of a flow-operation. In any

case and by the induction hypothesis, there exists some history (d,$,p) in HA(q)
which verifies dué= AUR ; but then (d,(S,p1 cee Mo p) € HA(p) by repeated appli-

cation of definitions 3.2 and 4. o

-p=9q (/u1 ces um) : obvious from the induction hypothesis.

-~ p = (q|r). By the induction hypothesis, there must exist (d,8,p) in HA(q) resp.
@,8",p") in HA(r) such that dvé= AUR = d'us’. Let hq = (d,G,p) and hr =

(d',ﬁ',p'), then hq and hr are obviously compatible, and it is easily shown that
HA(p) contains at least one history (d",8",p") which verifies d"usd" = (dus) N

@'us')y = AURA (=]

Proposition 12 For any program p of sort A and for any history (d,8,p) iné%x(p),
dgdus

Induction basis

p is an‘elementary program, with none of its proper subprograms defined by
recursion or resulting from a flow-operation. Let us notice that any of the triples
(d,8,p) which explicity appear in definition 7 are members of pre-h(A) and verify
either ( p=x and d = @) or (dud= AUN). Due to the definition of Y fixed points,
it is then sufficient to show that d € d U § holds for any (d,8,p) in K(W) where
W is either ' ' -
~ an infinite word h1
di W) Gi = AUR and e AU{1}, or

"—= a finite word h1h2 cos hnh with hi' s as above, and h equal to some complete

h,
Pi

history (d',8',p') s.t. d'ed'us'. In the first case, definition 5 shows dUS§ = AUVA

while definition 4 yields d = d' and 8§ = &' -in the second case.

- p is an elementary program. Use proposition 10 together with the induction -
. L ]
hypotheéis and follow the same reasoning as above.

-p=gq [/p1...pnl. Obvious from the induction hypothesis.

- p = (q|r). Let (4,6,p) in é%i(p), then there exist compatible histories hq £ é%i(q)

and hr € é%f(r) ?uch that (d,8,p9) € hqlhr. Put hq = (dq,dq,pq), hr = (dr,ér,?r?. By

ces hi ... , with each hi equal to some (di,Gi,pi)'verifying
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the induction hypothesis, E& < d ) 6 andla c d @) 6 . By definition 3.6,
G—Gqﬂ 6 and dUS = (dqu ) )n (d U § ),whlch entallsd (d nd)U
(d n s )Ll(6 N d ) since é%&(p) is a set hlstorles by proposition 10.

Let p in d then p sd J d . Take for instance p € dq , then pu edq U Sq.

Suppose for a moment p ¢ drUGr, then p € Gq by compatibility of hq_and hr,

whence p ¢ dq by definition of histories, a contradiction with p € dq.

dus  , q.e.d. 0O

It follows that p e(d US )N U 8)
q q r r

Notice that proposition 3.9 is now a direct consequence of the above proposition

according to the following
Theorem 13 For any program p of sort A , /‘yti\(p) = HA(p).
Proof By induction on the structure of programs.

;nduction basis

Let p = NIL, then p .has. no (W,u) rewriting, thus HA(NIL) = (@, AUR, x) =

%(NIL) by definitions 3.2 and 7.
Let p = Y(x1 <ty
then the proof of Hy (p) = %(p) is a particular case of the general argument given

\

vee s X t ) where no subterm of the tl's is a program,
in the induction step.

Induction step

For p resulting from a flow-operation, the induction is obvious, so that there
only remains two nontrivial cases.

= where the p.'s are programs.
e p=(n, > b)) (pys » P) P; e prog

By definition 3.1, the set of (W,u) rewritings of P is

TP IPTHY SN TR
{p >p.|1\<i\<n}.

By definition 3.2, (@, (IUJK)\{;J1 pn}, x) € HA(p). Aso by definition 3.2,
(d,G,pip) belongs to HA(p) for any history (d,8,p) in HA(pi)' For any such history,
one .has‘((p1 un), (J{\t’JK)\'{'u1 un}, pi). (d,8,p) = (4,9, uip-) . Since
HA(pi) = y/;\'(pi) holds by the induction hypothesis, the inclusion %\(P) € HA(p)

clearly follows from the two facts above.

Suppose for a moment that there exists some hisfory h in HA(p_) \ %;\(p), and show

that this assumption is nonsense. By the first part of the proof, one has
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necessarily (h € H,(p)) provable from the third rule in definition 3.2 .

A
W, , v W, 5 v W , v .
. Thus p, 11 2 2, .k k5 . for some i such that
h ='(d,5,ui Vi Vg eel ...) with d and & respectively equal to lim (U W.) ,

2 k | kK ik

lim (N (AUND\W.).
k 3k ]

By the third rule in definition 3.2, h, = d,s, Vi Yy ees Y ...) is an history

in HA(pi),'and since hi e H(A) , one has h = ((u1 .vs un), (Au AN\ {p1...un} , ui).hi
by definition of the concatenation.
It follows by the induction.hypothesis HA(Pi) = é%i(pi) that h e_é%i(p) since

h, ey{(pi). Thus HA(p.) =%X(p).
e p =YX (X1 « t1

Define Subst, the parallel substitution of free variables which makes each of xj's

oo X <« t).
b b4 m m)

replaced by the corresponding program pj = Y(xa « tj s oeee s X €L, X, “ty S
According to definitiomns 3.1, 3.2 , the foilowing relations are valid for any j :
HA(pj) = HA(tj(SubstJ).

(Notice that for tj the result of a flow-operation, tjE tj(Subst] and tj has no

(W,u) rewriting, so that pj U

. > tj is the unique rewriting sequence of pj);
Now, for any possible subterm t of t.
- if t is a‘variable, let X s HA(xk(Subst)) = HA(pk)
= HA(tk(Subst])
- if t is a program, let q, HA(q[Subst]) = HA(q)
= J%Z(q) by the induction hypothesis
- in any other case, let t = (v1, ee ,vn)(t’1, ces s t'n), then HA(t[Subst]) =

(@, (AUN)\ {vl...‘vn}, xX) +

B

((v1...vn), (A v K)‘\{v1 ooV 1, vl H, (t'. (Subst))

i=1

by definitions 3.1, 3.2 and 4.

Denote HA(tj(Subst]) as Zj for 1 £ j £ m, then Zj = (¢, AU L, ﬂ).Zj for any j,
since Z. ¢ H(A). It follows from all the above listed facts that the vector

Z = <Z1, oo Zm> is a solution of the system of linear equations <X> = (A)e <X> +
<C> attached to the program p by definition 7, let S that system.

Moreover, a careful examination of definition 7 shows that Z is the least solution
in£§%H(A))m of the modified system S' = <X> = (A') , <X> + <C'> which is obtained

from S through the following transformations :
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- substitute § for A (i,j) when equal to (@, AUK, 1)
- substitute (@, AUTR,x) for C(i) when X, is engaged in a circular definition
(x, = x, €x, , ..., X, < x.) , thus C(i) was empty in that case.

i i i i i

(0] 1 k 70

(Notice that the least solution of S' in .ZP(H(A))™ generally differs from its
least solution in Z?(P-h(A))™ when such a solution exists).
For any index i such that.xi is engaged in a circular definition, thus Zi =(¢,AU A,

X) by construction of S', one finds out Yi(S) = K((¢, AUR, D) = (g, AUNR,Y) =

Since fleh = h = (¢, AUA,1)eh for any h in P-h(A) , it clearly follows that Y(S)
is a solution of §' in .Z%(P-h(A))™. But then by proposition 10, Y () =& (p )
is a set of histories for any j, whence Y(S).is also a solution of S' in @(H(A))
Since Z is the least such solution, it follows that ZJ. is included in Yj (8) for any
j, and in particular H (p) € (p) by taking j = 1.

Now show that the reverse mclusmn also holds.
Put e = (@, AUK,i) and consider h in ??A(P)" then one of the following situatiqns
must occur, by definitions 7 and 3.1 together with properties of Y~-fixed points and

morphism K.

<

* * )
A heXK (g (A1, V1, u1)8 ...(An, Vn, un)w) with

M € Aiu{ll} ) Vo= (rum\ By for any i,

A u A M
. 1 ° . ’
R 1T TR i M N Shas. NP

and either 1, 2 or 3 as follows :

. = ' 1
1). pi#ﬂ.for any i, q (\)1,...,\)k)(t1, ,tk), and

= (@, (Au R\ {\)1 ...vk},x)

{v1 vk}, v
In this case, q > q' for some q', and it follows by repeated application

of the second rule in definition 3.2 that h = (@, (AUX)\{\)1..'.-\)k}, My e b X)
belongs to HA(p). ’

2) B # 4 for any 1, none of the pj's .is a subprogram of q for je (1,m) ', and
_1 .
WeK (SZ’A(q)).
In this case, K(W)l £ F (q) =¥ (q) by the induction hypothesis, since q must be a
subprogram of p by the above assumptlon that none of p 's is a subprogram of q. Put

K(W) = (d, 8,0), then (d,8,p) is an history, and h = (d Syhig ven unp)e ~HA(p) by

repeated application of the second rule in definition 3.2
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3) . #4 for i < n, Moo= 4, q is the result of a flow-operation, and W €

K"(@%’A(q))

Then apply the same reasoning as in the second case.

. , *
(Notice that all the above arguments apply as well to he K(€ W), since
HA(Y(y'1+t'1, cees y'k+t'k)) = H (t'1[Subst'J) for any recursively defined subprogram
Y(y'1+t'1', e y'k<-t'k) of p).

* * * . _ —

A hek (E (4,V,,0)E& e (B L,V 50 )E L.l), with pooe A, T =(AU A)\Ai

Ay w7 A
- >

. H
for anyi,thus My #14, p = Y(x1+t1, e s xm+tm) 2> 2y

An:pn

> ... and conditions considered so far are verified for no W.

Then h belongs to HA(p) by the third rule in definition 3.2

% ok ' — .
A hek (& (A‘i,V1,p1).£ (An,Vn,pn) 8w) , with M e Ai’vi=(AUA)\Ai for any i,

A1,“1 An’“n

P = Y(x1+t1, cees xm+tm) > ... ———————? xj(Subst] and xj is engaged

in a circular definition

e

In this case, xJ[Subst) has no (W,u) rewriting, thus @, AU A,x) € Hy (q), and
h = (¢ AUTR, HyeeoH %) belongs to H (p) by repeated application of deflnltlon 3.2 CJ

In order to complete our review of the properties of the semantic function HA s

we shall finally mention the following

. *
Proposition 14 For any program p of sort A, the set {? e AUn x| 3d)@36)

((d,G,px)e:HA(p))} is a prefix—closed language.

ggheme of proof s from definitions 3.3.2, 3.3.7, 3.3.8 and by the now usual induction

"n

on the structure of programs, noting that the parallel compound %' ﬁiﬁ
closed languages.%" and.%" in 22(1”) is also a prefix-closed language. O

of prefix
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This fourth appendix contains the full proofs of the properties of partial
observations which have been stated in subsection 4.1, and cstablishes also some
‘complementary facts to be used in later prdofs.A denotes a fixed finite subset

of M throughout the division. We begin with two ilemmas which vegard the association

operation ¢ in pre—0Obs (A), the set of pre-observations.
<

Lemma 1 The association of pre-observations, as stated in 4.1.3, is a totally

defiined operation.

1v= (d1i61{p1) and 0, = (d2,62,p2).

Y 8§ = 610 62 , and d = d1LJd2LJ(61\62)LJ(62\.61), and check (d,8,p)
for the conditions expressed in def. 4.1.1. Conditions 1' and 2' are satisfied,
since Act(p) = Act (pI)KJAct(pz) = d1

of properties d1(‘)'61 =0, d2()62 = @¢. Satisfaction of condition 3", i.e. Act(p)né§ = @,

vations 01 and 02 both incomplete, let O

Define p = Py P
Ud2 € d. Condition 3' is a direct consequence
is guaranteed by properties Act(p1) 0 E} = @ and Act(pz) 0 E& =0 .

Lemma 2 The association of pre-observations is associative.

- if O1 is a complete pre-observation, then definition 4.1.3 brings (01.02).03 =

01.03 = 01 = 010(02.03)
- if O1 resp. O2 are incomplete resp. complete pre-observations, then 01.02 is
cgmplete, thus (01.02).03 = 01.02 = 01.(02.03)

- if 01, 9 03 are respectively incomplete, incomplete and complete, then the following

are verlfled{ letting Oi = (di,Gi,pi) : (01.02).03 = ( -, —,p192).03 = (d3,63,p1p2p3),

0

01-(02003) = 010(d3,63$9203) = (d3,63,p1pzp3)’
- finally consider the case where pre-observations Oi = (di,Si,pi) are incomplete

for every i = 1,2,3. ‘
(01.02).03 = (d,61n 62r163, 919293)’ letting

ud,u 8.\ 8,00 (8, \ §)Ud U((8,n6,)\ 8L (SN (8, NS,))

d =_d‘l

d1ud2

d1ud2

— ] . .
01.(02.03) = (d 8,0 8, N 84, 010203), letting

]

VU8, U 8, U B\ (85,0 8,0 (5,0 6\ 6

ud3u((61 U s,uU 53)\(510 52'ﬂ 53)).

a' = d1Udzud3U(62\ 63)u(63\ 80U (8, \(52” 8§, U (5,0 63)\ 61)»

diud

pUda U8, U830 8D\ (6, 0 80U, N8I\ 8D - -

d,ud,udu(, U U 63)\(61052 N 85 ). C‘

1
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The two lemmas above immediately widen into the following proposition,

which we state without proof :

Proposition 3 The concatenation of partial observations, as determined in 4.1.4,

is a totally defined and associative operation.

We now turn to the solving of systems of linear equations over sets of partial
observations. Our first task is to prove that I : (pre-Obs (1)) P-obs (1) is
actually a monoid homomorphism as it has been announced in proposition 4.1.6 . We ,
shall in fact strengthen that earlier proposition by stating the following

definition 4 and proposition 5

Definition 4 pre-obs(A), the set of interaction records, is the subset of pre-

observations (d,8,p) for which p e AU{x}U {1},

Proposition 5 I is a surjective monoid homomorphism ; moreover, the restriction

of I to (pre-obs(A))°° is also a surjective monoid homomorphism.

Proof We shall first verify that I is a total function, i.e., that I (0102"'0i"')
is univoquely determined and belongs to P-obs(A). The proof follows the same lines
as in proposition 6 of appendix 3 apart from the case where W/ = 0102"'0i°" is an
infinite sequence of incomplete pre-observations 0., let 0, = (di,Gi,pi). In that
case, let (d,8,p) be the triple associated witlljzfihrough the definition 4.1.5, that
isd=1lim (U d)U@1im (U §.)\1lim (N GJ),G;lhl(ﬂ 8.), andp =p,poeeepieeXe

iooix Y3 iy Y iy ¢t ioix 2o
By the hypothesis di()di = @, 1%m (},{ di)f)l%nl (rj, 6i) is empty, and thus dN§ = ¢@.

] 123 1 12]

Noticing that P is a complete sequence, there>remains to show that conditions 2' and
3" of definition 4.1.1 are also verified under the assumption Ult(p) # @ . Let peUlt(p),
then (V3) (i 3 j) (ue:Act(pi)), and since the Oi's are incomplete, (Vj) (3i > j)
(p E:di and p ¢ Si) is implied by the former property. It comes p € d and u ¢ § , whence

one can conclude (d,8,p) € P~obs ().

The proof that I is a monoid homomorphism follows exactly the same lines as

in proposition 6 of appendix 3.

There remains to show that P-obs(A) is the I-image of (pre—obs(A))w. Clearly,
it is sufficient to verify that for any 0 = (d,8,p) in pre-Obs(A), O equals.I(WO)

for some corresponding W_ in (pre-obs(A))”. Cases are as follows :

0
- if |p|g 1, then I(0) = 0¢ pre-obs(A).

- ifp= Hyeoek s with M € A for any i, then (d,d,pi) belongs to pre-obs(A) for
any i, since uie:Act(p) € d ; letting Oi = (d,d,ui), 1(01"'0n) equals O by defns
4.1.3, 4.1.5.

- ifp = Hyeesl X, with H e A for any i, then (ui, a, ui) belongs to pre-obs(A) for

any i ; letting oi = (“i’ @, pi), 0 is equal to 1(01... on(d,é,x)).
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- if p is the infinite sequence u1u2 cee “i.""r“i € A , then therelexists some.

integer.k such that (V¥ n 3 k) (uneid\fg), since Ult(p) is included in d\§ ;

letting Oi = (“i’ a, ui) for i < k, and 0i = (d,G,pi) for i > k, 0 is equal to
1(0102"'01"') o

Armed with the above property of I, we are able to solve equations over sets of
partial observations along the way that has been already followed in the appendix 3.
Let X = A+X+C be a system of linear equations over sets of partial observations,
where elements of the matrix A and vector C respectively range ovenéﬂ(l(pre—obs(A)+))
and 9AP-obs(A)). Since function I is onto, one can always build an associated system
of linear equations overféipre—obs(A)m), let X' = A'X"+C', which verifies I(A'(i,j)) =
A(i,3) and I(C'(i)) = C(i) for any values of the indexes. Since I is a monoid homo-
morphism, I(Y(X' = A'X"+C')) does not depend on the particular choice of A' and C'
in I_1(A) resp. I_1(C), and is moreover a solution of the original system X = AeX+C.
Henceforth, we let Y(X = AeX+C) denote that solution whenever the equations bear upon
sets of partial observations. As it was already the case with partial histories,
Y(X = AeX+C) is not the greatest solution of X = AeX+C in B%P-obs(A)). (Consider

for instance the elementary equation x = (¢ , AUR, 4)e x)

Notice that elementsC'(i)of the vector C' are left unexplored through the
calculation of Y(X' = A'X'+C') by the resolution process given in appendix 1. As
a consequence, we can still denote by Y(X' = A'X'+C) the result obtained from the
resolution process when blindly mistaking the elements C(i) of vector C for subsets
of pre-obs(A)Oo - instead of subsets of P-obs(A). (This slight abuse of notation
has already been admitted de facto in the last lines of definition 4.2.6). It is

clear from the properties of I that the following equalities now hold :
I(Y(X' = A'X'+C")) = I(Y(X' = A'X'+C)) =Y (X = AeX+C).

Our next series of propositions exhibits important properties of the concate-

nation operations with respect to the ordering & on pre-observations.

Proposition 6 The association of pre-observations is monotonously increasing in

each of its arguments.

We prove this fact by case analysis, letting 01 = (d1,61,p1), 02= (d2,62,p2) and

] - 1 \i \ .
o', (d 1,5 1o 1)

case 1 O'T is a complete pre-observation.

Then O1 must be complete according to the definition of  , and therefore 01.02 =
vt = 0O
01§ 0%y = 0740,
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case 2 0, and 0', are respectively complete and incomplete.

1 1

Then p, = p"1 X with p"1-<p'1, and 0, = (g, @, p1) = 01.02 . Since 0'1 is incomplete,
0',e0

. 1772

£ 0'1.02 , that is still 0

‘ - - At " ' : " v !
has form ( =, -, o', 0)); o g <pe', entails p",<p' p, , thus (¢, ¢, p,)

.02' RS 0'1.02.

casc 3 O1 and O'1 are incomplete, 02

' . . - ' - - ' = 0!
01 L0 1 then implies Py =P whence 0,0 (d2, 62, p1p2) (d2,62,p 1p_2) 0' 0

1

is complete.
172 1772 -

case 4 01, O'1 and O2 are incomplete pre-observations. From O1 RS 0'1, one draws

=n"' ' 1 ] [] . . .
p1 p T 61 =) T and d1 &d 1u ) . 01.02 and O 1.02 are respect.lvely given by

01.02 = (d1ud2u(61\62)u(62\61), 610 62, 0, pz),

_ ] 1
0'e0, = (d', U d, U (8", \ Gz)u(62\6'1), §',0 8,50 0,).

Relations p = p'1p2 and 61 g 62 & 6'10 62 are obviously satisfied. There remains

)

172
. . o ] 1] 1

to prove the inclusion d1ud2U(61\62)U(62\61)., d 1ud2u(6 1\ 62)0(62\6 1)LJ

' . . 1 L
(8 ; 0 62), that is still d1ud2u(61\ GZ)U(GZ\ 61) €d (Y d 8 1062.

. ' 1 ' = A4 '
In fact, d1ud2u(61\62)u(62\61) e (d 8 1)ud2 w (6 1\ 52)U62 d 1u6 (Y dyu 8,

0, £ 0,60

. v
11)02\<0 > 0 5 < 0 9

2 1°

We proceed with case analysis, letting 0, = (d ) and

1 §1» 0405 0y=(dy, &
0y = (d"y, 6"y, p,).

1° 20 Po

case 1 01 is a complete pre-observation.

i = = '
Then simply 01.02 01 01.0 2

case 2’ 01 and 02 are respectively incomplete and complete, and P, ,p'2 are identical.

From the definition of § , one has 62-5 6'2 and d2 c d'zué'z, and since 0'2 is

. = At . - i to g
complete by the hypothesis p2 p 2 s 1t comes 0 o0 (d2’ 52, 0102) < @ 27 $ 2,0102)

2
=0 .O' . 1
1 2

case 3 O1 and O2 are respectively incomplete and complete, but p'2 differs from Pye
= N H " ' = = s
Then Py = 0", X with p s =0, and d2 9) 62 @, thus 01.02 (@, ¢’. p1p2). Since

0, is incomplete, 0O .O"2 has form ( -, -, 0y p'z), and 0,60, < 0.40', follows by

1 1 1°72 % 9
0y p"2 - P, p'

2
2"
case 4 01, O'1 and O2 are incomplete pre-observations. Similar to case 4 in the

first part. O
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Proposition 7 For any pair LL1J s LLZJ of languages of pre-observations,

LL1.LZJ = LL1JoLL2J.

_____ 1.LZJ is verified by straightforward application

of the above proposition 6. We shall establish the reverse inclusion by showing
that for any O1 € L1 , O2 € Lz and O € pre-Obs(A) such that O < 01.02, there exist
corresponding pre-observations 0',6 and O'2 which verify O'1 RS 01, O'2 < O2 and

). As usual, the reasoning is

1

0= 0'1.0'2. Put o1 = (d1,61,p1), 0, = (dz’ S

2> P2
by case analysis.

i) 0, is_a complete pre—observation

Then 0 < 01.02A= O1 shows that O is also complete, thus O = 0',,0"', letting 0'1 =0
_ . o .
and 0 9 02 |

ii) 0,.and 0, are respectively incomplete and complete

1 2

In this case, 01.02

Possible subcases are listed below.

is equal to (d2,62,p102)..

case 1 p = PyPos 6262, d e d2L)62

Define 0'2 (d,6,p2) , then 0'2 is a pre-observation, since (d,8,p) € pre-Obs(A)
and Ult(p) = Ult (pz) together imply Ult(p) € d as required. 0'2 £ O2 is obviously
verified. Now, letting O'

0= (d,G,p

1= 01, the following equalities hold by the hypothesis ii) :

= = 1 '
) (d1’61’p1)‘(d969p2) O .O

1P2 1*Y 2

case 2 dUSs =0,p=0p0"%x, o'<o1

L 0,, and letting 0', =0

T ' ' : = =
since 0'1 is complete.
case 3 d UV é= ¢,D=D1D' X D'<02
One can freely assume that p' is a finite sequence, since |p'| = w would imply

p=p,0, as in the above case 1. Thus (@, @¢,p'x) is a pre-observation, let it 0'2,

and verifies 0'2 K3 02. Since Py is incomplete by the hypothesis ii) , one has the

equalities 0 = (@, ¢,o1p'x) = 0,.(, G,p'x) = 0,40,

iii) 01_§nd O2 are_incomplete pre-observations

In this case, 01.Q2 is equal to (d3,53,p192), letting d, = d1LJd2LJ(61\ 62)0(62\\61).

and 63=61(162 .

Possible subcases are as follows.

case 1 p= PyPy s s ¢ 63, d e d3\J 53 .

Put d', =dNn(d v 8§, 8' =808, , 0" =", &, 01), and d', =d0(@d, U §,),
- 1 = | 1

81y = 808, 07, =), 8%y, 0y
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Act(p ) € € d, and Act(p Py ) € d are both verified since 0, and O are 1ncomp1ete
pre-observatlons, and thus Act(p1) (= d(\d by the obvious inclusions
Act(p1) Act(p )f\Act(p ), Act(p ) € Act(p1p2). Act(p1)r)64 =g ?fSP holds from
hypothesis iii, whence 1t comes that Act(p1)f) GH = ¢. Since dNé = ¢ implies

! ()6'1 = @ , the above facts show that 0'1 is a pre-observation, which moreover
satisfies 0'1 £ O1 as required. Similar facts lead to similar conclusions for
0'2. Now, 0'1.0'2 is equal to (d°', Gf\G N 8,55 oy p2) letting d' = (dlﬁ(d1lJ 61))U
(A0, v 8,))V(( 80 §N( 8N ))u((cn 5NN 8)) = @n(dud,us, U 8,)) v

271
( 60((6 \ O )u(6 \ ¢ )))

deg d3u63 = d1ud2u<51u§2 => d = dn(d1ud2U 61u62) :
s €6, = §,.0 8, => 60((61\62)U(62\61)) =@ ;
5563=61ﬁ 8, => 6061O62=¢;

thus d' = d and 0',60'_ = 0.

L}
1 2
case 2 dUSs=¢ ,p=0p"y, p'<p1

Identical with case 2 in part ii)

case 3 dUS=0 ,0=0p, 0" x, P'<p,
Then p' is necessarily finite since O2 is incomplete, and the remainder is as

in case 3 of ii) (]

The remaining of the division pays attention to languages of partial observations,

resp. observations, as regards the issues of rationality and computability.

We turn first to consider languages of partial observations.

Definition 8 Let L be an expression which denotes a set of partial observations.

L is in rational normal form if and only if it appears as a finite non-empty sum

I (d 6 Qf) where theqc 's are non empty bi-rational languages.
i

Lemma 9 There exist effective procedures which, given L' and L" in rational normal form,
compute each of the sets I(L' + L"), I(L'L"), I(L'™) and I(L'"") in rational normal

form.

proof The above fact is immediate for the union of languages, so that we examine

n v
now the three remaining constructs, letting L' = 3 @'.,s'. L") and
o =1 i’ 17 i

" =5 d" 6" ({n ).
j=1
L =L"L", r
n m °
I(L) = ( 2 (d'i,a'i,a‘:'i)).( z d" d;'" )) + L, letting
i=1 j=1
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L= (2 @@,,8,40) + (5 @.,6",0, <"y,
. i 1 i PR ] ] 1 ]
1 1,3
.|_ = 3 a'.ud", '\ §".Uus".\ &' , 8", 8" ,' ' ‘u.
O L LA DY e A 1

i f i :

Now, response languages .,[" OC' DC" and uC’ oC" are bi-rational, since

restricted to their complete part for the flrst two and to the incomplete part for

the last.
L=L"
n + ~ [ ]
IL) =1 (C 2 @,,68.,,L" N = L+L, letting
i=1 i i i
-~ ’ . x A
L= 2 (., s"., (L") L'.)and
. i i . ] i
1 ]
. ]
L = % by (g ey )U(Us' AL )_),Qd'i S NTINPIRY
I<kgn 1€1.<i,...<i ¢n Yo s 17"
1°%2 K
where Z? i} is the least solution of the following system of linear

equations over £7KA@) :

- ¢ M {1}
SR B mzk 'fim {1 SR AR
{_11..._] } _ oZ" {_]1..3} 3 {J1...J2}U{1}
Z 4 y = 2 ; 2 (i y v oLz BANNES!
i,.. 1 Pl ip i, ...1 gk lq i, ool 1
{5....3.1 . {5,025}
1 2 _ ' 1 L
;q, = 4 + 35 . z¢

Since the least solutions of systems of linear equations are domputable, so 1is

Z ?i } and since the J"i are rational, the same property holds for
10"
¢ A .
{1 i } as it has been proved in appendix 1. Clearly, either L or L differs
‘s .
from the empty set by the assumption (Vl) (df' #0 oroC'i # §). Now, response
languages ( I ij °£'i and Z ?i ; } are birational, for they are respectively
; TEERE

‘restricted to their complete and incomplete part.

L= LY
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n -~ ~

_ R - Wy _ .
I(L) =1 ( ( .z (d i $ i? i)) ) L1 + L2, 1ett1ng
1=1
~ n . % "
L, = & (d'., 8., ( £ L) L"), and
1 . 1 1 . _ J i
1 =1
L. = z 3 ((ar.,rudds'. NQs'. N,0s". x .. . 1)
2 . . .. 21 [ £ i L i {i,...1.}
1IKk¢n 1&11<12...<1kS1n 2 2 L 2 1 k
where X,. . is defined as
{i "'lk}
n . % ¢ ® ¢
(z L) (z (i ...ip 1ift ¢ 2 {1 i} »orelse
j=1 j Lyeeedy . PRERE
n * @
(z &L'.) x if Z{i i} c {4} , or else
j=1 1" 7k

n o' o ¢ w

A

~ ~

Clearly, either L1 or L2 differs from the empty set since for each i, either -f'i

~ *
or Z ?i} differs from ¢ by the assumption "C'i + ¢ OraC'i 4 g

. * ~
Now, response languages ( Z . ['.) q?'i and X{. i} are birational, since both

restricted to their comple%e parts which are denote§ by rational expressions. O

Lemma 10 The following identities hold for any sets X and Y in. 9% (pre—obs(A)f”\{ﬂ}):

I(X+Y) = I(I(X)+I(Y)) (1)
I(XY) = I(I(X)I(Y)) (2)
Ix) = 1¢ae)h (3)
1Y) = 1)V (4)
Proof

IX+Y) = I(X) + I(Y) = I(I(X)) + I(I(Y)) = I(I(X) + I(Y)).

I(XY) = I(X)eI(Y) = I(I(X)I(Y)) by prop. 5 and defn. 4.1.5.

G =1(¢ £ xM = 3 (I, ®e ... o I_(X)) - by prop. 5 -
n>0 n>0

= I I(TEN) - by defn. 4.1.5. -

n>0

=I(z  ae™ = aEnh.
n>0
geeXiene) =

I cos X.)eu, infini .. . .
(I(XI)I(XZ) I(xl) ) for any infinite sequence (Xl)lem of words x; eX

In order to prove the fourth equality, we ha;e to show I(x1x
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Put X, = 011... Oin s where 0ij € pre—obs (A) for each j. First suppose that
some interaction redord Oij is complete, then letting x'i = 0i1"'olj’ one obtains

- v -
I(x1x2...xi...) = I(x1x ce.X i) I(x1x2...xi)

2

]

I(I(x1)I(x2)...I(Xi),..) I(I(Xi)l(xz)'"I(X'i)"')

=I(I(x1)I(x2)...I(x'i)) I(I(x1)‘I(x‘2)...I(xi))

by definition 4.1.5 together with definition 4.1.3.

But then I(x1...xi) = I(x1).I(x2).-... R I(Xi) by prop. 5, and I(I(x1)...I(xi)) =
I(x1).I(x2). cee e I(xi).by the definition of I. Now turn to the case where every

. . . . ' = 0!
interaction rgcords Oij are incomplete. Define (0 k)kew by 0ij 0 n o+ ... +n +j

- 1 i-1
= vo— (At ' 1 : 1.
and put Oij (dij’ 5ij’ pij) , 0 K (d K S e P k)' Applying definition 4.1 5,
one obtains

T (x ...xi...) = (d',8",p") with

1

lim (U (d'kus'k))\ lim (0 8') §' = lim (N &')
2 k3L L kb : Y

[N
i

]

p' =0p BLAPIREE p'k cee X

= U .. §. =
d, vt (dljUSij)\ ((1 61J ; an 511
] Jsny ¥
P17 Piq *Pin.
1

I(I(x1)...I(xi)...) = (d,é8,p) with

d = lim (U (diU ai))\lim(n §.) 8 = lim (N 6.

m  izm _ m  ijm m  ijm

O = PPy P X

The equalities p = p' and § = §' are obvious, so that we are left with proving

d = d'

(s}
]

lim (U (U d.. U 6.0\
ij ij

m  idm ani

= 1im (U (d', U 6" )) \'$
2 ks k k

=d' (since § = §') o]
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By the induction on the structure of rational expressions, the proof of propo-
sition 4.1.11 is quite immediate in view of the above lemmas 9 and 10. Another

outcome of lemma 9 is stated in the following

Proposition 11 Let;y@'n denote ‘the set of n x m matrices A' whose elements A'(i,])

range over finite sets of finite non empty words over pre-obs(A), and let %ﬁl
denote the set of n-ranked vectors C whose elements C(i) either appear in rational
normal form or denote the empty set. Let ;f’ be the set of equational systems

X' = A'X'"+C" s.t. A' EL%? o’ C e%i, and (Vi ¢ &m) (2 A'(i,j) +C(i) # @). There exists
an effective procedure whlch, given S ingbﬁ, compates I(Y(S)) in rational normal
form.

proof In view of the resolution technique that has been propounded in the
appendix 1, Y(X' = A'X'+C) can be computed in the form L +.§ Li C(i), where L

and Li's depend upon A' only, and 1=1

-Lis a purely infinitary rational language in Rat(pre-obs(A)“),

—L_i's are finitary rational izgguages in Rat(pre—obs(A)*)

(thus the same holds for B, = Li\ {1h.

By proposition 4.1.11, I(L) and I(Ei) - if not empty- can be computed in rational

normal form.

By lemmas 9 and 10, I(Ei C(i)) -if not empty- can also be computed in rational

normal form, since it amounts to‘I(I(Ei) C(i)) by the obvious identity C(i) = I(C(i)).

In order to complete the proof, it suffices to remark that Y(S) differs from ¢

by the assumption (Vi ¢ n) (£ A'(i,j) + C(i) # @) 0.
]

We finally turn to consider languages of observations and their relation to

rational languages of partial observations.

Definition 12 Given the set of paftial observations L = E(di,di,{}) in rational
: A Py
normal form, we define 6(L) = I (di,éi,{i) + (@, @, pref (gla)x), where pref (2)
i i v
is the set made out of the finite left factors of the words in (2\y).

Definition 13 Given the set of partial observations L = Z (d »8s .8 ) in rational

normal form, we define w(L) = Z ﬂ(d 6 4?), where we let n(d 8 £) be equal to the
sum 2(d',8',L) | d' and &' such that : (G\d) €68' g8 and d' = (AU \ (6'UT").



Lemma 14 -If the set of partial observations L = z (di,Gi,(i) appears in
rational normal form, then = (6 (L)) is a non empty set of complete observations }
moreover, there exists an effective procedure which, givenl , computes 1 (8(L))

in the rational normal form of sets of observations.

~Proof The only non trivial part is to show that for anv compicte pre-observation
(d,8,p) , (d',8",p) is an observation in Obs(A) if d' and &' verify the conditions

(6\Nd)es'g s and d' = (dUS)\(S'U §").
Since d'N (6' §') is obviously empty, we are left with checking Ult(p) € d' :

Ult(p) Sd , dNs=¢ , §' €8 => Ult(p)ns' =@ ;
Ult(p) NS =¢ , '8 => Ult(@IN §' = ¢ ;
thus Ult(p) € d \(§'U§") ¢ d'. O

We are now able to make proposition 4.1.12 a little more precise through the

following definition oflf :

Definition 15 For L a set of partial observations in rational normal form, we let

LP(L) be equal to m(B(L)).

Proof of propositiom 4.1.12 We have only to establish the identity LLI D Obs(A) =

L Lf(L)J o for L in rational normal form, since the remaining of the proof follows

by direct application of lemma 14.

PutL= I (di’si’{})’ where.thedzi's are non-empty bi-rational response languages.
1w

Let L denote the set of the complete pre-observations O' which belong to LL). The

inclusion 6(L) € L is obvious. On the other side, let us prove that 8 (L) contains

L

all maximal complete pre-observationsin L.

Consider (d,8,p) in T . There must exist (d',8",p") in L such that (d,8,p) ¢ (d',8",p

~
- if p'-is complete, then (d',68',p') belongs to (d.,s.,¥) for some i, whence (d,8,p) ¢
i1 ’ N

(@',8',0") e 6 (L)
-if p' is incomplete, then necessarily p = p" x , p"=<p' and d UGS = ¢ by the
definition of the ordering £ , and since p' 1is in J?i for some 1 one obtains

(d,8,0) £ (@ , @, p" ) €08 .(L).

Since any particular observation 1s also a complete pre-observation, it follows

from the above facts that LL I N Obs(A)is equal to L 6(L)In Obs(A).

Note that L 6(L)J is a set of complete pre-observations : no incomplete pre-
observation can be less than a complete pre-observation. Also note that given
@",s",p" et 8 (LI ; one éan always find (d,8,p) in 6 (L) such that p" =p and
(d";é";p") £ (d,68,p) - this fact 'is a consequence of the inclusion (@, @, pref

('u-z?i) x) € 6(L)-.
i

.



Put T -1 6(L)) NObs(A). The inclusion m(8(L))e L is easily verified :

- let (d',8",p) in w(6(L)),then there exists (d,$§,p) in 68(L) such that (§\d) €
Sdand d' = (AU SN\('U ') ; 6' € § and d'€ dUS imply (d',8',0) < (d.5,p),

whence we can conclude (d',8',p) € iby lemma 14.

§' g
In order to prove that 1T equals [ m(8(L)) ., , it is sufficient to show that for any
(d",6",p) in 1]\_, there exists a corresponding observation (d',6',p) in w(8(L))
which verifies (d",8",p) (d',G',p) ~ remark that/ﬂ\_ = L,[I\.Jo - .

Consider (d",8",p) in L.

Since (d",8",p) belongs to L6(L)) , there must exist some pre-observation (d,§,p)
in 6(L) for which (d",8",p) & (d,8,p) , that is still 6" € Sand d" g¢'d U §. We will
prove that there exists (d',§',0) in m(d,§,p) which verifies (d",8",p) & (d',8",p).

Let 8" = (§ N\ dUS" and d' = (d US)\(8'US"), then (d'",8',0) belongs to w(d,&,p)
since ¢" is included in § - a consequence of (d",s8",p) (d,8,p) - .

The inclusion §" € §' is obvious, so that there remains to prove d" g d'us' .
(@",8",0) € (d,8,p) => d"edus ,

(d",8",0) e Obs(A) => d"0 ("W ") = ¢ ,

thus d" ¢ (d U )\ (§"U §").

d'ué' = (dUHNG'UTHUGB\DUL §" ,
808" = (6 \DUGE \d) U (6"UT"), thus : :
d'Ué' = (dusS)N(\NDUG\NDUGB"UTDUGB\D U &"

(dU8) N((8 N\ dus"ud L (S\D) us" .
d\N(S"UEM U S\ (B\us"uTHU (S \Dus"

d N ($"UEMUS\(BUS"UT L (§\ DU " - since dns = ¢ -

d \($"UEMUEN(E"L TNV (S N\ DU " - since §nT g §\d -

@ud) \N(E"UTY U (6 \Due.

[t}

It follows that the inclusion d" € d'UG§' is verified. One can therefore conclude
that ]1: equals L w(8(L))J  , whence finally
L m(8(L))J = LB(L)) n Obs(A) =LLIA Obs(A). O3

Proposition 16 For any.sets of partial observations L, L' and L" in rational normal
form, the equality Obs(A) n (LL"l4LLJ ) = Obs(A) N (LL"J.LL'I) holds if L' € Obs(A) .
and Obs(M)atLLI=LL") _ .

Proof 0bs(A) A (LL"JaLLJ) = Obs(A)ALL"LJ - by prop. 7 -

={we Obs(A) | (30" € L") (3F0eL) (w g 0"0)}.

Let /l:" and L" respectively denote the complete and incomplete parts of L", then
the above set evaluates to the union |

{weobs() | (30"e 1™ (g0 } U

{weobs(h) | (30" L") (30¢ L) (w L 0"0)}.

In order to establish Obs(A) O (LL"JelL S ) = 0bs(A)N (LL") oLLY),
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it suffices to prove .that the following equality holds for amy O" in L" :

{weobs(h) | (30eLl) (wg0"0)} ={weobs(h) | (30'el") (w g 0"0")}.

From the definitions of the orderingv\< and concatena tion , , it may bz seen that
the above property does not depend at all upon 0", so that o' = (9, ¢, 1) may

be freely assumed. Hence, the above equality is equivalent to the statement

{ weobs(h) | (30 €L) (wg 0} ={weoObs(A) | (30" eL") (wg oM},

that is still Obs(A)N LLY = LL"J A

-]
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Some ingredients are still missing for the full proof of the propositions which
connect the operational and observational semantics of our simple programming language.
We shall now complete our technical preparation for the final proofs by writing

down some lemmas which investigate the relationship between pre-~histories and pre-

observations.

Lemma 1 Let h = (d,6,p) in pre~H(A), then h has a greatest lower bound O in
pre-Obs(A), given by : 0 = (d WU (8§ N Act(p)), 6\‘Act2p3 ,p) if p is incomplete, or
= (dU (snUIt(p)), &\UIt(p) , p) if p is complete.

Proof immediate from definitionms 4.1.1 and App. 3.2 a

Definition 2 Given O and h in pre-Obs(A), resp. pre-H(A), O-Ch holds iff O is the
greatest lower bound of h in pre-Obs(A).

Definition 3 prenH(A) is the subset of pre-H(A) made out of the pre-histories
(d,8,p) which verify dué = ( A U ). : .

Lemma 4 Let hi in prenH(A), i € w , then the following are verified :
K (h1h2 ces hn) € prevH(A) , .

K (h,h o) eéremH(A).

1‘2...h1

Proof From definition 5 and proposition 6 of appendix 3,.the first property can

be established by just considering n = 2. Put h (d1,61,p1) and h = (dZ,G ).

1 2°P2

- if 0 is complete, then K(h1h2) = h1.h2 = h1 € preMH(A) H

- 1if p1"and o, are respectively incomplete and complete, then K(h1h2) = h1.h2 =
.

(dys8,5040,) € Pre VH(A) ;

- if Py and’p2 are both incomplete, then K(h1h2) is equal to (d,é,p1p2), letting

d = d,Lud, and 6= § N6,, hence dUS = d1gd2u(s1n 8,) = ( AUA)\61U(A v A_)\<s2 v

(,‘51062)
AUT .

Let us consider now the infinitary case. If some element of the sequence (h ) o
is a complete hlstory, then according to -the- deflnltlon of K K(h 2° hi"') .
belongs to prevH(A) by the first part of the proof. In the converse case, put

hl ..) is equallto (d,6,p1p2...pi...x),

= (di,Gi,pi) for every i then K(h1h2..
letting
d =1im (W d.) and § = 1im (N 6§.) .
i 32 i 33

Now, d = lim (\J ((AUA)\G )) = (AUD \1lim (N a )
i g2 i J>1

so that d U S amounts to AUA. a
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Proposition 5 For i = 1...n, let hi in prenH(A) and 0i in pre-Obs(A) such that

Oi-chi, then 01.02. ....On—c h1 0} h2 O ... 0 hn

where o and @ denote the concatenation operations in pre-Obs(A) resp. pre-H(A).

Proof First notice that h10 h2 0...0 hn belongs to pre“H(A) by the above lemma 4,
since equal to K(h1h2...hn). By the associativity of o and @, it is enough to
consider n = 2;

= = ' '
Put 0, = (d1,6.1,p1) R h1 (d 1,6 1,p1),

' — = ! 1

2
- 1if p1 is complete, then 01002 = O1 - h1 = h10h2 .
- if p1 and p, are respectively incomplete and complete, then 01.02= (d2,52,p1p2),
= ' ' - - . .
h1(§)’h2 (d 2,6 2,0102), and U1t(p1p2) Ult(pz) ; hence, O1 02-{: h10 h2 derives

9

- — there remains to analyse the case where both p

directly from the hypothesis Oz-ch

and p, are incomplete sequences.

1 2

According to definitions 4.1.3 and App.3.4, 01.02 and 1r11 0h2 are then respectively

. = = (Y : .
given by 01.02 (d,<5,p1 pz) and h1 0 h2 (a,s ,p1pz), letting :
d=d1Ud2U <51\52L)<52\51 s § =86, N6

LY | 1 LY '
d d' o d', , s' 61062.

61 0 62 = (6'1\ Act(p15)n(6'2\Act(025)

= (6'106'2)\(Act(p1)UAct(p2)) = (6'106'2)\ Act(p1p2).

d, U d2u(61\ 80U (6, \ 51) =

d'1U(5'1('\ Act(p1)>u d'zu(é'zﬁ Actipz)) @) (6'1\ Act(p15)\62u (G'Z\Act(pzj) \61
&
= d'1u (5'1nAthp15)ud'2u (6'20Act(p25)u6'1 \ azus'z\ §, =

d'1 v (6'1{'\ Act(p1))Ud'2u (6'20 Act(pz))U((S'1 \(62\ Act(p15)u(6'2\ (61\Act(pz))

cl'1 ) (6'10 Act-(p15) \d'zu d'2 U (6'2(\Act(p25) \d'1 U

6’1 AN (6'2\ Act(p1p25)u6'2 \ (6'1\Act(p10255

' ' ' Aet (a1 ' Act(o D))
d'yu (87068, N Act(py)) W d',U" NS N Act(p,)) U

6'1 \ (6'2\.Act(p102))u<5'2\ (6'1\Act(p1oz))

d'1ud'2 u (5'1.(\ 6'2(\ Actfp1p25)u6'1 \ (6'2\ Act(p1025')'ué'2\ (6'1\Act(p1p2))

Let p in 6'1 \ (5'2\.Act(p )), then

1P2
either u ¢ (AuK)\a'2 = d'

' ' U
or ue d 106 znAct(p1p2).‘

2



5.3

According to that remark, the above expression may be simplified into

1 ' 1 ] Art (m A~
d (Y4 2u(6 1()6 2)0 Act(p1pz). |
From §= 6'\Act(p1p2) and d = d'U(é'(\Act(p102)) ’

one finally draws O -.02{ h1 @hz by lemma 1. O

1

Proposition 6 For i ¢ w , 1et'hi in prevH(A) and Oi in pre-Obs(A) such that
Oi-l: hi’ then : |
1 (0102...0i...)-¢: K (h1h2...hi...).

Proof Put O, (d.,68.,p.) and h, = (d'.,8".,p.) for every i. If some element of
i 1’7171 i i’ 171 .

(pl)l . is a complete sequence, let L then the result comes by straightforward
application of prop. 5, since I (0102~...0i...) and K(h1h2...hi...), are respectively
equal to 01.02. ces o 0n and h1 0] h2 00 hn.
In the converse case, I(0102...O ...) and K(h1h2...hi...) respectively amount to
(d,8,p) and (d',8',p), letting :
p = p1p20--pi eee X . .
= 1lim () 6.) , 8' = 1lim (N 6'), L
. . i .
] 123 ] 1>J
d=1lim (U d)ullm(UcS)\llm(ﬂ 8.) ,
. . i . i
] i3] 3 i2] i i3]
d' = 1im (\JJ) d'.).
joixy 7

By the hypothesis (Vi) (0 - h.), one obtains the equalities :

§ = lim (ﬂ (8'. \ ctip D) = 1lim( ) §°. )\11m ) ActipiS)
i i3 SRS I B 2 &

= §'\ Ult(p) ,

d = lim (WU (d', (6’ ctip ) )Ullm(U (s"'. \Act(p ))) \§
i i ‘ i i3

= 11m(u d')ulim(w (8", nAct(p D) \§ U 1im( U (8! \Act(p ))) N§
ioiyi Y3 iy F joixi

- fromdA § =

= lim (W 4d', )U lim(QU &', ) N\ 5\
i ij ioixi

= lim (WU d')u(lm(u 5')\11m(u d'l))\é
S B O3 i i2] jooix]
=11m(U d')U(llm(n §', ))\6
iooi2] j 1i2]
— fromd'.w ', = AUR and d'.né'. =@ —
1 1 1 1

d"u "N\ T1t(p)) = d'u(S'nTIt(p)).

Thus, (d,8,p)-C (d',8",p). a : .
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Proposition 7 Let D be a set of incomplete pre-observations in pre-Obs(A), and

let D' be a set of incomplete pre-histories in pre-H(A), related to each other
by the property »

D= {0ecpre-Obs(A) | (3h eD') (0 € h)}.

Let C € Obs(A) and C' & H(A) such that

ey = {0 eobs(A) |[(3heC') (0L h)}l, then

LD.C] = {0eObs(A) [(Ih e D'EC') (0 £ h)}

: *
Proof Immediate. from the fact that for any p in A ,

(3d) (38) ((4,8,p) eD) & (3d") (3¢') ((d',8",p) D). (]




APPENDIX 6_: FINAL_PROOFS.

We give here the full proofs of the results which have been stated in the

second part of section 4, concerning the issue of the observational semantics.

Procof of proposition 4.2.17

We appeal to the induction on the structure of programs. .

Induction basis : p is an elementary program, with none of its proper subprograms

defined by recursion or resulting from a flow-operation.

Define end-h(A) as the set of the triples of the form (¢,6;X) ,GEAAL;K-, and
remark that any such triple belongs to the intersection Obs(A) M H(A).

Next define prenh(A) as the set of the triples (d,8,p) in prevH(A) which
verify p e AUN U {1}, and remark that for any such triple,

(d’a)p){ (dadap) if O = ﬂ. . or else
(dufn} ,6Mu} ,0)€(d,8;0) ifp=p #1 .
Accounting for the obvious similarity between the equations which define _#(p)

and.gz}(p) - defns 4.2.16 and App. 3.7 -, and according to the facts which have

been established in the appendix 1, we can make the following claim.

- There exist rational languages,

*
let L € ((prenh(n)) end-h(A)), L S (prevh(n)®
and L'° c (pre-obs(l\))+ ,L'w c (pre-—ob‘_s(A))(u
such that relations i to iv are satisfied :
HTFE =
DFE @) = KL + KLY
ii)_I(uI{.(p))= I(L') + I(L'w)
iii) I(L' ) = {0cpre-Obs(h) | (3hek(L)) (0ch)]
- by prop. 6 of app.5 and the second remark above-
iv) LI(L' )] = {0e0bs(A) [(3hek(L)) (0O M)}
- by prop. 5 and 7 of app. 5 and the two remarks above-

(notice that the use of notation LI(L'O)Jo implicitly means that I(L' ) is included
in Obs(A) )

Now, LI(L')) = LI(L'O)J.H Obs(A)= L?(I(L'o))J .

= {0e0bs(h) [(IheKR(L DI < h)}
- by prop. 4.1.11 and 4.1.12, and by iv -

and Ln{»(l(l_&w))_lo = LI(L' )J O 0bs(h)
= {0 € Obs(A) | (Fhek(L)) (0 W)
- by defn. 2 of app.5, and by iii -
thus Lp(IC.Z (PN, = {0 e Obs(n) | (3 h e (») (0 ¢ B}
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= ObsA (p)

- by the definition of Obs, and by App. 3.13 -

A

The remaining of the proof is a straightforward application of propositions

4.1.13, 4.1.11, 4.1.12 (in the order).

Induction step p is an elementary program, and Pye- .pm are the outermost

proper subprograms of p such that for amy i, Py is defined by recursion Y or

results from a flow-operation.

We shall freely assume that P,---P, are recursively defined programs whereas
Pgyqee P, are results of flow-operations.. The recursion hypothesis may therefore
be expressed as (Vi 8) : Ly (M(AINI, = Obs,(p.) = {0cObs(h) | (@heH,(p.)) (0gh)}

For the same reasons as in the first part of the proof, we can make the following
affirmation. '
- There exist indexes I € (1,2) , J & (#+1,m) and there exist rational languages,

let

L, € ((prevh(1))”™ end=h(1), L', s (pre-obs(A)*

L, S (prenh(A))Y L' € (pre-obs(A))*

Li c (pre'\ah(A))+ , L'i.s (pre-obs(l\))+ (i e TUJ)

such that the following relations are all satisfied :

DI, () = RL) +KL) + ¢
ieIUJ

ii) ICA(P)) = T(L' ) + I(L' ) + T I(L')eI(Mp.)) + I I(L'.)efp.)
: ® iel r 1 jed J J

K(Li) OS%'A(pi)

iii) I(L' ) = {0epre-Obs(n) |(3h e K(L)) (0<€h)}
IVLI(L' )) | = {0e0bs() | (3hek(L)) (0 < h)}
v) I(L'i) = {Oepre-l-Obs(A) | (3 heK(Li)) (0-|:h)}'
for every i in I1UJ
- thus I(L'i) is a set of incomplete pre—observations, since K(Li) is a set

of incomplete pre-histories-

The equalities L?(I(L’o))Jo = {0e Obs(A) | (3 heR(L )) (0 g h)} and

Ly (I(L'w))Jo = {0e0Obs(A) | (Fhe K(Lw)) (0K h)} are established the same way as
in the first part of the proof. Now consider j in J, then'I(L'j)./V(pj) is a set of
observations (since u{f(pj) &€ Obs(A)). One obtains :

uP(I(L'J.)../V(pj))J6 = LI(L'j).ij)J N Obs(A) - by 4.1.12 -
= LI(L'J.)../V(pJ.n o - from I(L'j)./(pj) € 0bs ()

= {0eObs(4) | (BheK(Lj) o) HA(pJ.)) (0gh)}
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- from condition v, definition oftﬂp, and prop. 7 of app. 5 -
= {0 e Obs(p) | (3he:K(Lj) @EE;(pj)) (0K h)} - by app. 3.13 ~

Last consider i in I. Using relation ii and by the induction on the structure of
programs, it appears that I(dq(pi)) is a sét of complete pre-observations. Using
relation v and by the definition of -C (app.5.2), it also appears that I(L'i) is
a set of incomplete pre-observations. One can verify from the definition of ¥
(app:4.15) that the equality L\P(O.O')_IO = LO.sf(O')J° for O and O' respectively

being incomplete and complete pre-observations. Hence, L\f(I(L'i).IGAl(pi)))Jo =
lI(L'i).\P(I(L/%(pi)))JO = {0=0bs(A) | (3 heK(Li) 0 HA(pi)) (0 g W}

- from condition 5, induction hypothesis, and by app. 5.7 -

= {0e0bs(n) | (Fhek(L) 0FE, (p,)) (0 & B} - by app. 3.13 -

Gathering the above results, one obtains :

LpWl@N) = {oeobs) | (3neF®)) (0< )

MEOMKMI(BhEHMPn (0 h)} - by app. 3.13 -

ObsA(p) ~ by the definition of ObsA -

The remaining of the prooef is a straightforward application of propositions

11 of app. 4 and 4.1.12 (in the order) a

The proof of the crucial proposition 4.2.20 appeals to some rather complex
lemmas which we introduce below as propositions 1 to 5. The main auxiliary result

is stated in the

Proposition 1 Let (d,8,p) be a maximal element of ObsA(p]q), then there exist

LR 0" " " " . )
observations (d p,ﬁ p,pp) and (d q,a q,pq) in ObsA(p) resp. ObsA(q) such that
the following conditions are verified : '

i) (S= 6" 06"
p q

ii) d = (d pn d.q)U(d pﬂc‘i q)U(cS p_nd q)
iii) p\x ¢ (pp\ x) | (pq\ X)
iV) (d P’6 p’pp) * (d q’6 q’pq) . . .

Proof

e From the definition of ObsA and by 3.3.7, there exist histories hp and hq,in
' . H let h =(d ,8 ,0 ) and h- = (d ,$ which are compatibl
HA(p) resp A(q)’ D ( p’ P pp q q9 qqu);. omp le
(h # hq) and satisfy the relations '
P

- p\'x € (op\ x)|<oq\x)

def
- 656' = 6pn5q
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d

- d\s' g qr 9 CUEBIVICH ERIVICN.ERE

o' = (d°' 8! )-Ch and 0 = (d' ,8' ,p )h . Define 8" = §' NS’

Let 07, = (75, &'pue P q a’® ¢’’’ P q
d" o= d' d' dv n(S' )U 6' d' )'

and ( pﬂ q)U( g ( pn q

We shall show that (d",8",p) is a (complete) pre-observationm.

According to the lemma 1 of app.5, the (complete) pre-observations 0'p and 0'

are given by :

Men ) = '
s > 5p\ Ult(pp) dpu(ap\d p)
s q - aq\ Ult(pq) Q" dqu(éq\a q)

The inclusions Ulthp) 1= déu 6p and Ultipq) £ dunq hold by proposition 3.9, thus

Ult(pp) < d'p and Ultipq) c d'q. Also notice that the compatibility of histories

hp and hq validates the following implications, which will be used later on :

- (¢ d'pUG p)a(u > 6q§u 4 Qlt(oq))a(ueﬁ'q)
- (u ¢ d'qué'q)s(ﬁ € GpAu ¢ Ult(pp))s('u_e 5'p)

for any u in (AUh)

Now come back to our task. Since d" and 8" are clearly disjoint, we are left with
proving Ult(p) € d" and Ult(p) N " = ¢ .

- let pu in Ult(p), then either peUlt(pp) or u EUlt(pq). Assume p €U1t(pp),

then pe d < d'p and by the compatibility of h and h u e(d Us ) = (4' UG'q), thus

p € d". By the consideration of symmetry, it follows that the condition Ult(p) c d"

is verified.

- let p in UIt(p), then either p eAUltzpp) < d'p or u e Ultipq) c d'q, whence py ¢ &"

since d'p() 6'p =@ = d'q ﬂlé'q. The condition Ult(p)(} 8" = @ is therefore verified.

e We shall now show that °(d,d,p) is one of the maximal lower bounds of (d",6",p)

in Obs(A). From the hypothesis, (d,8,p) is a maximal element of Obs (pIq) ; by the
construction of (d',6',p), that history belongs to (h |h ) ; suppose that we can
prove (d,8,p) < (d",8",p) g (d',8',p), then the above fact is clearly established.

Relation (d",8",p) & (d',6",p) holds from the obvious inclusion &§" € &' and from
the chain of equalities

d"us" = (d' us' a' 'Y= (duUs d s ) =d'us'
(a';u p)n( qus q) (dpu p)n(qu q)_ v
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Suppose for a moment that (d,68,p) & (d",8",p) does not hold, and show that this

supposition is nonsense.

By the construction of d' and ', one has (d U ) € (d'Wé') =d"Us"). It

follows from the assumption (d,8,p) f (d",8",p) that there exists some label p

in § which does not belong to §" . Hence u belongs also to &'\ §" by the inclusion
§ €6'.

The equalities &'\ 6". = (6pﬂ Gq)\(é'pf\é'q),

a'p = ap\_ Ult(pp) and a'q = aq\ ﬁfﬂﬁ;)

clearly show that u belongs to Ult(pp)UUlt(pq).

Besides, y € & implies u \( Ult(p) - since (d,8,p)e Obs(A) - By the definition of
: (pp\ x)l(pq\ X), one of the following cases must occur :

- p eUlt(pp) and p eUlt(pq) , Or

- eUlt(pq) and p eUlt(pp).

Consider the latter case for instance, then p eUlt(pp)o ME dp_:v p Sp:p ¢ s
a contradiction with pe &'\ 8" .

Hence (d,(S’p) \< (d",énﬁp)'

The above fécts show that (d,8,p) is one of the maximal lower bounds of d",s",p)
in Obs(A), which property can be more precisely expressed by the statements

" \d"c6€6" and d =(d"U M\ (§ L)

- cf prop. 4.1.12 together with defns. 12, 13, 15 of app. 4 -

e Put V= §" \ § and define the following sets of labels :

—_an = ' T i, q! v I ' 1

a" (dp\sp)u{u,uluedpn orusdpn‘(ép\éq)}
- 8" = (8" \d' d §' N8' )NV

8" CHAN p)u{u|ue » N ( o0 q)\ }

- an = ' = m a O v . T 8 8!

a" (dq\aq)u{u,ulue . orped N q\ p)}

-6t = (' \T DU ped' NG O HNT L.

inally let 0 = (4" ,¢&" ) and 0 = (4" ,é8" ). Our next task is to prove
Finally b p’ p’pp S g q’ q’pq P

that 0p and Oq are observations and moreover verify OP & hp and Oq < hq. By the
consideration of symmetry, it.suffices to establish these properties for Op.
The emptiness of the intersections d"p(\.é"p and d"pn —6_"p can be established
by a careful analysis, using d'pﬂé'p = @ as an auxiliary property. Now consider

in Ult(pp), then :
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M E d'p since O'p is a pre~observation, and

b d'p since Ult(pp) ¢ d . has been established in the first step of the procf,
thus {p,n} €d' \§'_ Ffollows by d' N§'_ = ¢
HsH P p y p p ’
that is still{p.u} ¢ d"P .
The above facts show that Op is an observation, i.e. Ope Obs(M).

Let us prove 0 & h . The inclusions 6"p c 6'p c dp are obvious, so that there

remains to check d" wWs" Cd UGS . We shall prove d" ué" =6'" LUAd' \G"\ V),
p P P P P p P p
which entails
d" us" cda' v §' =4d S .
p¥° p p p p“ %
d" ué" =@ \T')Hud" NnTua a@G \s")
P P P p P p P q
vud avud_ 0N E'\s'Hua §' nd" I\V
p p p\ q’'v pn( Pn q
us' \Nd'
p P
(d' S'HYud nTud NnE' \Ns') =
p-\ p p p p q
A" \N@E" Ad Y)ud' NV =
p\( p q) P
d'\"yd' VvV =
p VS

d'p\(-g"\V) - fromV ¢ §" -

dravud A \§ da’ §'NS"HIN V =
0 . (p q)u pn(pﬂ q)

d' N vV AGT\§' ) )ud' N @' As)
p P q P P q

o]

n

d' A (B'\S'dud N "' NS') - from V € 8" -
P P q P P q A

=d' Nns§' .
p P

Thus, 4" LU s" = 4° "\ Vud' 0§ us' \ga’
> p P p\ \ " P p P P

=68' Vd'_\N(@E"\ V)
P P .
e Before checking Op’ Oq for conditions i to iv of the proposition, let us state

some additional facts about V. From V= 6"\ 6 and §"\d" ¢ § € 8", one draws

Vg 8"N d", which validates the .following assertions :

-(Yue9) (ped' and u e (@' US' ))
p P P

W e V) (ued' and g e (d' US' ))
q q q



- (Vpew) (ut¢ é'pr\é'q) - by d"as" =0 - .
" In particular, VN3" =¢ = VO V, and
dus=d"\@E"\ V) us"

as proved by the chain of equalities

d U= (d"Us™ \NBuUBHUE" \V

= d"\(SUDHUS"\(§ WV HUs" \V

"\ "\ uE"'\ Yu & N (E"\VUS'\T)u s" \V

= d"\G" \DU NG\ U\V -byd'ns" =0, e & -
=d"\N@E"\VHUIUS"\V -by VA" =¢ -

=d"\ @'\ DU -byve s -

e Verification of condition i of the proposition.

5"p(\ 6"q is given by the expression

(' NT'DOU@' O " N\NDNNES Nd'Hud@ N "\ D).
P P p q q q

We shall establish the converse inclusions

6" n 6" S 6" \ v . 6" \ v S 6" n 6" ,
P q P q

whence cS"pﬁ 6"q =§ —-by & =28"\V-

- let pe cS"p(\é"q, and suppose u ¢ §"\V .
The above expression of 6"p(\ 6"q shows that p must belong to (6'p\E'P)n (G'q\ _d_'q) ,
and since 6'p(\6'q = §" -, that property may be expressed equivalently by the
assertion
e (68" \Nd')ING'\NaA" )NV - byp ¢ 8"\V-
M A q\ q yu
e Vnow implies p e (d'wé' )M (@' vus')
H P H P P q q ’

which amounts to g € 5'6\5'q by the above assertion.
Hence p € VN 8", which is contradicted by the fact VA S" = ¢ (established in

the previous step of the proof).

- let p e 8"\V , hence peé'pﬂ §'
If a’ then w ¢ 6"\ d'_¢€ §" ;

M é p ’ . p P P s
i f d' , thenpe d'_N @"\V) € 8" ;
1L 4 € P M P P ’
therefore p ¢ 6"p .

pes" may be shown in a similar way,

h es" M 8" .
ence g . q

e Verification of condition ii of the proposition.

One has to prove (d" N d" )u @' ns" HUE" N d" ) = d.
. p .4 P q P q

The left member amounts to ((d" us" )N @ VU NNE"NS").
| - SR T g T g p o q
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The right member is equal to (du§é)\ 6.

From condition i, it is enough to establish the relation (d"pUG" n (d!'qu(s" )
= dU § , which is equivalent to (d"pu a"p)n (d"qu 5"q) = 8"V A"\ (3"\ V)

- by the fourth step of the proof -

Now, the following equalities have been established in the third step of the

.proof :
d" uUs" = 6!' ud' \ (E"\V) .
P P P p
4a" (5" = &' v 4’ (‘E‘n\‘v' .
qL) q q ‘l\ )
h dll " dll (S" =
Thus ( pua p)n( qu q) |
§' N§' d'nd')u@ . ns' ' N a" N\ @"'\V) =
( pn q)U(( pn q) ( . q)u( pN 4y )
s" U d"\ (E"\-V—)
o Verification of conditionm iii : immediate.

e Verification of condition iv of the proposition.

We shall first consider pairs of labels (u,u) in AUN such that {p,p} ¢
(dpu 6p)n (dqu éq). We can freely assume p ¢ (dpu Gp), since the other cases may
be derived from that case through the consideration of symmetries. The compatibility

of hP and hq then implies pe¢ 6'q (refer to step omne).
By proposition 3.3.9, u ¢ de pr => u ¢ dp .
¢d =>u éUlt(p ) => u ¢ §\§'
M 5 u °h B¢ p\ p
(since 8' =6 \ULt(p ) ).
p = Sp\UIEGy

On account of the equality d'p = dpu(ﬁp\ 6'p), it follows that p does not belong
to d'p A '
To sum up : d'us’ ped' , and p d'

P:iud( B p) s M @ TR/ >

(recalling that d U § equals d' §' )
& P P 1 PLJ P

We proceed with separation of cases pe 6'p, u ¢ 6'p .

- ued' , that is still ped' NS’ = 8" .
p’. H P q

Woed' Apéd (A US') = mes"\NT' => Te "
- P P P He P p H p
- if p ¢ 4! then y ¢ 6' \d' => ne §"
S q’ q9 " q g q’
and thus T € <S"pn 6"q.

if p e d'q s, then
BRI (d'PU 5'p) => p ¢ 4d" (by Jthe definition of d", step 1)

=> H ¢ s"N E " . i
> pu ¢ V (by the inclusion VE S"Nnd" , step 4) '



=> ped' AG' NS H\V

q P q
=> pe 6"q (by the definition of (S"q , step 3) ,
and thus g ¢ 6"pn s"

~u ¢8' , that is still g ¢ (d' Ué').
P P P

The compatibility of hp and hq_then implies
u 85'q (refer to step one) ; therefore ,

{p,p} = G'q and {u,pt N d'q =0,
whence{p,pu} € S'q\ E'q c "

-~

q "

We consider now pairs.of labels (u,u) in ( AUA) such that {u,p} €

(qu Gq), or equivalently, {u,u} € (d'pua'p)n (d'qUG'q)-

1f {u,n} € 6'p, then {u,pn}nN d'p =¢ => {p,p} S:_G'p\E'p g_:é"p .
1f {p,n} sd'q R then{u,_u—}nd('l =6 => {u,ul g 6'q\ E'qgé"q .
If {u,n} g aernd then{p,i}na'p =¢ = 5'qn{p,ﬁ} ,

h ,'“ c (d' 'gv n ' _6-' c a" an .
ence {p,u} € ( p\ p) ( q-\ q) pQ q

6.9

(dPU Sp? N

By the consideration of symmetries, the remains only three cases to examine

— Ed' ndl -—eatnsl
Hed S g ¥ P9

Obviously, U e H'p and p € E'q .
Ify ¢ V, thenp e 6" 1 §" by the definitions of 8" , &" .

Ifp € V, thenyp eE'pn V and p ¢ H'qn V imply

,ut g d" d" by the definitions of d"_ , 4" .
tusul pN 4qg ot p’ g

ed' Nn¢' pe &6'Ad .
HedpNoq o K p' ' % q

m 'o=> 1 §' => ped (8'\8' ) => {p,u} €d"_;
uedq u¢q u Pn p\q wopt g dy

1] Ed' => ¢ (S' => M € d' ) 6' ! ) => {U,“} Cd" H
h = d" d"
t l._lS {H,}J} < n

- d’ d' ,ped nNns' .
ME pﬂ q p q

{‘J’”} . s H p ’ P P = p
. d! => M §' => M € d' (@] §' § ! ) => {“ u} \: d" ’

th "—} e dn nd" .
us{u o p q
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e Every conditions have been checked successfully, hence the proposition is now

established, Q

def def

Definition 2 i tible observations O = (d_,§ and 0 = (d ,8 ),
efinition Given compati servatio . ( P’ 2*°p q <’ LR

their parallel compound Opqu is the set of the observations (d,§,p) which verify :
i)§=8 NS
p q
ii) d = dnd dns (s nd)
) ( Yu( N 8Qus nd
i21) 2\ x e(p x)|(pq\ X)

Proposition 3 Given programs p and q, let Op in ObsA(p) and 0q in ObsA(q) such

tha.t'Op * Oq’ then there exist corresponding histories hp in HA(p) and hq in HA(q)
hich ar tible (h h ) and verify 0 < h 0 ¢h and (VO € (0_[|0))
whi e compati (p# q) v yo,€h o, 0, &0 ( plq
(3h e(hplhq)) (0gh. -

Proof Put 0p = (d ,cS ,p ) and Oq (d 6 p ). By the compat1b111ty of 0p and 0q ’

the following chalns of 1mp11cat10ns are va11d for any label p in (AUR)

fdudosu,ptesd orpednd)o(ued and Ult(p ))
Wt dpu s alivg q T HE OO g u ¢ Ulele,

¢ d us o{u,pt €6 orpe § NS y e & and Ult(p_ )
M q q(u,u p we s q):(u . po# (pp)

- for (d,8,p) e0Obs(A) => Ult(p) € d and dNT = ¢ - .

By the definition of Obs, , there exist hp_in HA(p) and hq in HA(q) such that
Op.\< hp and 0Cl < hq ~ since 0p and 0q respectively belong to ObsA(p), ObsA(q) - .

By proposition 14 of the third appendix, and from the defining properties of the
ordering £ , we are free to assume that hp and hq have respective forms

h = (', 8" ,p).and h = (da' ,8' ,
P P PP q (q qpq)

The following conditions are then verified :

§ €6' ,d gd' us' - fromO_ (¢ h -
P P P P P p p

§ €6 ,d gd'us' - fromO (h -,
q q q q9 4 q q

The compatibility of hp and hq (hp # hq) arises from the following implicationms,
which are valid for any label pé€ (AUR) .
u¢(d' 6'):u¢(dU6):(p€6 c6'qandu¢U1t(pq))
p g (@ us'd)opd (duws) ed§ &€68' and Ult(p )
¢ q q u &8> (0 . . [T Py )
In order to prove (YO s(Op]Oq)) (3In e(hpIhq)) (0L h),

it is enough to establish the inclusions :

. ns)e (' ns' ) - immediate -
P q p .

(dpr\ dq)U (dpn § YU(S nd ) = (d’ s' )n(d' 8’ >



Now, the latter inclusion follows from

duds)nld us) c@ us')H)nw sy . 0O
(pu p)n(qu q),( pu p)n( qu q)

Proposition 4 Let 01, 02, O'1 e Obs(p).

£ 0' , then O'1 ‘* 02 .

If 0, * 0, and O

2~ % 1 1

= = v - ' ' ' fhi14
Proof Put O1 = (d1,61,p1) > 0, (d2,62,p2) , O 1 (a 1,6 1P 1). By the compatibility

of O, and 0

1 the following condition is verified for any label p e(AUR)

2’
1 ot {y,u} - 52 or 661{') 62 S b 51(\:72
Suppose that the last alternative{y,n} € d,Nd

1 2
label p :

{p ,H} <9 or {u ,31 c d1ﬂ ..
&

is verified for some particular

| I ) '
0,§0" = d,gd' us',

o'1 g Obs(A) => d'1n€'1= @

thus ({p, 7} € da', or {u,u} s§'1).'

1

$sing the inclusion 61 < 6'1 (another consequence of 01 § 0'1) , 1t can therefore

be verified that the following condition holds for any label p :

{p,p} c 5'1 or {p,u} €6

1

] - ] _C 1
, OT i €8 1662 or ped 1062 or {p,ut e d

Odz .

v %
Hence .0 1 O2 . (]

Proposition 5 The parallel composition of compatible observations, as given in

definition 2, is a monotonously increasing operation as more precisely stated
below.

‘Let 0,, O, and O',, O', in Obs(y) s.t. O, * O

1* 72 1°? 2 1 2 1 °?
for any O e(O1|O'2), there exists O' s(O'1|O'2) such that 0 L 0' .

0, <0 0, & 0

2 :

Proof For obvious reasons, it is enough to show that the parallel composition
of observations is monotonously increasing in the first argument.

= = LI, ' ' ' .
Put O1 = (d1,61,p1) , O‘,2 (d2,62,p2) , O 1 (d 1,6 120 1) . We proceed with
case analysis.

case 1 p, =p'1 .

. | - v o '
0.1\<0 >81§<S1 >61062961n62

O1 < O'1 => (d1 ) 61) c (d'1u6'1), whence

(d1ﬂd2)u(d1n‘62)'u(61 0 d2) S (d'1u $ 1)n(d2ua'2)

The above facts may be considered as a sufficient proof for case 1.

1



case 2 0y ?‘0'1 .

1
0, 0",

((01 * 02) and (d1p 61) = @) => 62 = (Auh).

=> (d, U §) =9 and (G, \x) = (o', \%).

Thus d2 = (@ and 0, must be a finite sequence.

Let O 5(01|02) : since (d1u 61) =@ , O can be written (@, #,p ¥x) for some word p in
((D1 \ X)|(02 \ x)). Since (02 \ X) is finite and (p1 N )()—<(p'1 \\ X) ,there
certainly exists p' in (0'1\)() |(02\x) such that p — p' and thus p—=p' ¥ .

; §'.n§

5 ’ Y p' x) , then 0'e (0'1‘|O'2) -

Define 0° = £ l.":dzud' N 38 U6'1n d

1 2
by construction —, and 0 L O0' . )

We are now ready to give the

Proof of proposition 4.2,20

v v v
By propositions 1 and 3, ObsA(pIq) is equal to I.Lp " Lq_|° letting Lp = LLp.lO
v
and L =1LL J . .
q q
By propositions 4 and 5, the following assertion is valid : ¢
v v
(VoelL_ |[L) (F30o'eL_ [JL) (OgoO".
p q P q
Thus Obs) (pla) = (L [l L ], -

The remaining of the proof is a straightforward application of the results shown
in the appendix 2 : the parallel composition of rational response languages is
an effective operator, and this property naturally extends to the parallel composition

of languages of observations. a

Proof of proposition 4.2.21

A\E, G = (AVA) n E, and
Z+G.

Let notations as follows : E = (A'ULA'), F
x=Lqu.E , Y=X4G, Z=(,,q)+E, W

All
e We start with proving X € Obs(F) and Y € Obs(A).

Let O¢ X, then one of the following cases must occur :
- 0= (@, #, px) and there exists (d',8',0")e L

such that p e (pref (p")N (M\E)*). -

Lq C Obs(A") => p! e(AM)” X , thus o e(A"\E)*.

Since A'™\E = F, it follows that (@, @#,px) € Obs(F).

- 0 = (d\E, S\E,p) with (d,8,p) ¢ Lq and p £ (M\E)" .

From Lq € Obs(A") , one draws :

da(6ud)) =¢g.=> @AEN B\NEUS\E) =0,

dusc AU A" => (@EUGSE ¢ WULT)Y\E = (FuUF) ,
pe F xand Ult(p) ¢ d => Ult(p) c dNF ¢ d\E .

Hence Oe 0bs(F).



Let OeY, then O may be written (d, U G,p) with (d,8,p) € X € Obs(F).
0 € Obs(A) immediately follows from § UG E (FURMUG = (AUD\E y (AUDAE =
AU A .

e We now prove Y € ObsA(p)

Let O € Y, then one of the following cases i or ii must occur.

. *
1)0 = (@, G, px) and there exists (d',8",p') € Lq such that pepref(p')NA F .

@',s8',p") ¢ Lq => (3(d" §",0") € HA" (@) '((d‘ 6',p') & (@",8",0" )),
hence p € (pre(p") N F ) by the definition of the ordering. ,

By proposition 13 of the third appendix,

((d",8",p"Me (q) and p<p" ) =

A"
(Bd"',(s"') ((dnv’all",px) > H."(q)).

*
((@"',8"',0x) € HA,,(q) and p eF ) => 4
(d"'\E, 5"'\E,DX) e Z =>

(@"'\E, §""\EUG,px) € W.
Now W = HA(p) and (@, G,px) € Y € Obs(A), whence (@, G,px) ¢ ObsA(p) on the account
of the obvious relation (@,G,px) < (d"'"\E, §""\EUG, px).

ii) 0 = (d'\E, 6'"\EUG,p') with (d',8",0" ¢ L . o
(d"al’p') € Lq => (B(dll’all’p") SHA"(q))((d',G',p') \< (d",G",p")).

If p' = p", then (d',8"',p') may also be written (@, @,pXx), and the remaining of
the proof is as in the above case i. Now assume p' # p". 0Oe¥Y => p"eFmX c (M\E)w X
thus (d"\E, 8"\E , p") € Z and (d"\E, §"\EWUG, p") £ W.

From (d',8',p')  (d",8",p"), one draws :

§' € 8" => 6'\EUG ¢ §"\EUG,

d' ¢ d"us" => (d' \E) € (d"\E)U(S"\EUG).

Hence 0 ¢ (d"\E, 8"\NEUG, p") € W,

By the definition of ObsA , O¢ ObsA(p) follows from W = HA(p) and OeY € Obs(A).

e In order to complete the proof, there remains to show that every maximal elements .
of Obs (p) also belong to Y.
Let 0 be a maximal element in the set Obs (p)

By the definition of Obs, , there exists h in H (p) such that O h. Let h denote

A
one of the maximal histories which verify those assertlons

Since W equals H (p), there exists some maximal element h' in Z,let h' = (d',8",p"),
such that h = (d' 8'"UG,p'). By the definition of Z, there also exists h" in HA,,(q) .

let h" = (d",8",p") such that (d' 6',p') = (d"\ E, 8" \E,p") and thus p" = p'e F X
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9

For any observation (d,8,p) in Obs(F) such that (d,6,p) ( d',s8",0"),
(d, §UG,p) belongs to Obs(A) and verifies".(.d,SUG,p) £ (d',8'u G,p'"). Since O
is maximal in ObsA(p) and since h belongs to HA(p), it is clear that O can be
written (d,6UG,p) with (d,8,0) € Obs(F) and (d,68,0) & (d',8",p"). By the above
remark, it follows that (d,8,p) is one of the maximal lower bounds of h' in the
set Obs(F). Now, (d',8',p") < (d",8",p") holds for obvious reasons, whence also :
(d,8,0) g (d",8",p") € HA,,(q).
We proceed with separate analysis of the two possible cases in which that last
relation can hold.

i) dud) =¢ ,p ¢ " Xs P\X =p"€F .
@",s",0™ EHA,.(q) =>. (@, ¢,p)€0bsA..,(q) , since (@, ¢,p)eObs(A"). From Obsf\"(z) =
LLqu , one draws (3(d"',8"",p"")e Lq) (@, 3,p) € (@"",8"",p"" )). peF x,
F = (A\E) and p\x —p"' now imply that (@, @,p) belongs to LquE by the definitic{n
of u , and one therefore O:Btains 0=1(0, G,p) s(ng E) +c; =Y.

ii) (dvs) #6¢ , dgd"us", § ¢ é" , and p = p" e B X
Since h' = (d"\E, 6"\E, p") and F = A\E, any lower bound of h" in Obs(F) is
also a lower bound of h'. Now, (d,8,p) is one of the maximal lower bounds of h'
in the set Obs(F). From (d,8,p) & h", it therefore follows that (d,8,p) is one of

the maximal lower bounds of (d",8",p") in the set Obs(F).

Suppose that (d",8",p") is not maximal in the set HA,,(q). In that case, let (d"',&""',

p"') be one of the maximal upper bounds of h" in HA,,(q), then p"' = p" since
d"us" # @9, and h' = (d"\E, §"\E, p") & (@"'\ E, §"'\E, p") € Z. But h' is
a maximal element of Z, and we therefore obtain h' = (d"'\ E, §"'\E, p"). As a

consequence, we can freely assume that h" is a maximal element of HA..(q) {for h"
can be freely replaced by (d"',6"', p")) . Now recall that (d,8,p) is one of the
maximal lower bounds of h" in the set Obs(F). Since p = p" and (d U 8) # @ , the
above statement implies that (d,8,p) equals (d"'\E, 8"'\E, p) for (d"', &"', p)
some of the maximal lower bounds of h" in Obs(A") (which is clear from the fact
that (d"'\ E, 8"'\E, p) belongs to the set Obs(F) for any such triple (d"',8"',p)]).
Since h" ¢ HA,,(q), (d"', 8"', p) belongs to ObsA,,(q) which is equal to LLqu . As
a consequence, there exists (D,AR) in Lq such that (4"',8"',p) & (D,A,R), whence
R= p (for (d"'ué&"') differs from ¢). .

(d,8,p) = (d"' \E, 6"'\E,p) and (d"', "', p) (D,A',p) clearly imply (d,8,p)
(D\E, A\E,p) ¢ X, and thus also (d, §UG,p) & (DNEANEUG,p)e Y.

Now, Y is included in ObsA(p), and (d,8 U G,p) equals O which is a maximal element
of ObsA(p).

Hence 0 = (D\E, A\EUG,p) eY. O



By the induction on the structure of programs, the proof of proposition
4.2.22 is quite obvious from pfopositions 4.2.17, 4.2.20 and 4.2.21. Nevertheless,
those propositions have not been completely proved, since it may be observed that
we have omitted to verify the non-emptiness of ObSA(Ci) for each of the corresponding
constructs Ci' Proposition 11 of the third appendix allows to remedy this insufficiency,
since it shows that for any program p of sort A, HA(p) contains at least one element

h which is of course an upper bound of (@, ¢, x)e Obs(A).

Our next series of propositions prepares the way for demonstrating proposition
4.,2.23 .

Prbposition 6 Let p be an elementary program of sort A. Let q be a pfoper

subprogram of»p. Assume that q is not a proper subprogram of the other subprograms
of p which result from flow-operations. If ObSA(q) = ObsA(Q'), then ObsA(p) =
ObSA(pH:Q'\q]] ).

-‘whereﬂ:q'\q I] means the syntactic substitution of q' for q -

Proof By proposition 4.2.17 together with definition 4.2.16, ObsA(p) depends ubon

q exactly in the way that llP(I (z /‘r(q))),l , depends upon q for 'Z.GRat(pre-obs(A)+).

Since I is a monoid homomorphism from (pre-—Obs(A)m) onto P-obs(A), 1(Z di/‘(q))
equals I(Z).IMq»)) for any such Z. By proposition 4.1.12, L \P(I(Z).I((/V.(q))).l .
is equal to L(I(Z).IQ/{/(q)))J N Obs(A), and therefore to Obs(A) N (LI(Z)) .LIW(q))_I ) -
by prop. 7 of app. 4 -. Let L =\p(1(0nq))). According to definition 4.2.16, L
equals W'(q) if q is the resucllt of a flow—operation. Appealing to proposition 4(.11.12
in the converse case, we can conclude from the definition ofl/lfthat LtL J'o . equals
LI((/I/Zq))J N Obs(A) in both situations. It follows by préposition 16 ofqthe fourth
appendix that one has Obs(A) M. (LI(Z)J.LI(”/_ZQ))J) = Obs(A)N (LI(Z)JaLL 1)
Now, LLqJ. equals LL' } for any set of observations L' which verifies lE'qu =
L (I(/(q))).lo , Or yet equivalently LL'qJo = ObsA(q) (from the definition of(/
and by proposition 4.2.17). .
It is now clear from the above facts that ObsA(q) = ObsA(q') implies L\P(I(Z(/;/(.q)))Jd =
L\P(I(Z(/}/Zq')))_]O , hence the proposition has been proved. a

Proposition 7 Let A, A' be finite subsets of M s.t. A € A' , and let p denote

a program s.t. MS(p) € A. Then HA-,(p) = (HA(p))’r Vwith V.= (MMUAYD)YNGQU L)

Proof We shall establish the above fact by induction on the structure of programs,

using the alternative characterization of HA given in the third appendix (definitions
7 to 9 and theorem 13). The induction step is by case analysis. The induction basis -

is a particular instance of the first case in the induction step which we detail now.

case 1 p is an elementary program.

Let {p1 pn} denote the set made out of the outermost proper subprograms of p

whichrare défined by recursioh Y or by fléw—operations. By the induction hypothesis,
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HA'(pi) = (HA(pi))+ V for any P; in that set (whose possible emptiness gives a
basis to the induction). Let us naturally extend function 4V from H(A) to pre-H(A)
and then accordingly to (pre-H(A))m ,

(i.e. (h1h2... h; cee) AV ((h +V) (h AT) ... (h 4V) ... )). Looking at
definition 7 of app. 3, it then appears that there ex1sts some language Q? ]Jlé(pre—
H(A) ) Wthh verifies H (p) K(L) and HA,(p) K €+ V).

A,(p) (H (p)) 1tV follows directly by the definition of the homomorphlsm K

(defn. 5 in app. 3).

case 2 p = q (/u1...unJ .

Put the following notations : R'= {uj...u JUGi,...u} , S =(AUDNR,
T= AUR and S' = (A\'UA")AR, T' = A'LJ_R. According to definition 9 in app.3 ,
HA(p) and HA,(p) are respectively eqﬁal to (HT(q)+ R)*+ S and (HT,(q)+ R)+ s'.
By the induction hypothesis, HT,(q) = HT(q)T ((T'UT") \(TuT)). Thus H,,(p) =
((HT(q) 4 V')4 R) 48", letting V' = (T'UT') \ (TUT). Now, V'OR = ¢ implies
(H (@Q+ 7') ¥R = (HT(q)+ R)+ V' , hence HA.(p) = (HT(q)+ R)+ (V'us").
Looklng at the deflnltlons, one obtains
v'us' = ((A'UEH)\ (AURD)\R U ((A'UR)AR)
= (A" OUM)NQAURD ULV RN R)
= (A" UA)\NAUDU((AURAR) - fromA CA' <
=Vwus.

HA,(p) is therefore equal to ((Hr(q)+ R)+ S)4V , that is still to HA(p)fv .

case 3 p = (q|r)

The step of induction is immediate from definitions 3.3.3 and 3.3.6 . O

Proposition 8 Let A, A' be finite subsets of M s. t. A €)', and let p denote

a program s.t.A & MS (p).
Then ObsA(p) =L E'(di,ﬁi,da)jo if and only if

1
Obs; (p) =L I (d;,8,U v,@i))o with V equal to (A'UT") \ (AUT).

Proof a straightforward corollary of proposition 7. 0O

By the induction on the structﬁre of prograﬁ-contexts, the proof of propositioﬁ
4.2.23 follows directly from the prepositions 8 and 6 above together with propositions
4.2.20 and 4.2.21 .

Define pvq iff Obs (p) = Obs (q) for A = MS(p)UMS(q). By proposition 8,
equivalent definitions of N may be : pvq iff Obs (p) = Obs (q) for some A s.t. MS(p)
VUMS(q) € A, phvg iff Ob'sA(p). = ObsA(q) for every A s.t. MS(p)UMS(q) -

These alternative characterizations show that v is in fact an equivalence relation
over the global set PROG of programs of every possible sorts. Hence ~ is also a

congruence over PROG (evidence of this fact is given by prop. 4.2.23).
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We are left with prov1ng our final theorem 4.2. 24, which amounts to state
the following remarks. 4
- Given programs p and q, the least upper bound of their respective minimal
sorts, let A = MS(p)UMS(q) , is effectively computable.
- The semantic function ObsA is effectively computable, and Obs (p), Obs (q)
can be obtained in the rational form LEJ , E = I (d 6 ‘f) w1th (di 5i) #

(d 5)for1#3. tel

~
-leen E as above, another rational expressmn E , such that LEJ LE.I and
(V01, O2 £ E) (0 < O => 01 = 02), can be computed in the form E = I (d 5 °6)
: iel
through the follom.ng process :
1) if di = = @ for some i, then replacec(’. by J\((plf(plf('{,))U(U 1f ("‘;)))X)
. j#i

(where plf(L) , resp.lf(L), denotes the set of the proper left factors, resp. left
factors, of words ¢ in L).

2) while there exist different indexes i and j in I such that di c djuéj , 6i < 6j
andociﬂocj ¢ @ , replace oei by c[i\{; .

. X A ~ . . a4 r
~Given E and E' obtained from the above process, the decision of LEJ] = LE']

- » ~e ~
amounts to the decision of E = E' .

- There exists a decision procedure for the equality of infinitary rational

languages over ( AU{x}). o |,
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We give here some justifications for the directions that have been taken in
the study, and we point out at the same time the inheritance and the departure

 from other studies.

* First of all, we have to explain why the rational subset of pure CCS has been
considered instead of full CCS. A convincing argument needs a preliminary recall
of some important results about unbounded nondeterminacy.

In(Ch}, Chandra has proved thét almost every set in Z: coincides with the
family of inputs which may causeto diverge a corresponding program ruu on a
register machine with random assignment. For an equivalent class of programs
with random assignments and or and while statements, Park has shown in (Pa) that
the set of inputs which ensure the convergence of a particular program is in general
the least fixed point of a weakly continuous function. The latter work also studies
the language obtained when taking away the random assignment and providing the
par construct in exchange. A direct relational semantics has been built for that
language, based upon the fair merge of infinite sequences. The fair merge appears as
an adequate combination of least and greatest fixed points of weakly continuous
functions (we shall come back over that fact later on).

A converse way to design an algebraic semantics for a language with parallel
constructs is to give a set of axioms for transforming programs into equivalent
programs of a sequential non deterministic sublanguage (Br). The transformational
approach may in particular be applied to the fair parallel construct, provided
‘that the random assignment is present in the sequential sublanguage.

For sequential programs with random assignment, Apt and Plotkin have shown
in(ApP) that complete proof systems can be obtained as soon as the induction over
the ordinals is allowed in the proofs (a counterpart of the weak continuity of
the semantic functions). In the particular case of sequential programs with the
repetitive non deterministic construct do B1 > C1D ..C|Bn > Cn od , the assumption
of fairness may be applied to the alternatives of each of the do statements exactly
as it is commonly appligd to finite families of concurrent agents. In a way which
is very akin to the approach of transformational semantics, Apt and Olderog have
shown how that fairness property can be enforced by a transformatién which adds
to the programs some kind of internal schedulers, with auxiliary variables submitted
to random assignments (ApO). More importantly, the authors demonstrafe that it is
then possible to derive from the proof system which applies to the target programs
another proof system which applies to the source programs in complete adequation

with}the assumption of fairness. Of course, the induction over the ordinals is
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explicitly called for in the resulting proof system. A similar situation would

arise if the method was adapted to parallel programs, then using the random assignment
of auxiliary variables as suggested by Plotkin for a different purpose in (P1).

Notice that strong connections exist with the result established by Queille and
Sifakis in the framewofk of the temporal reasoning about transition systems (QuS).
However, no complete proof system is expected there : each transition system defines

a particular interprétation of the modal operators, and the authors are interested
more in the truth of properties w.r.t. particular models of their logics than in

the validity of such properties. That fact may explain why the ordinals are not
called for.

’ Now, our general intention was to show that it is possible to obtain a complete
proof system for the fair equivalence of programs of a non trivial subset of CCS,
without appealing to the induction over the ordinals. Although a proof system for
the equivalence of -programs strongly departs as regards its objective from a proof
system for properties of the inputdoﬁtput relations computed by programs, we felt
that both categories of proof systems are not so distant as regards their complexity.
Hence, we considered all the above results as a clear indication that ouf objective
could not be achieved without placing sufficient restrictions on CCS to disallow
the simulation of register machines or Turing machines. Clearly, neither of these
simulations can be performed in our chosen subset of CCS, since we have left no
means to program unbounded strings of agents each of which communicates with its
left and right neighbours. However, less drastic restrictions could be imposed
with an identical effect, and we shall give further justifications in the sequel.

Another important departure from CCS is the replacement of the + operator
by n-ary guarding operators. This second kind of restriction aims at a clear
distinction between explicitly programmed alternatives and iﬁplicit scheduling
alternatives. Confusions which might arise between the two types of alternatives -
e.g. in (@ : p) + ((B : @ [(y : r)) - had to be avoided since our assumption

of strong fairness applies to the scheduling alternatives only.

* Once the above decisions were taken, a strong hope in the reachability of our
objective has been raised by the discovery that the fair parallel composition of
infinitary rational languages is a rational and computable operation. Infinitary
languages are in fact a well suited domain for the semantics of parallel programs
(Fa) , and the existence of a decision procedure for the equality of infinitary
rational languages indicates clearly that corresponding proof systems may be found.
Notice that the algorithm which has been suggested for computing the parallel
composition of languages may be encoded into the inference rules of a formal system
for rational expressions, since the associated automata are not called for. There

. lays the main difference with the tools developped independently by de Simone for

a more general kind of fair composition (Si). A closer likeness may be seen with

Park's characterization of the fair merge, in what our algorithm combines too the

use of least and greatest fixed points.
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It has been pointed out in (Je) that the closure of the .class of finitary
rational languages under the shuffle-closure operator of (Sh) is a proper subclass
of context-sensitive languages. Now, the case is still worse when considering .
infinitary languages instead of finitary languages and the fair shuffle instead
of the ordinary shuffle : thére remains very little hope to find a complete
‘proof system for the equivalehce'of programs with unbounded parallelism, as soon
as their semantics are defined in terms of infinitary languages. This remark
explains why, to the difference of CCS, we have defined the parallel composition
on programs and not on terms. |
* At this step in the development of our study, the critical point was to define
a fair operational semantics of the programming language. Clearly? in the case of

open systems of purely communicating agents, the prescription of finite delay of

actions cannot be used as a basis for a fair operational semantics. Consider for
instance the agent (a) (NIL) : that agent may either-get satisfaction of its
communication demand o or remain endlessly inactive, depending on the behaviour
of the external environment, or observer. The situation is left unchanged when one
considers the open system ((a) (NIL) |(B) (NIL)) made out of two agents : it may
well be the case that only the second agent gets satisfaction of its communication
demand B, depending on the observer. It therefore appears that the difficulty
cannot be turned by the introduction of a finite delay operator as used in (Mi)
for another class of behaviours, nor by the two level mechanism of (CS}whose
rules express no more than the finite delay of actionms.

Now, the inability to define an operational semantics for open systems is
not redhibitory : the "a-priori" semantics of an dpen system may be indirectly
defined on the basis of the "a-posteriori" semantics of a particular family of closed
systems, in which it appears as a subsystem (BrW). That method has been used by
Hennessy and de Nicola in a very elegant and constructive way to build a fully
observational model of CCS, drawn from an associated complete proof system with
heavy induction (HeN). Thus, it may suffice to define an operational semantics
for closed systems of purely commdnicating agents. Even in that simplified case,
the techniques of (Mi, CS) are not adequate, since they would leave some closed.
systems without any fair computation ! Nor does work the assignment to agents of
random credits of action, suggested in(P1l) for independent processes. We feel that
the provision of additional waiting queues is in fact necessary, whence a lot of
complications arise. Nevertheless, the most serious problem with the above approach
is probably to derive a fair semantics of open systems from an a-posteriofi semantics

of closed systems, since the technique used in (HeN) entails the assumption of

w—-continuity.
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To. sum up, nothing can be gained from considering closed systems instead of
open systems, and the prescription of finite delay of actions is inadequate for
open systems. Our definition of histories and their laws of synthesis is a possible
way out. The technical trick is the enrichment of the natural monoid of action
sequences. The major justification for our prgcise definitions lays in the fact
that both the operational and the observational semantics can be decided.

* At the time these lines are written, we cannot claim that our objective has been
completely achieved : the proof system is still missing, although a significant
advance has been made in that direction as regards the equality of infinitary rationa
expressions (DKJ).

Another issue which deserves further attention is the expression and veriticatiou.
of those properties of observable behaviours which cannot be reduced to congruence
formulas. Since languages of observations capture all the relevant details, a
decision procedure can certainly be found for all the properties which may be
specified in the setting of rational expressions, but more attractive specification
techniques may be prefered.

Our last remark concerns possible extensions of the present work to non-
rational subsets of CCS. An interesting subset may be obtained by considering only

those programs p which verify the following property :

- there exist a finite integer n, a n—ary program confext%?1x1, ces xn] and a
family of programs Pys =++ 5 P s such that any of the derivatives of p is equivalent
to %?[(p1)m1 s eee s (pn)mn) for some m, > 0, letting pimi stand for the parallel
composition of m, instances of p; - That class of programs lays in between full CCS
and its rational subset, and allows to simulate for instance unbounded semaphores
but not Turing machines. A corresponding syntactic restriction on CCS is to limit
flow-operations, except for the parallel composition, to be applied on programs
but not on general terms. We guess that a fair operational semantics can be defined
for the considered class of programs by a straightforward extension of the above
presented principles. The point is that each of the finite families of agents pimi s
which fill in the holes of the context i%’[x1, e xn] to give the program
@?((p1)m1 s see s (pn)mn] , can in fact be considered as an elementary agent as
regards the realization of fairnmess : it does not matter which particular member

' . m; . . . m;
of the family P; 1 is concerned in an elementary action of P; 11
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