N

N
N

HAL

open science

Address synchronized multiprocessor architecture

André Seznec, Yvon Jégou

» To cite this version:

André Seznec, Yvon Jégou. Address synchronized multiprocessor architecture.

RR-0527, INRIA. 1986. inria-00076027

HAL Id: inria-00076027
https://inria.hal.science/inria-00076027
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

[Research Report]

https://inria.hal.science/inria-00076027
https://hal.archives-ouvertes.fr

Rapports de Recherche

N° 527

ADDRESS SYNCHRONIZED
MULTIPROCESSOR
ARCHITECTURE

André SEZNEC
Yvon JEGOU

uillet 1986

' R' S a INSTITUT DE RECHERCHE EN INFORMATIQUE
. ET SYSTEMES ALEATOIRES

Campus Univar*sitzair*e de Beaulisu
Avenue du Géneéral Leclerc -
35042 - RENNES CEDEX
FRANCE -

Teél. : (99) 36.20.00

Télex : UNIRISA 85 0473 F

PUBLICATION INTERNE N° 301

40 Pages
Version Préliminaire

Address Synchronized Hultiprocessor Architecture
André SEZNEC
Yvon JEGOU
IRISA, Campus de Beaulieu
35042 RENNES CEDEX

FRANCE

ABSTRACT

To 'satisfy the growing need for computing power, a high degree of
paréllelism will be necessary in future supercomputers. Up to the 1§te
70s, supercomputers were either multiprocessors (SIMD-MIMD) or pipelined
mONOProcessors. Future industrial realizations should combine these two
levels of parallelism.

In [JeB6], a new model of pipeline architecture the Data Synchrﬁnized
Pipeline Architecture was introduced; the behavior of this architecture in
multiprocessor environment is very good. In this paper, we define ‘a new
model of tightly coupled multiprocessor : the Address‘ Synchronized
Multiprocegsor Architecture. Three modes of computing exist : slice mode,
free mode and iteration mode. These three modes allow the reaching of very

good performances on a very large spectrum of algorithms —a large subset of

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE INSTITUT NATIONAL DE RECHERCHE
(LA 227) S EN INFORMATIQUE ET EN AUTOMATIQUE
UNIVERSITE DE RENNES 1 (NS.A DE RENNES (LABORATOIRE DE RENNES)

this famiiy is considered as sequential codes for today’s»availabié
supercomputers.

To allow a realistic implementation of an ASMA computer, Qe~élso
introduce a new interconnection network for tightly coupled
multiprocessors : the GREEDY network. This network allows a
cost-effective implementation of the three modes of computing in an ASMA

computer.

RESUME

Un haut degré de parallélisme est nécessaire pour satisfaire les besoins
grandissants en puissance de calcul. Jusqu'a la fin des années 70, les super-
calculateurs étaient soit des multiprocesseurs, soit des pipelines monopro-
cesseurs. Les réalisations futures intégreront ces deux niveaux de parallé-
lisme.

Dans {Je86), nous avons introduit un nouveau modéle de calculateurs pipeli-
nes, le comportement de ces calculateurs reste bon dans un environnement
multiprocesseur. Dans ce papier, nous introduisons un nouveau modéle de
multiprocesseur fortement couplé. Trois modéles de caicul existent : mode
tranche, mode itération et mode libre. Ces trois modes permettent d’atteindre
de tres bonnes performances sur un large spéctre d'algorithmes - une impor-
tante sous-famille de ces algofithmes esf traitée en scalaire sur les super-
calculateurs d'aujourd’hui. |

L'implémentatidn réaliste d'un multiprocesseur de ce modéle est rendue possi-
ble gridce & la définition d’'un nouveau réseau d'interconnexion : le réseau

GLOUTON (GREEDY).

H! !'Dmfm RECUPERE ET RECYCLE

Introduction

Need for computing power seems unlimited in wvarious seientific
applications. During the lést ten years, tremendous progress has been made
in the' domain of component integration. Bbt todays’ supercomputerkclocks
are of the same order of magnitude aé those of supercomputers ten years
ago. E.g. the clock of the Cray2 (1985) is only three times faster than
the one of the Crayl (1976). |

Requirements for perforﬁance have lead manufacturers to the VAgsiqn of
parallel structures. The “first industrial parallel supercomputersv.;ere
pipeline processors (Crayl, CDC Cyber 205, ..). Today, these pipeline
computers can be considered as the state of the art in monoprocessor
architecture. Since the late 1970’s, a lot of multiprocessor projects have
been initiated [GaB3][Go83]{SiB1][Ho85].

Multiprocessors can be classified in two large families : the loosely
.Acoupled multiprocessors (hypercube family [Sei85], CEDAR [GaB3], ..) and
~ the tightly coupled multiprocessors.

In a loosely coupled multiprocessor, each processor has its own lpcal
memory and executes a task on data stored in this memory, transfers of data
between the processors are performed throuéh an interconnection_network
directly between the processors (fig.1l)(e.g. in hypercube computeré) or
through a global shared memory (fig.2) (e.g: CEDAR). Transfers between
the processors are very expensive : near one hundred cycles are necessary
fo transfer an element.between two nodes iﬁ the Floating Poin; Sygtems
hypercube TESSERACT. Transfers of data must-be very liﬁitéd in Mloosely

coupled multiprocessors if one wants to reach correct performance.

In tightly coupled multiprocessors, all the data are stored in a global
shared memory (fig.3). They must be accessed through an interconnection
network by the processors. The throughput of the interconnection network
must be of the same order of magnitude as the throughput of the memory.
Thi§ constraint limits the size of tightly coupled multiprocessors. This

Al

explains why the more ambitious projects are loosely coupled

multiprocessors. Nevertheless, tightly coupled multiprocessors must be
studied : they may be used as basic nodes in loosely ' coupled
mdltiprocessors.

Tomorrow supercomputers will combine the three previous levels of

parallelisms.

e0ne cannot imagine supercomputing without pipelining
e0ne can imagine a cluster of processbrs tightly coupled
oA set of clusters may be organized as a loosely coupled architeture
E.g. these three levels of parallelism are foreseen in the architecture
of the CEDAR project [GaB3]. Great attention must be taken in the design
of each of these three levels of parallel architecture. When designing a
level of this hierarchy, one has to think of its integration in the
superior.level; In [JeB6], we have presented an original model of pipeline
architecture the Data Synchronized Pipelined Architecture (DSPA) which is
very efficient on a very large family of non-regular code and whose
structure allows a realistic integration in a tightly coupled

multiprocessor. 1In this paper, we introduce a new model of tightly coupled

multiprocessors the Address Synchroni

1
[l L=~ LRLOS B |28

~with the idea that the basic processor is a DSPA processor. Three modes
of computing are available :

® slice mode : it allows vector processing

° iterafion‘mode : it allows parallelism on non-vector loops

e free mode : it allows independant processing by the processors elements
Thgse three modes of computing allows a good efficiency on a very large
spectrum of élgorithms. The feasability of ASMA computers is also shown by
thé definition‘ of a neQ intercqnnection network for tightly coupled

multiprocessors : the GREEDY network.

11 Exigteqt mﬁdels of tightly coupled architecture
1 SIMD computers | |

During the 70’s, supercomputing was essentially considered as vector.
computing, tw6 families of vector computers have been studied the pipelined
monoprocessors and the SIMD computers. The SIMD (Single Instruction
stream, Multiple Data stream) computers are the simplest multiprocessors :
N processors execute the same instruction en N distinct flows of data. The

N elements who are treated in parallel can be considered as a slice of N

consecutive elements of a vector; SIMD computers are then generally refered

as vector processors.

The first SIMD computer was the ILLIAC IV [Baé68]. tach processor had

" its own memory and can communicate with only its four neighbours (fig.4).

Transfers of data on this computer were too expensive; performances on many
algorithms were too bad. This structure of interconnection network has

been withdrawn for the design of ~general SIMD computers but is always. used

in the design of special purpose machines -MPP[GiB3], systolic arrays
[Kung78].

The Burroughs Scientific Processor (BSP) is a SIMD computer with a
global shared memory [Ku82]. The interconnection network of the BSP is a
crossbar network. Technological problems limits the size of crossbar
networks : NxM switches are required to cénnect N inputs to M outputs. To
allow a simple control of the processing elements and of the
interconnection network, the designers of the BSP chosed a memory to memory
instructions set. When the machine was designed, the behavior of a
restricted set of vector instructions was optimized. To limit the number
of cases to be studied, a constant increment definition of a vector and a
prime number -17- of memory banks was chosen. Only two cases are
possible : 17 consecutive elements of a vector can be accessed in parallel
or the whole vector is stored in the same memory bank [La75][La82]. The
BSP can reach good performances on vector instructions, but its definition
of a vector was too restrictive; the following loop 1 is treated in scalar
mode.

Loop 1 :
DO 1 I=1,N
A(I)= B(P(I))=C(I)

This loop may be considered as a vector loop in a SIMD machine, but
conflicts may arise during the access to vector B, these conflicts have to
be treated at the level of the address network : two addresses for the
Same memory bank cannot flow out from this network at the same time —it is
obvious that to guarantee the signification of a vector access, the

decisions taken for the routing of the address network and for the routing

of the data network must be the same. When pfioriﬁy rules are used in this
treatment, the loop 2 may also treated as a vector loop :
Loop 2 :

D0 2 I=1,N

A(P(I))= B(Q(I))*C(R(I))

» Unfoftunately,'the general treatment of conflicts in a crossbar network is
very expensive : its complexity increases with the square of the number of
memory banks of the computer and this treatment cannot be pipelined becadse

the rejected requests must be treated at the following cycle.

Other interconnection networks have been proposed to increase the size
of the SIMD computers [La75][Le78][WuB0] [Se84][SeB6]; but the problem of
indirections treatment -—as in loop 1 or in loop 2- has not been solved ,

even for small sizes of multistage networks.

2.MIMD computers

Performances of the SIMD computers on non-vector code are very bad;
other forms of parallelism may exist in scientific programs. The family of
MIMD computers (Multiple Instruction stream, Multiple Data stream) can také
advantages of these other forms of parallelism — independent tasks.

As recall in the introduction, we can classify the MIMD computers in two
subfamilies the loosely coupled MIMD computers and the tightly coupled MIMD
computers. The two families correspond to two different approaches of the

programmation of parallel computers.

When programming loosely coupled MIMD computers, one must'divide its
program in large tasks where the amount of computation is large versus the
amount of data transfers. Classical programs cannot be automatically
adapted to this structure of computations. New programs must be written
for this family of computers.
| On the other hand, it is often possible to write relatively short tasks
in programs. 0On a loosely coupled architecture, the time spent in data
transfers would be too long in regard to the amount of computation. When
using a tightly coupled MIMD computer, all the data are accessed in the
global memory; transfers of data between two tasks does not really exist :
the different processors have the same rights to access all the memory.
The major problem when designing a tightly coupled MIMD computer is the
interconnection network; in a SIMD computer like the BSP hardware treatment
of conflicts on the network is avoided by the restrictive definition of the
vectors, in a MIMD computer this treatment must exist : there are no
relations between the accesses done by two distinct processors. This
explains why tightly coupled MIMD computers have generally less than 16
processors.

Automatic detection of parallelism in classical programs may be used to
generate code for tightly coupled MIMD computers because automatic

detection generally generates very short tasks.

III The goals
1.5ome examples of ”parallel” loops
On a few examples of loops, we try to point out the limitations of

existent tightly coupled architecture -K processors.

1.1 A pure vector loop
Let us consider the following loop :
Loop 4

00 4 I=1,N

A(I)=B(I)+CxD(I)

This loop is.treated . as a vector loop by all the existent multiprocessors :
there are.no dependencies on the distinct iterations of this loop, no
problems exist for the parallel treatment of this loop neither on SIMD
computers nor on.MIMD computers.

>In SIMD computers, slices of A K consecutive elements can be simultaneously
accessed in memory.

>In MIMD computers, a Kt of the N iterations, is assigned to each

processor.

1.2 Vector loop with a gather access

Let wus consider the loop 1 ; vector is read by indirection through
vector P.
>In a SIMD computer, slices of K consecutive elements of vectors P, C and A
are simultaneously accessed in the memory. A problem exists to access
vector B : may be there are some conflicts on the memory; e.g B(P(1)) may

be stored in the same memory bank as B(P(2)), this broblem»may be solved at

10

the level of the address network, only one address to each memory bank is
routed in a cycle —the remaining addresses are routed at the following
cycles; then all the processing elements are waiting for the arrival of the
last element of the slice of B.to perform the multiplication.
D>As in the previous example, in a MIMD computer, a Kth of the iterations is
assigned to each processor.
1.3 A vector loop with a scatter access

Let us consider the loop 2;
>As in the previous example, in a SIMD computer the accesses to vector B
and C can be done in parallel with a treatment of conflicts on the address
network; accesses to vector A cannot be performed in an arbitrary order :
when P(J)= P(K) and J<K, the write of A(P(J)) must be performed before the
write of A(P(K)). To alwayé respect this condition, it is sufficient to
impose static priority rules of the address network : an address computed
by processor i has the priority on an address computed by the processor j
if i<j. With this condition, loop 2 can be executed as a vector loop on a
SIMD computer.
DFor MIMD computers,l in the two first examples no synchronization
primitives have to be used; but for loop 2 synchronization primitives must

be used and then will strongly damage performances.

1.4 A loop of independent tasks
Let us consider the following loop 5:
Loop 5:

DO 5 I=1,N

DO 6 J=1,1000

11

A(I,J)= B(I,d)+1
-~ IF -A(1,3)>0 THEN GOTO 5
6 CONTINUE

5 CONTINUE

>Nor the internal loop 6 neithér the external loop 5 can be considered as
vector loops : this loop must be considered as a scalar loop for a SIMD

computer.

>The iterations of the external loop 5 are independent; they can be
distributed on the processors of a MIMD computer, no synchronization

primitives have to be executed during the iterations.

1.5 A vector loop with possible dependencies between successive iterations

Loop 7:>
Do 7 I=1,N

7 A(P(I))=A(Q(I))
Neither on SIMD computers nor on MIMD computers, the parallel execution of
this loop is possible; dependencies may exist between two iterations of
this loop, threé forms of dependencies are possible :

>Q(J)=P(K) with I>K :the write of A(P(K)) must be performed before the

read of A(Q(J)) —Read After Write (RAW).

>P(J)=P(K) with J>K :the write of A(P(K)) must be performed before the

wfite of A(P(J)) —Write After Write (WAW). »

>P(3)=Q(K) with J>K :the read of A(Q(K)) must be performed before the

write of A(P(J)) -Write after Read (WAR).

12

Cytron [CyB4] proposed a mechanism to treat in parallel this family of
loops; its proposition consists in insertiﬁg delays betwe;n the beginning
of the successive iterations to ensure the respect of the dependencies,
This is not very efficient : in loop 7, there are only four accesses to
the memory and only the accesses to P and Q can be done before the total
end of the previous iteration. 1If vector A is large, real dependencies are
very rare; this will be very interesting to be able to treat in parallel

the iterations where no dependencies occur at execution.

2. The challenge

In the previous paragraph, we have pointed out that existent tightly
multiprocessors are not efficient on a lérge family of algorithms -SIMD
computers are not efficient on non-vector code, MIMD computers are not
efficient on codé where there are possible dependencies.

It is unrealistic to hope to distribute the more internal loops of a
program -regular or non-regular- on séveral distinct clusters of
prccessors, e.g. loop 1 and loop 2 must be executed by only one cluster :
the whole vector B must be accessed in a minimum delay.

Designing a cluster which is powerful on non-regular code is very
important :

®As SIMD computer with a very large number of processing elements can
be designed [SeB84], performances of general multiprocessors will be
judged on non-vector algorithms!

oIf performances of the clusters on non-regular cnde are sufficient,
programming a supercomputer which includes a level of loosely coupled

parallelism will be ‘easier, one will have only to divide its programs

13

in large tasks where the amount of computations is large versus the

amount of data transfers between the tasks.

Our goal is then to design a tightly coupled multiprocessor which is
actually efficient in parallel on a very large spectrum of algorithms

without rewriting programs,

This spectrum must include all classical vector loops, veétor loops with
scatter and gather, loops which can be divided in independent tasks and
also the loops where possible dependencies may occur.

This last family of loops is . very important; indirections create
possible dependencies in a lot of codes :

" Loop 8 :

DO 8 I=1,N
AP(I))= ..
8 .= AQ(D)) + ..

Many loops have this structure, they are generally considered as scalar
loops. But in general cases when A is a large vector there are no
dependencies between several iterations of ‘the loop, it would be very
‘inieresting to be able to éompute the successive iterations of this kind of

loops in parallel when no real dependencies occur at execution.

14

IV Address Synchronized Multiprocessor Architecture : principles
1.Principles |

In a program, the order of the accesses to the same location in the
memory is a very significant order; the three forms of dependencies we have
presented in III.1.5 must be respected. Respecting the WAR dependencies
and the WAW dependencies is not a difficulty on a monoprocessor. It seems
natural that a read instruction can immediatly be executed by the memory as
a write_instruction must wait for the data to be written; it is also
natufal to impose to the results to flow out from the processor in the good
order. These two constraints do not greatly affect the performance of a
computer. On the other hand in [JeB6], we showed that it is critical to be
able to pass the write by the reads in a pipeline processor and that this
passing the writes by the reads must be treated by an hardware mechanism of
treatment of RAW hazards and not by software tools.

As on a monoprocessor, on a tightly coupled multiprocessor the WAR and
the WAW dependencies may be treated by imposing a write to be performed
after all the reads and writes on the same memory bank which have been

received before it.

In [JeB6], we also showed how to respect the signification of a sequence
of memory accesses when using a monoprocessor and a single flow of memory
requests ; when using a multiprocessor, the accesses to the memory are
performed by several processors at the same time. Two or three processors
may want to access the same memory bank at the same time; the hardware has
to give a signification to any sequence of accesses —which processor has
the priority 7-; it must aiso garantee a unique signification and avoid

deadlocks.

15

This has lead us to the definition of the Address Synchronized
Multiprocessor Architecture (ASMA).
In an ASMA computer, the processors are synchronized through the memory by '
the addresses
ethe internal sequencing of the processors are independent.:
ethe only relations between the processors are performed at the level of -
the requests on .the memory. The hardware gives a signification to RAW
hazards induced by multiprocessing.
ethere may be different modes of computing. We will defined three modes?

Others may be (?) imagined.

2.5lice mode

We have seen in the previous sections that a very large set of
aléorithms may be treated as "vector” loops for a SIMD computer when one
garantees static priority rules on the request interconnection network -
Loop 1, 2, and 3 may be treated as vector loops.

The slice mode is introduced to treat this family of algorithms :
Definition :When processing in the slice mode, the requests are routed by
slice of - K requests addresses to the memory —-K is the number of
erocessors—, each processor must produced a request : the requests are
routed when the slice is éompleted ~some requests may be null requests
introduced to complete the slice, e.g. for the treatment of the uncomplefe
slice of a vector 'instruction. When conflicts occur -i.e. more thén one

address concern a single bank memory— statie priority rules on the network

ensure that the address coming- from processor i does be treated -i.e.

16

performed for a read, or stored in the RAW mechanism~ by the memory bank

before the address coming from processor j if "i>j.

The slice mode supposes the existence of an hardware tool to detect if
all the processors have produced a request.

But it allows to treat in slice mode all the ”vector” loops previously

considered e.g. loops 1 and 2. The main difference with the vector

execution in a SIMD computer is that we have not imposed the data accessed

in memory to be routed in slice mode. This allows to treat the following
£

loop as a vector loop at the condition to dispose a read-modify instruction

access on the memory :

Loop 9
DO 9 I=1,N

9 A(P(I))= A(P(I))+V(I)*C(Q(I))

There are possible dependencies between two successive iterations of.this
loop, parallel treatment of this loop is impossible on a SIMD computer
because in a SIMD computer all the processing elements must perform the
same instruction on different data, e.g. when P(5)=P(1), A(P(5)) must not
be read before A(P(1)) has been written, but on a eight processors SIMD
computer the new value ofA(P(1)) cannot be computed and written before the
read of A(P(5)), the loop 9 must tﬁen be sequentially treated.

The slice mode allows a parallel execution of this loop, this is very
interesting because if vector A is large versus the number K of processing

elements the real dependencies which occur at execution are very rare.

17

3.Free mode

The free mode is intrqduced to treat independent tasks on distinct -
processors of the same multiprocessor; from our point of view,
synchronization sections have to be very rare and the programmer has to
accept an important cost for these sections. Our basic goal was to allow
the parallel treatment of loops of the form :
Loop 10 :

DOALL 10 I=1,N)

10 CALL TASK(I)

where only local variables are modified by TASK(I) —i.e. if a variable is

~modified by TASK(I), it is not read or modified by TASK(J) for J#I.

Definition : Assuming that a request is either routed to the memory or
refused and resubmitted at the following cycle, in the free mode, there are
'no synchronizations between the memory requests of the different processing

elements.

This definition avoids hardware gulty deadlocks between tasks executed
by distinct processors :

Proof :

One can give a date to each request : the cycle when it is arrived on
the memory bank, if we consider the whole set of requests which are
present on the memory at a moment, it exists a fequest which date is
minimum, unless software errors this request will be executed.—if the
request is a read, it may be performed at the moment, if the request is

a write, as the operands necessary to compute the data to be written

18

have .been ‘read because these read requests are older than the
considered write —the resubmission of the same request by the processor
ensures that successive requests flowing from the same processor have
successive dates—, this data will be available in a finite delay. Then
no hardware gulty deadlocks are possible.
Q.E.D.
This datation is very important : when there is no mean to date the
requests, deadlock may arise on memory as in the following example :

Exampie 11:

Processor 1 Processor 2
READ A > R1 READ B & Rl
WRITE R1 > B WRITE R1 > A

A is located in bank 0, B is located in bank 1; if there are no
datation of the requests coming from a same processor -i.e if the
requests coming from the same processor may enter the memory banks in a
distinct order from their departure from the processor (this may occur
in multistage networks with redundant pathes and memorisation of the
rejected request)-, the following situation may occur : the two write
requests enter the memory banks at the cxcle t and then the two read
requests enter the memory banks at the cycle t+l; the two memory banks

are thenwaiting for data which cannot arrive.

One can remark that we can use the read-modify request on memory to
implement synchronization sections in programs, and then the machine can be

programmed as a classical tightly coupled MIMD computer; but in our mind,

19

tasks where a. lot of synchronization sections are necessary have to be
avoided.
4.Iteration mode

We have pointed out_ that in .many loops possible but not frequent
dependencies exist. We have also seen that perforﬁance of existent
machines on this family -of loops is very disappointing : very poor
parallelism is exploited in these loops.

The mwain idea to allow parallel execution of loops where possible
dependencies exist is to disconnect the production of the addresses for the
- requests on the memory and their consumation by the memory banks —i.e.
.their treatment by the RAW meéhanism.

When we consider the ‘loop 7, vectors of indirections P and Q may be read
in slice ‘mode —-more than one slice of vector P and Q may be read—, then the
whole set of processors commutes in iteration mode and computes in parallel
the addresses of A(Q(I) and A(P(I)); these addresses are routed the memory
banks, but at the level of the memory banks the addresses enter a FIFQ
queue associated with the processor origin of the requests. Requests for
the Ith iteration are treated by the memory bank when it has treated al]
the requests of the previous iterations i.e all the reads for the previous
iterations have been initiated, all the writes have been treated by the RAW
detection mechanism, and no requests concerning the previous iterations can
arrive later —a processor must annouﬁce to all the memofy banks that it has
ended the send of the addrésses of an iteration,

This mode is particulary intere;ting, it allows parallel execution of a
lot of loops which were previously considered as sequential lqops; the

efficiency of a vectorizer becomes less critical on machines which have the

20

iteration mode of execution because performance is only damaged by the real
dependencies and not by the possible dependencies. We hope that the
existence of the iteration mode will decrease the ratic of algorthms with

tasks communicating by synchronisation sections.

The existence of the iteration mode seems to be very expensive in
hardware : in each a FIF0 queue of requests associated with each
processor, a mechanism to select the good FIFO queue of requests, .. .
Efficiency of the iteration mode can also be discussed when using a
classical crossbar network : we can imagine that al]l the memory banks are
reading data for the same processor, the crossbar network can only accept
one data for this processor; this example proves us that the real
throughput of a crossbar network in iteration mode may be very small. 1In
the next section, we present an original interconnection network we have
imagined for an ASMA computer, this network may accept a datum by input
even when several of them have the same destination. The amount of

hardware required in the design of this network is not very large besides

the functions it executes.

V The GREEDY network : an interconnection network for an ASMA computer
\

1.Some limitations of the crossbar network

The major limitations which have been pointed out for the crossbar
network in the past generally concernlthe limited size of the crossbar
networks that can be actually built. This size seems to be limited to
around twenty inputs and twenty outputs. We does not think that the real

limitation of the érossbaf network is due to its limited size; the real

21

limitation of a crossbar is' due to the necessity to treat destination
conflicts-: .informations —i.e the desfinations of all the elements to be
routed— must be centralized and the major problem is the impossibility to
pipeline the hardware treatment of conflicts -a rejected request must be
submitted again on the following cycle.

Another problem which ‘appears on a crossbar .network when using in a
tightly coupled MIMD computer, is the problem of the real throughput of the
network. For example, when submitting 16 requests arbitrary distributed on
a 16x16 crossbar network, only an average,of 10 requests are accepted, the
others must be submitted- again on the : following cycles; this limits
automatically the speed-up. when computing on independent flows of data
arbitrary distributed to a factor of around 10 for a MIMD computer with 16
processors. Moreover we have pointed out ~at the end of the previous
section that the decrease of performance on iteration mode due to a
crossbar network may be huge. - So we have imagined an interconnection
network the GREEDY network which accepts a request on each input- even when

several destinations are the same.

2.The GREEDY network
2.1.0rigin and definition

In [Je86], we have developped an original model of pipeline architecture
~the Data Synchronized Pipeline’ Architecture (DSPA); our " goal Qas to
conceive a pipeline1processor which .is -efficient on the same spectrum of
algorithms we have defined in the section II. The model ASMA is developped
to take part of this pipeline processor. In our mind, each basic processor

of an ASMA computgr is a DSPA processor, even if the theoretical model can

22

support other basic processors. From our point of view, it is very
important to support the three modes of computing defined in the previous
section : DSPA increases efficiency of a monoprocessor on a lot of
non-regular algorithms by a factor of three or four, we think that if
iteration mode can well perform on a 16 processors.ASMA computer, a new
factor around ten may be won on the performance on this family of
non-regular algorithms.

In DSPA, the distinct functional units (FUs) communicate the data
through FIF0O queues, and'their sequencing are totally independent; a FIFO
queue is associated to each patﬁ between an output of a FU and an input of
a FU -may be the second FU is the same as the first one; the operands are
read on the origin FIFO queues, the results are written in the destination
FIFO queue; synchronization is done by the data which enter the FIFO queues
-when an origin FIFO queuve is empty, the FU does not work until a datum
enter the FIFO queue. The interconnection scheme of a DSPA processor has
lead us to imagine an original interconnection network to link together
memory banks and the processors in an ASMA computer.

Definition (fig.5): |
A N#M GREEDY network is a N inputs M outputs crossbar network where each

crosspoint has been replaced by a FIFO queue.

First we can remark that a GREEDY network can accept a datum from each
input at each cycle and a datum may flow out from the network on each
output at each cycle. When a FIFO queue is full, the GREEDY network must

refuse a datum, but one must note that this information is local } it is

23

the state of one FIFO quéue, the other FIFO queues may -continue to work
independently.

If the definition of the GREEDY network is very simple, it does not
solve the problem of the control of the network; the three modes defined in
section IV corresponds in fact to three different modes of confrolling the

" GREEDY network used as address network.

2.2 Slice mode
In the slice mode, the requests are fouted‘by slices of K elements (K is
‘the number of processors). When computing in slice mode, the requests does
not enter the GREEDY address network before the slice is comgleted. When
the slice is completed, the requests enter the GREEDY network and are
stored in the FIFO queues associated with the path between the processor
and the memory bank. In eacH memory bank, there is a memory sequencer unit
(MSU), this MSU receives from each processor a one bit bus : on this bus,
the information ”the request concerns this memory bank” is coded. Thg
whele vector of informations is stored in a FIFO queue (width K bits) in
the MSU; an immediate optimization consists ‘' in storing this vector only if
there is some request concerning the memory bank.
The treatment of the requests in a memory bank M is then very simple :
l.Extraction of a vector V of K bits in the FIFO queue,
if the FIFO queue is empty then GOTO 1.
2.1f there is no nonnull element in V then GOTO 1,
X <-- number of the first nonnull bit

V(X)=0 N

24

3.Extraction of a request in the GREEDY network from the FIFO queue
associated to the pair (X,M) and immediate treatment by the RAW

mechanism, GOTO 2

It is obvious that the sequence we have described respects the order of the
accesses to the memory which have been induced by the slice mode
definition : treatments of requests on a memory bank are done slice after
slice and in the same slice the priority to the request coming from the
minimum numbered processor is respected. The hardware required in the MSU
to perform this treatment is very simple : a FIFO queue and a priority

encoder.

2.3.free mode
The difference between the slice mode and the free mode is only the
absence of synchronization at the entry of the address network, so at each
cycle in free mode a request -when it has been produced- enters the GREEDY
address network in the FIFD queue associated with the processor and the
destination memory bank. As in slice mode, on each cycle the MSU of each
memory bank receives the vector of bits describing ”"the request of
processor i concerns this memory bank”. The MSU sequencing is exactly the

same as in slice mode. .

One can easily verify that no hardware gulty deadlock is possible in

free mode.

9

25

2.4.1teration mode
As in free mode, the requests may enter without synchronization at the
entry of the address network; the difference with the other modes is at the

level of the consumation of the requests b9 the MSUs of the different

.functional units.

Fon-the slice and the free mode, the MSU considers vectors ' of bits; for

.}teration mode the consumation of the requests must be done producer after

producer.
Several solutions may be imagined to implement the - iteration mode; for

example, the following sequence can be repeated :

1 REPEAT

_treatment of requests of processor i
,UNIIL_Request:End of iteration;
i=i+l;

GOTO 1

wé have here supposed that the information “End of iteration” is diffused
from thebprocessor to the whole set of memory benks through the GREEDY
network. This solution may be considered as a very cheap solution to
implement the iteration mode because it requires no special developments of
hardware for this specific mode. But we think that this is not the good
solution : the MSU -and then the memory bank- is automatically busied
during a cycle by each iteration -by the instruction "End of iteration”.

Efficiency of the iteration would be bad on very short loops —e.g. 1loop 7.

26

We think that introduction of the iteration mode in the machine may
justify some cost of hardware development. - Then we propose to treat the
iteration mode at the MSU level.

Principles :
The MSU countains a one-bit large FIF0 queue associated with each
processor.
When a requests from processor i concerns the memory bank a 1 is stored in
the associated FIF0 queue, the request End of iteration” is diffused to
all the memory banks and then a 0 is stored in the associated FIFO queue.
The requests are treated as following :
The bank treats the requests coming from processor i until the head of
the FIFO queue is a 0, then it jumps to the treatment of the requests
of the next processor for which the associated FIFO queue —in the MSU~
is empty or begins by a 1 -all the FIFO queues which have been ignored

because of their heading by a 0 have to advance.

Such a hardware mechanism allows to reach a good throughput of the
memory bank in iteration mode even. on loops where only a very little number

of accesses are done on the memory —e.g. in loop 7.

2.5.Some examples of efficiency of the use of the GREEDY network

The very simple treatment of conflicts on a GREEDY network allows to hope
the reaching of the asymptotic throughput of max(N,M) data by cycles even
when the requests presented to the network on a cycle concern the same

output. We illustrated this on a few examples

217

When the indirect accesses are uniformly distributed on the memory
banks, .loop 1 and 2 run af full speed in slice mode —i.e. each memory bank
really performs an access by cycle. If no real dependencies occurs loop 9
also runs at full speed when the indirect accesses are uniformly
distributed.

Let us consider the following loop :
. Loop 12:

DO 12 I=1,N

DO 13 J=1,M
13 ACI)=A(I)+ B(I,J)

12" CONTINUE

When executing this loop, it is natural to consider the external loop 12 as
a vector“lgpp_to minimize the number of reads and writes on the memory,
addresses of K elements of a line of B are then produced in parallel. When
B is stored in FORTRAN i.e. columnwise, problems will appear in the cases
where the number of columns in B and the number of the memory banks are not
. relatively prime : on each slice of line, conflicts appear on the address
_network. .Using a GREEDY network, these conflicts are solved by the

network, and after a start-up delay the computer will run at full speed.

'Another example of the efficiency of the GREEDY network is its efficiency
tﬁ perform the perfect-shuffle :

Generally, on general-purpose supercomputers the address unit cannot
produce at full speed the addresses to perform in parallel a
 perfect-shuffle, the simplér aigorithm to perform the perfect-shuffle in

‘parallel is to execute:the,following loop :

-\

28

Loop 14 -
DO 14 I=1,N
B(2¥I)= A(I)
14 B(2xI+1)=A(I+N)
When using a GREEDY network, this ioop will run at full speed in slice

mode .

3.About the GREEDY network in an ASMA computer

3.1.The read network and the write network

In the previous section, we have essentially presented the routing of
the GREEDY address network. In fact, three GREEDY networks have to be used
in a ASMA computer -the address network, the read network and the write

network. Controlling the read network and <the write network is very

_simple; we detail here the control of the GREEDY read network.

In a processor, the acquisition of the data from the GREEDY read
network by the Data Acquisition Unit (DAU). When routing a read
address. in the GREEDY address network, the number of the memory bank
destination ié stored in a FIF0 queue in the.DAU. To obtain the data
coming from the memory in the same order their reads addresses have
been computed, tHe DAU reads its FIFO queue and uses this value to read
the origin FIFO queue of the datum ~the DAU waits until the designed

FIFO queue is not empty.

One can remark that the DAU is very simple and has to be compared with
the hardware mechanism which would be necessary to reorder the data flowing

from a crossbar network; these data would have to be stored in an

29

intermediate support because if it is easy to ensure that data coming from
the same memory bank are in the good order, in a MIMD computer it is nearly
impossible to guarantee this condition for data flowing from distinct
memory banks.

Another remark must be done; when using crossbar networks as address,
read and write‘networks a lot of informations must be passed through the
networks with the data to allow the association of the data and thé
requests : number of the origin processor for the address and the write
networks, number of the origin memory bank for the read network.

3.2 Extensions towards outside of the processing unit

We have described the GREEDY network between a set of processing
elements which execute numerical algorithms and a memory divided in logical
memory banks; all the processors were considered to have the same status
but one can hope to have " other processors to perform exchange with other
ASMA computers to allow the third le&el of parallelism or a unit of
secondary. memory —may be disk units or global memory shared with others
ASMA computers. Entries on the GREEDY network may be affected to these

processors

3.3 The feasability of the GREEDY network

Our project consisés in the design of a 16 processors ASMA computer in
which the basic procéssor is a DSPA processor. The efficiency of this
computer will greatly depend on the availability of a GREEDY network. The
feasabi'ity of the GREEDY has been proved [CoB6]. The basir chip of the
GREEDY network will be a 4x4 GREEDY network of 12 bits width FIFO queues

and about 32 words by FIFO queues. The development of such a cell appears

30

to be very important, three 2016 (or 16% 20) GREEDY networks are necessary
—inputs on the write and address networks are foreseen for external
communications, outputs on the read networks also—- and the internal
interconnection scheme of the DSPA processors will also use this cell as
basic cell : about 600 cells of this type will be used in the design of

one 16 processors ASMA computer.

VI Conclusion

We have presented a new model of tightly coupled architecture; this new
approach of synchronization of the processors at the level of the addregs
network allows a very good efficiency on a large spectrum of algorithms
which includes the classical vector algorithms, the generalized vector
algorithms with scatter and gather accesses to the memory, the whole family
of problems that can be divided in independent tasks and a large family of
loops which were generally considered as scalar loops.

The introduction of the iteration mode seems to be a major step in the
advance of tightly coupled architecture : all the loops where there is no
external jumps can be treated in this mode, the efficiency of vectorizing
techniques [C182] becomes less critical.

The implementation of the three modes of computing 1is really possible
because of the introduction of the GREEDY network. The control of this
network is very original for use in tightly coupled multiprocessor : the
producer can always send its data in a FIFO queue, but the consumer must
explicitly read the data on FIFO queues. This has allowed to implement the
thfee modes of computing at the 1level of the address network. The average

throughput of the GREEDY is also greatly increased besides the average

31

throughput of a crossbar network. The cost of the GREEDY. network seems to
be reasonable besides.. the cost of a crossbar network for . the same size of
network : the hardware treatment of conflicts is. very expensive for a
crossbar network and a lot of hardware is saved in: the. processors and in
the memory banks because of the possible memorization. in the GREEDY
network. The GREEDY network will be easilier extended than the crossbar
network and external. communications may be through this network at a
reasonable cost : inputs or outputs of the networks may be assigned to

~ these communications.

32

BibliJography

(BaB0] J.L.Baer, Computer Systems Architecture, Computer Science Press,
1980

{Baé8] G.H. Barnes & al. "The Illiac IV Computer” I.E.E.E. Transactions
on Computers, vol C-17, pp.746-757, Aug.1968.

[Ch81] A.E.Charlesworth, "An approach to scientific array processing : the
architectural design of the AP120B/FPS l6a‘Family” Computer, september
1981

[C182] N.A.Clifford ” Performance evaluation of three automatic vectorizing
packages” International Conference on Parallel Processing pp235-242
1982

[CoB86] C.Courtel, DESS microelectronique report June 1986 University of
Rennes.

{Cr79] Cray-1 Computer Sysgems, .Hardware Reference Manual, ;ray
Research Inc., Chippewa Falls, WI 1979

[Cys4] R.G.Cytron "Compile-time scheduling and optimization for
asynchronous machines ” Dpt of Computer Science, University of Illinois
1984

{Do85] J.J.Dongarra, "Performance of various computers using standard
linear equations software in a FORTRAN environment”, Computer
Architecture News, pp3-11, march 1985

[Ga83] D.Gajski, D.Kuck, D.Lawrie, A.Sameh, Cedar : a large scale

multiprocessor”, International Conference on Parallel Processing 1983,

Pp524-529

33

[Gi83] P.A.Gilmore ”The Massively Parallel processor (MPP): ‘a large scale
SIMD processor” Proceedingé of SPIE, Real Time Signal Processing VI,
Vol.43l, pplé6-174 1983

[Go83], A.Gottlieb & al., ”The NYU Ultracomputer - Designing an MIMD shared
memory parallel computer” IEEE Transactions on Computers, Vol. C-32,
ppl75-189, feb,1983

[Ho81] R.W.Hockney, C.R.Jesshope, Parallel computers : architecture,
programming and algorithms, Adams Hilger, Bristol 1981

[Ho84] R.W.Hockney, ”MIMD computing in the USA - 1984”, Parallel Computing,l
1985, ppll9-136

[Hw84] K.Hwang, F.A.Briggs, Computer architecture and parallel
processing, Mac Graw Hill 1984

[Je86] Y.legou, A.Seznec, ”Data. Synchronized Pipeline Architecture :
Pipelining}in Multiprocessor Envi;onment” to appear in Proceedings of
the 1986 International Conference on Parallel Processing and in the
Journél of Parallel and Distributed Computing

[Ko81] P.M.Kogge, The architecture of pipelined processors, Mac Graw
Hill 1981 |

[KuB2] D.J.Kuck, R.A.Stokes, ”The Burroughs Scientific Processor (8sp)”,
IEEE Transactions on Computers, vol C-31, pp. 363-376, May 1982.

[KungB2] H.T. Kung. ”Why systolic architectures” Computer, Janvier 1982
p37-46

[Kung78]' H.T. Kung and C.E. Leiserson: ”Systolic arrays for VLSI”
Introduction to VLSI, C.A Mead and L.A Conway ed., Addison Wesley,

271-287

34

[La75] D.H.Lawrie,”Access and alignment of data in an array computer”, IEEE
Transactions on Computers, vol C-24, pp.1145-1155, dec.1975.

(La82] D.H.Lawrie, C.R.Vora, "The prime memory system for array access”,
IEEE transactions on Computers, vol C-31, pp. 435-442, May 1982.

[Le78] J.Lenfant, “Parallel permutations of data : A Benes network control
algorithm for frequently used permutations” IEEE Transactions on
Computers, vol C-27, pp.637-647, july 1978.

[Ra77] C.V.Ramamoorthy, H.F.Li, ”Pipeline Architecture”, Computing Sgrveys,
Mars 1977

[Sei85] C.L.Seitz, ”The Cosmic Cube”, Communications of the ACM, Vol.28,
pp.22-33, 1985

[SeB4] A.Seznec, A new interconnection network for SIMD computers : the
Sigma network” Submitted to IEEE Transactions on Computers.

[SeB6] A.Seznec, ”An efficient routing control wunit for the RSI4”
Proceedings of the 13th International Symposium on Computer
Architecture June 1986

[sie1] H.J.Siegel & al., "PASM : a partitionable SIMD/MIMD system for
image processing and pattern recognition”, IEEE Transactions on
Computers, Vol C-30, pp934-947, 1981 .

[Sm78] B.J.Smith, "A pipelined shared resource MIMD computer ”, IEEE
Proceedings 1978 International Conference on Parallel Processing, pp6-8

[Ta8S] H.Tamura, VY.Shinkai, F.Isobe, "The supercomputer FACOM VP system”,
Fujitsu Sc. Tech. 1. March 1985

[T667] R.M.Tomasulo, ”An efficient algorithm for evnloiting multiple

arihmetic units”, IBM J., Vol. 11, Jan. 1967

35

(N . [we84a] S.Weiss, J.E.Smiih, YInstructions issue logic in pipelined
| supercomputers”, Transactions on Computers, pplOl3-1022, Nov. 1984
[WuB0] C.Wu, T.Feng, ”The reverse-exchanée network” IEEE Transactions on
Computers, vol C-29, bp. 801-811, Sept. 1980.
{wulf72] W.A;Wulf, C.Q.BelLi‘”C.mmp:‘ A multifminifproqessor? Proceedings

AFIPS Fall Joint Computer Conference, 41 (2), pp765-777, 1972

36

R

Interconnection network

1

Local memory[-

Fig.l : example of loosely coupled organization

37

Global‘memory

Interconnection network

Local memory

Fig.2 : example of loosely coupled organization

38

Interconnection network

Fig.3 : structure of a tightly coupled multiprocessor

34

Fiqfa . a node of - the interconnection - network: of tHeé

fnterconnection network of the ILLIAC IV

40

Fig.5 : a 2%2 GREEDY network

Imprimé en France

par
PInstitut National de Recherche en Informatique et en Automatique
[4

&

