N

HAL

open science

An analysis of Girard’s paradox
T. Coquand

» To cite this version:

‘ T. Coquand. An analysis of Girard’s paradox. RR-0531, INRIA. 1986. inria-00076023

HAL Id: inria-00076023
https://inria.hal.science/inria-00076023
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00076023
https://hal.archives-ouvertes.fr

Rapports de Recherche

AN ANALYSIS OF
GIRARD’S PARADOX

Thierry COQUAND

Mai 1986

RE

<4302, £ m

S e AR S

T e e e T e R e T

AT PLT

5

e g

25

X 15

e~

R

-

4

An Analysis of Girard’s Paradox
Thierry Coquand

. CMU and INRIA

Résumé

Le but de cet article est d’étudier la cohérence de quelques systémes formels, particuli¢rement de
généralisations du calcul de Church et du calcul des constructions. Nous montrons que le calcul de
Church est incompatible avec la notion de type du second-ordre et nous appliquons ce résultat pour
montrer que le calcul des constructions 3 quatre niveaux est incohérent. Nous suggérons finalement
des extensions cohérentes de ces deux calculs, ' '

Abstract

We study the consistency of a few formal systems, specially some extensions of Church’s calculus
and the construction system. We show that Church’s calculus is not compatible with the notion
of second-order type. We.apply this result for showing that the calculus of construction with four
levels is inconsistent. We suggest finally some consistent extensions of these two calculi. '

This paper was presented at the First Logic in Computer Science Symposium, Boston, July
1986.

H!!'DPAHEnnthPEnnrnscm.e i

An Analysis of Girard’s Paradox
Thierry Coquand

CMU and INRIA

Introduction

The purpose of this article is to present applications of the Burali-Forti paradox to some formal
systems. The first such application is due to J.Y. Girard, who showed 3] that the original system
of Martin-Lof 17 was inconsistent, considering an extension of Church’s type system with second-
order types. ' ,

There are two parts to this article. The first part is a study of extensions of Church’s higher-
order logic. One extension introduces second order types. We explain why this calculus is incon-
sistent, and apply this result to the type system of Martin-Lof 1) (all the ideas are in Girard's
thesis[13], but the basic construction is sligthly different). Another natural extension is the in-
troduction of ML polymorphism!?!l, which we show is still inconsistent. We note that the same
paradox applies when one tries to extend Church’s system with the notion of a category of all cate-
gorics. However, it is possible to generalize Church’s system with a (weak) notion of polymorphism
in a consistent way, and we present the corresponding type system,

The second part is almost a reformulation of the first in a natural deduction framework, i.e.
we consider explicitely the structure of proofs. A derivation corresponds roughly to a A-term, and
if normalisation entails consistency, it is easy to see that, conversely, the existence of a paradox
entails the existence of non-normalisable A-terms. This A-term represents the explicit writing of the
Burali-Forti paradox in natural deduction’s style. We give two applications: the inconsistency of the
extension of the construction calculus(® with four levels, and the inconsistency of the extension of
the construction calculus with a strong notion of sums 3 la Martin-Lof. We then explain why these
results appear as a first step in the analysis of the Curry-Howard analogy between propositions
and types.

An important point is that these constructions of A-terms have been checked on a computer
(a complete formal hand-checking scems quite impossible). We hope that such mechanisation
of metamathematical results will help us for a better understanding of the (purely syntactical)
phenomena that appear both in mathematical foundations and in the design of type systems for
programming languages.

1 The intuitionistic Church’s calculus

We assume known the basic notions of A-calculus, such as B-reduction. The terms have the
following structure:

1. constants: Prop, Type, =, —
2. identifiers, and numbers (de Bruijn indexes!4)

3. abstraction A(M), where M is a term

4. application (M N) where M and N arce terins

In all the sequel, we adopt, the following notation: if M is a term and z an identifier, then Az M
denotes the following term: first, replace cach occurrence of £ in M by the appropriate munberl‘],
and then make the abstraction. So, the identifier £ does not appear in Az.M. By example, if M

s (x Ay.(y = 2)) (which denotes (z A(1 z 2))) then Az.M will be A(1 Ay.(y 2 z)) (which denotes
AL A(1 2 2))). With this convention, all problems about bound variablés disappear M1, There are
two kinds of variables: identifiers for the “free” variables, and numbers for the “bounds” variables.

The notion of reduction is the usual notion of [}-reduction[zl. This relation is noted “red”. We
write “conv” for the smallest congruence on terms (for abstraction and application) which contains
the reduction. When adding other operators to the pure A-calculus, we shall always indicate the
new rules of conversion for these new operators.

1.1 Types

Types are generated by the following inductive rules

Prop : Type

A Type B :Type
. A—-B : Type

Definition. A type environment for the calculus of Church is a list (z1:A1,...,Ta:Ap) of pairs of
identifiers and types, the identifiers being pairwise distincts. :

We shall denote by v,z : A for the concatenation of the environment 4 and the pair (z, A) (if
z is distinct from all z;), so that (z1 : Ay, ..., Z, : An) is also written z; : Ay, ..., Zq : Ap.

1.2 Terms

Definition. The typing relation is the smallest relation + between type environment and pairs
of identifiers and types such that

Ty: Ay, ...,Zn: A environment 1<i<n
T1:Ap, .y In i Ap bz 0 A;

~ environment
4 +=>: Prop—(Prop— Prop)
~+t: A—Prop
v +1I(t) : Prop -
YHt:A—»B ~qlFu:A
v+ (tu):B
¥, z:A+t: B
7k Azt: A—B)
If vy - ¢ : A, one says that the term ¢ is of type A in the environment «. For example, II(Az.z) is

of type Prop in the empty environment, and Az.z is of type Prop—Prop (note that in the present
presentation, as in Martin-Lof’s"®, we do not have unicity of type).

1.3 The logic
In order to have a logical caleulus, one must first define a notion of provable formulae,

Definition. A v-formula is a term of type Prop in the environment 4, the class of provable
¥-formulae is defined by the following inductive rules

~ Ft is provable ¢ conv u
+ F u is provable
YHt:Prop ~qtu:Prop
vk t=>(u=>t) is provable
y+t:Prop yFu:Prop qFv: Prop
7 F (t=(u=v))=>((t=>u)=>(t=>v)) is provable
7, z: AFT(Az.0)is provable yFHt: A
v F [t/z]p is provable
7,% : A $=>p is provable z does not occur in 9
v F¢¥=II(Az.p) is provable

The only rule of inference is the modus-ponens: if and p=>1 are provable, then 9 is provable.

For example, one can show that =y is a provable formula in the environment ¢ : Prop.
Hence, II(Ap.(p=>p)) is a provable formula in the empty environment.

We have to note two important points in this presentation. Firstly, the system has no special
rules of equality between terms dependant on their mutual type (the only equality here is the
“syntactic” notion of B-conversion), i.e. the system is an intensional one, by opposition, for instance,
to the presentation of Scott-Lambek!!%l, Secondly, the logic of this calculus is the intuitionistic logic,
by opposition to the original calculus of Churchls]; presented in a classical framework. Actually,
these two points are not relevant here, and the discussion we give about Burali-Forti’s paradox
extends as well in the framework of topos theory!!®), and Church’s theory with the axiom o
extensionality. If we want classical logic, it is sufficient to add)

vt @ : Prop
7 F ((p==L)=2L) => p is provable

that is, the usual double-negation law, where L is the term II(Ap.) (which stands for the absurd
proposition of the intuitionistic logic). All the derivations of Burali-Forti paradox are still valid in
- an extensional and/or classical framework.

It is known that all other logical connectives are definable in this calculus!ll. We shall in the
sequel use the common logical notations for denoting their translation in this system. For instance,
if p and 4 are terms of type Prop, then 9 A ¢ denotes II(Aé.(p=>9=>6)=>5), and (3z : A)p denotes
M(A6.T1(\z.p=>6)=>6).

It is easy to prove, using the truth-table (or valuation) method that this calculus is consistent:

Definition. The interpretation J(Prop) is {0, 1}, and I(A—B) is the set of all function from J (4)
to I(B).

Definition. A valuation v of an environment 1 : Ay,..., Z, : A, is a function defined on {zy,..., zn}
such that v(z;) € J(A;) for all ¢ such that 1 < ¢ < n. The value #(t) of a term ¢ of type A in the
environment zy : Ay, ..., Ty : A, is the element of J(A) defined by induction on the construction of

t:

L (x;) is v(=);

2. 9(Xz.u), where Az.u is of type A, is the function defined from A which associate for a € I(A)
the value @(u), where w extends v by putting w(z) = a;

3. (t u)is 0(t)(B(u));

4. 9E) and H(IT) arc the usual semantic meaning of=>and IL
Theorem. The previous calculus is consistent, in the sense that there exist formulae which are
not provable. ' :

Indced, the valuation of a provable formula is 1 (by a direct induction on the definition of the
notion of truth), and the valuation of II(Ap.p) is 0. '

2 Relations between sets and type theory

2.1 Translation of set-theoretic concepts

Since we are going to derive variants of Burali-Forti paradox in various type system, the first
question to address is: how to represent a binary relation in type theory? The answer seems easy:
simply, it will be a pair consisting of a type A and- a term of type A— (A— Prop). There is
however some subtlety in this definition. For example, the naive definition of an embedding from a
relation (A, R) to a relation (B, S), which says that there exists a term' f of type A—B such that
(Vz:A)(Vy: A)(R(z, y)=S(f(z), f(y))) and (3b: B)(Vz:A)S(f(z),b) does not work properly when
one tries to develop relation theory in a type system. The reason is that in general, the relation R
is not “defined” over all the type A, and that the condition (3b: B)(Vz:A)S(f(z),b) is too strong.
One needs to consider the field of a relation, as follows:

Definition. The fleld of a binary relation R over a type A is the predicate over A Az.((y :
A)R(z,y)V (3y: A)R(y, z)). We shall write D(R) for the field of the relation R.

Definition. We shall say that a relation R defined over a type A is embeddembedded in a relation
S defined over a type B, if, and only if, there exists f: A— B such that (Vz:A)(Vy: A)D(R)(z)=>
D(R)(y)=R(z,y)=5(f(z), f(y)) and (3b: B)(Vz: A) D(R)(2)=>5(f(z),b)-

The fact that we have been forced to consider not only a term of type A, but also a predicate
over A, is actually a particular case of a more general phenomenon, which appears in the translation
of type theory into topos theory (151, An object of the free topos will be not simply a type, but
a pair consisting of a type A with a binary relation E: A— A— Prop over it, which is transitive
and symetric (and must be thought of as a partial equality relation over A). In that case, the field
D(E) becomes simply Az.E(z,z) (and it can be thought of as an existence predicate over the type
A). ’

One equality over the type Prop is the logical equivalence. If E is the equality over A and F
the equality over B, we can define an equality over A—B as Af.Ag.(Vz: A) E(z, z)=>F(f(z), 9(z)).

To summarize, we have to relativize mathematical statements with respect to “existence” pred-
icates in type theory. A good example is a statement about a class of predicates. In general,
such a statement is only true for extensional classes, and so one must relativize the assertion
with the extensionality predicate on the type of predicates of predicates. Here is an instance
of this sitnation: if C : (A — Prop) — Prop and C is closed under arbitrary union, i.e. one
has, (VD : (A — Prop) — Prop)(inclus(D, C) = C(union(D))) where union(D) is the predicate

4.

e

T

¥

Az.(3P : A— Prop)D(P) A P(z) and inclus the relation AP.AQ.(Vz : A)(P z)=>(Q =), then we
want to say that the class C contains the empty predicate Py == Az. L. Indeed, if we take Az. L
of type (A—+ Prop)— Prop for the class D (the cmpty class), then we have ine lus(D, C), hence
C(union(D)). Furthermore, union(D) is extensionally equal to Iy, If we want C (Po), we need
something more, namely that the class C is extensional, i.e

(VP: A= Prop)(VQ : A= Prop)((Vz: A) P(z) & Q(z))=(C(P) & C(Q)), for having C(D).

The extensionality predicate is a natural example of an “existence” predicate over a type.

An cxample of “cquality” over a type is the intentional cquality on a type A. This follows
ah idca of Leibniz: two clements z and y of type A-are intentionally equal if the proposition
(VP: A—Prop)P(z)=>P(y) is provable, i.e. z satistics every property that satisfies y. It is possible
to prove that this relation is reflexive, symmetric and transitive (1],

Once we understand how to code sct-theoretical concepts in type thcory“"’] , it is straigthforward
to develop relation concepts, such as order, well-founded relation, the embedding relation between
two orders. It seems actually that this formulation is in practice more suitable than the usual one
in set theory.

2.2 Inadequacy of Church’s calculus

The previous calculus, which is roughly the one of the Principia (withoﬁt so called “typical”
ambiguity), is actually not sufficient in_practice for the development of real proofs in it (but in

a theoretical point of view, it is quite sufficient!). The problem with this system is its lack of

uniformity. The following example will explain this.

Suppose we want to define the notion of inclusion between two predicates. In Church’s cal-
culus, one has to define relative inclusion to a type: if A:Type then the corresponding notion of
inclusion is AP.AQ.(Vz: A) P(z)=>Q(z). But clearly, many theorems about inclusion are completely

“polymorphic” in the type A. For instance, the statement that the inclusion relation is transitive,
as a relation over A—Prop. The same can be said about the notion of transitivity.

It is thus natural to try to extend Church’s calculus by using more general types for capturing
this umforxmty This is precisely what the second-order calculus!!®26] does. So, the motivation for
extending simple type calculus, though in a completely distinct context, was basically the same as
the present one.

In the next section, we shall try to mix this notion of second-order types with the loglc of
Church’s calculus, obtaining a formal system which is fundamentally the system U of Girard!!3l.

3 Extension with second-order types

First, we extend our class of types. We introduce a set V of type variables and allow quantlﬁ-

cation on these variables, so that _
veYV

v: Type
vEV A:Type
(Yv)A : Type
The -symbol V is a binder, and the same convention as the one for A holds here. For example,
(Yv)(v—v) is the concrete representation of V 1—1. The intuitive meaning of (Vv)A is the product
of all types [B/v]A, where B varies through the set of all types. There is clearly a kind of circularity
here, as [B/v]A may be the type (Vv)B as well.
Next, we extend our class of terms. -

~Ht+t: A v does not appear in 7y
A vt (Vo)A

5

s

yEt: (Vo)A DB:Type
yH(t B):[B/v]A
q+t: (Yv)Prop
4 F1I(¢t) : Prop
Note that we allow non-homnogencous application and abstraction, and we extend our notion of
reduction and conversion for these new notions.. J.Y. Girard!®¥ has shown that this calculus has
gtill the normalisation property. A formula of Church’s calciilus with second order types is a term

of type Prop under the previous typing rules. A
We also need to extend our class of provable formulae.

4t t is provable ¢ convu
~ I u is provable

7,v : AF y=>p is provable v does not occur in ¢v
v F y=>TI(Av.p) is provable
4 b TI(t) is provable A: Type
v+ (¢t A) is provable

This seems to take care of our previous objections to Church’s calculus. Now, we can state and
prove “generic” statement. For example, we can define the predicate reflexive on relation as the
polymorphic term Av.AR.II(Az.R(z,z)) of type (Vv)((v—{v—Prop))— Prop).

What about consistency? We have to note that the result of Girard about normalisation
property of the second-order A-calculus 1% shows that there can be no paradox like Russel’s.
Indeed, this paradox lays upon the existence of a non-normalisable term of type Prop. But as
discovered by J.Y. Girard 3], we have inconsistency in the following sense:

‘Theorem (Girard’s paradox). Al formulae of the calculus of Church with second order types
are provable.

This shows that this calculus is not valid as a logical calculus (though we have the normalisation
property for terms). The next section presents a proof of this theorem.

4 Girard’s Paradox

4.1 An abstract presentation of Burali-Forti’s paradox »

Definition. Let (A, R) and (B, S) be two relations. Then a morphism from (A4, R) to (B, S) is a
term f: A—B such that (Vz : A)(Vy: A)R(z, y)=>S(f(z), f(y)) is provable.

The main concept, whose existence entails a paradox in type system, is the following one:

Definition. A universal system of notaﬁons for relations is a type A: Type together with a term
& : (Vo)((v—v— Prop) — A), such that if (B, R) and ¢(C, S) are intentionally equal, then there
exists a morphism from (B, R) to (C, §).

We allow ourselves to use the uncurried notation i(A, R) for (i A R).
Once we have such a system, say Ag : Type and 1q : (Vv)((v—v—Prop)—4y), all we have to do
is to follow the Burali-Forti paradox. We first define the embedding relation

EMB : (VA)(A—A—Prop)—(VB)(B—B—Prop)—Prop

6

Y

as above, and the predicate of well-foundeness
WF: (VA‘)(AﬂA—»Pr()p)——vPr_'op
in the usual way. We then define a predicate wfy ovér Ag:
wf = Az.(3B)(3S : B—+B~Prop)(z = iy(B,S) A WF(B, §)),
where = denotes the intensional equality over A. We define in the same way
. emb : Ag—Ag—Prop,

where emb(z, y) is ,
(34)(3R : A-»A—Prop)(3B)(3S : B—B—Prop)(z=1y(4A, R) Ay=19(B,S) AEMB(A, R, B, S)).
Note that we neced that Ap is a universal system for proving that emb is a transitive relation.
We can then define
emby = Az.Ay.emb(z,y) Awfo(z) A wfo(y).

The main properties are that we have WF(Ag, embg), and
(VA)(VR : A—A—Prop)WF(A, R)=EMB(4, R, Ao, emby).
But i_t'is straigthforward to show that
| (VA)(YR : A~A—Prop)WF(A, R)>EMB(A, R, A, R)=>L
hence the contradiction, Snce we have then. |
EMB (Ao, embo, Ao, embo)

and 4
EMB (Ag, embg, Ag, embp)==L .

" This derivation can be thought' of as the abstract scheme of Burali-Forti paradox. A type -
system is inconsistent as soon as it is possible to construct a universal system of notation in it.

4.2 Application to Girard’s paradox

We shall now apply this general scheme to the special case of the second-order Church calculus.
We have to construct a universal system of notation for orders. One possiblity is

Ay = ((I1B: Type)((B—B—Prop)— Prop))—Prop.

We shall take g to be the term AB.AR.Az.z(B, R) (this seems to be a little simpler than the one
of Girard’s thesislla]). Our choice is motivated by the usual way of embedding a type A in its
associated type of class (A— Prop)— Prop. This is a general method of construction of class in
the Principia. 28], For instance, we can view pairs over the types A and B as elements of type
(A—B—Prop)— Prop. If R is an equivalence relation on a type A, then an equivalence class for
R is built as an element of type (A— Prop)— Prop. Here, this method solves our problem of the
definition of a universal system of notation for relations.

Lemma. (Ag,1p) is a universal system of notations.

Suppose indeed that i(,(lf,'ll) and 14(C, §) are intentionally equal, i.c. that we have a proof of
e A—-vPrup)I’(i()(B,R))=>P(i0(C, S)).

We have then to show that there exists a morphisin from (B, R) to (C, §). Let MOR be the relation
such that MOR(A, R, B, S) is

(3 : A—=B)(Vz : A)(Vy : A)R(z,y)=S(/(=z), /(y)). ;
We can instantiate the given proof of equality between (B, R) and ¢(C, §) on the predicate A
Q = Az.z(F),
where F is the term .
AD.AT.MOR(B, R, D, T).

Then, Q(#o(D, T)) is convertible to MOR(B, R, D, T'), and as MOR is a reflexive relation, we obtain
in this way a proof of MOR(B, R,C, S). This proves that (Ag, %) is a universal notation system

for relations. ,
Another possiblity!3, is to define Aq as

(Vo) ((Yw) ((w—w—Prop)—w)—w).

This is obtained by copying at the level of types the translation of the existential quantifier in
intuitionistic higher-order logic. We define then iy as the A-term AB.AR.\v.Az.z(B, R).
If we now look back to our rules, we see that the paradox is actually not so surprising: the
operation (Yv)A, where v varies through types, should correspond to a set-theoretic product over
all sets. But such an operation is not allowed in set-theory. . . : L

5 Church’s calculus with ML polymorphism

One can think that second-order types are a too strong mean to allow “generic” statement. we .
shall study now a weaker notion of polymorphism, namely the ML’s notion of polymorphic type.
As a solution of the “uniformity” problem, Milner (21] proposed the notion of polymorphic constant.
I assume known this notion(2l,
The example of the definition of the concept of “inclusion” will be sufficient for understanding
what’s going on. In ML’s type calculus, we are able to define a generic constant INCLUS by .

AP.)Q.(Vz) P(z)=Q(z),
of type ‘
(*—Prop)—(*— Prop)— Prop,

where * denotes a type variable. In the same way, we are able to define a generic constant TRAN-
SITIVE as
AR.(Vz)(Vy)(V2) R(z, y)=> Ry, 2)=>R(z, 2)

of type
(*—*—Prop)— Prop.

Then the term TRANSITIVE(INCLUS) is a well-typed term which cxpresses, in a generic way,
that the relation of inclusion is a transitive one. The fundamental remark of Milner2!! was that

8 'S

the unification algorithin’ of Herbrand-Robinson is well-suited for this kind of type-checkiiig. This
system seems attractive for a practical use of type theory.
But if this weak notion is convenient for the programmation of functionals, it appears to bo too

strong for logic.

Theorem. Church’s calculus with ML’s polymorphism is inconsistent, i.e. L is provable in this
calculus.

The rcasoning is very close to the one in the case of second-order calculus. Indeced, we can
define a generic constant WF, such that WF(R) says that the relation R is well-founded. We can
also dcfine a generic constant EMB such that EMB(R, §) says that R, S are well-founded relation
and that R can be embeded strictly in S (as the previous case of second-order type). Then it is

' possxble to show that WI‘(DMB) is a provable formula, that

(VR)WF(R)=>EMB(R DMB),

and that
(VR)WF(R)=>EM]3(R, R)=>L .
We have then a contradiction, since .
EMB(EMB, EMB)
and
EMB(EMB, EMB)=sL

are both provable.

It is interesting to note that the notion of stratified formula of Quine [24 is very close to this
notion of generic statement. Indeed, the test for checking that a given formula is stratified (24 is
a particular case of the ML type-checking algorithm. See also the derivation of Rosser(2%! of the
Burali-Forti paradox in an earlier version of the system of Quine.

6'Consistenf extensions of Church’s calculus

6.1 Predicative polymorphism

It is worth to note that the language HOL of M. Gordon*, which is a generalisation of Church’s
calculus by using type variable, does not allow the full polymorphism of ML, so that the previous
contradiction does not apply to this calculus.

We shall try to give a consistent formal system which is consistent and allows a (weak) form
of polymorphism, which could be thought of as a formalisation of the type system used in HOL.
We introduce first another constant T'ype; such that Type is of type Type;, and we relativize the
rules of second-order typing in a predicative way, where the environments are now a list of pairs

: A1y...;Tn : An where A;: Type; for 1 < j < n: :

A : Type
A : Typey
7Fv:Type A:Typey
vk (Vv).A : Type,
4Ft: A v does not appear in v
TE ot (W).A

9

vyt (Yv)A 4+ B: Type
vR(t B): [B/v]A
yFt: (Vo) Prop
Ty_l—-—ll () : P_r;p
The important point is that we no longer consider that the types (Vv)A are homogeneous to the
“usnal” types, but belong to Type;. ’

This system sccims to be the right formalisation of the “polymorphism” used in LCF, and to be
the one we have to use for the mechanisation of higher-order logic, as it presents enough uniformity
to develop in a generic way usual mathematic arguments, but is still consistent. For instance, we
can state in a “generic” way the definition of the cquivalence relation related to a preordering, and
the proof that this is an equivalence relation. we can instantiate this “abstract™ situation on a
“concrete” given preordering, by example the inclusion, and specialize both the definition and the
proof, obtaining thus the concept of extentional equality, and the proof that this is an’ equivalence
relation.

In practice, it is nccessary to synthetize types arguments, with a mechanism analogous, but less
general, than the type-checker algorithm of ML. This system appears as a formalisation of the type
system of the Principia, with the notion of “typical” ambiguity. This synthesis facility is present in
LCT and the systern HOL of M. Gordon (1], We have seen that the polymorphism of ML cannot
be used in a logical calculus.

6.2 Introduction of a sum operator

We can add a sum operator over types, i.e. we introduce the pairing operation (M;, Mz) and
the two projections 7y and w3 (with the new conversion rule that m;(M), M;) is convertible to My
for j =1 or 2). We introduce also the new binder (Zz : A)B and the rules

~,v: Typet B : Type
v F (Zv : Type)B : Typey
yHA:Type yh+t:[A/v]B
v+ (A,t): (Zv: Type) B
aFt:(Zv: Type)B
v+ wy(t) : Type
vkt (Sv: Type)B
v E ma(t) : [my(t)/v]B
We define then the notion of provable formula as for the calculus with second-order types. Note
that system is almost the same as the one of MacQueen!!®), but here we have furthermore a logical
calculus, i.e. a notion of proposition and of provable formula.
The truth-table method used before for Church’s calculus show that this calculus is consistent.
It is actually possible to extend it more by the addition of a hierarchy of cumulative universes of

the predicative system of Martin-L5f!19. This type system seems the right formalism for describing
modules in ML [16).

6.3 Addition of “small” products and sums

It can be useful to extend the previous calculus by the addition of small product (Ilz-: A)B
and sums (Zz: A)B, with A : Type, and the following inductive rules:
7FA:Type ~,x: At B: Type
v+ (Ilz+ A)B: Type

10

{\

Y- A:Type. y,2: AF B: Type
v+ {8z : A)B: Type
F:(Tlz:A)B qy+¢t: A
yE(Ft):[t/z]|B
yHFA:Type ~,z: A+-F:B
vk Az.F : (Iiz : A)B '
yFA:Type ~,z:A-DB:Type yHt:A ~yFu:|t/z|B
Yt (t,u): (Zz: A)B
vHt:(Ez: A)B
Yhm(t): A
Nkt (Sz: A)B '
v+ wa(t) : [71(t)/z]B
7YHA:Type y+t:B AconvB
THt: A
The notion of provable formula is determined by the same rules as for Church’s calculus, and

‘a truth-table argument shows that this calculus is consistent.

Actually, the present generalisation of Church’s calculus can be done independently of the
introduction of products and sums over types. But the combination of the two notions (respectivally
“small” and “large”) seems powerful enough for the natural expression of a lot of mathematical

concepts. :
In the system with both “small” and “large” products, we can axiomatize categories as follows.

In the context where:
A : Type,
Hom : (Ilz : A)(Ily.: A)Type,
E: (lz : A)(y : A)Hom(z,y)—Hom(z,y)—Prop,
id: (Ilz : A)Hom(z, z),
and »
o: (Ilz : A)(Ily : A)(Ilz : A)Hom(z,y)—>Hom(y, z)—Hom(z, z),
we define CAT (A, Hom, E,id, 0) as saying that A is the type of objects of a category determined
by-the congruence E(z,y) on Hom(z,y) if z : A and y : A, the identity ¢d(z), and the composition
(1],

0

The formal typed system presented here secems to be the natural one for an amomatnsatlon of
categories. Note that in this formal system, there is an object which represents the category of
“small” categories (built in a straigthforward way as a sum), but this object is of type Type,, and

go it is not itself a small category. It is then natural to ask if it is possible to add some special
constant to this calcilus, so that we capture formally the idea of the category of all categories.

1

7.CAT is not a CAT

It appears actually that it is possible to apply the ideas used in the typed-checked paradox
to derive a contradiction from the fact that there is a category of all categorics. We present, first
our argument in an informal way, showing that our argnment is independant of the underlying
formalisation (here, higher-order logic with Church’s type system).

Definition. Let C be a category, the order R(C) is defined on obj(C) by R(C)(a,b) if, and only
if, C(a,b) is non capty and C(b,a) is empty; then we shall say that C is well-founded if, and only
if, R(C) is a well-founded ordering.

Definition. Let C and D be two categories, then a functor F between C and D is said to be
dominated if, and only if, there is an object y of D such that, for every object z of C, we have

R(C)(F(z),)-

Proposition. The “category” which has for objects all well-founded categories and for morphisms
the identitics and the dominated functors does not exist.

The reason is that we can reproduce the typed-checked example if such a category exists., as
this category, if it cxits, must be both well-founded and such that there exists a dominated functor
into itself. ‘ : :

All this argument was dcveloped in an informal way, but it is possible to apply it to a precise
formal system which extends Church’s system by the addition of a category of all categories.

We add to the calculus of the previous scction a special type Cat : Type, with the constants ¢,
pj, for 1 < j <5, the rules

v + CAT(A, Hom, E, id, 0)
7+ (A, Hom, E,1d, 0):Cat
7Fz:Cat

7‘ F CAT(pi(z), p2(z), p3(z), pa(z), ps(z))

and the rules of conversion that say that p;(z1, z2, Z3, Z4, z5) is convertible to z; for 1 < 5 <6.

The special type Cat can be seen as the type of objects of the category of all category. Indeed,
we can define terms E,Hom,id, and o, such that (Cat, E, Hom, id, 0) represents the category of all
category with as morphisms the functor between categories. We have then i(Cat, E, Hom, 1d, o) :
Cat. The previous reasoning shows that this typed system is not consistent.

For the formalisation of the notion of a category of all categories, it appears thus to be necessary
to weaken the logic (but this logic must be strong enough for the expression of usual categorical
theorem). An approach with only equational Horn'clauses as formulae seems however still possible.

8 The calculus with “Type:Type”

The next application is the inconsistency of the first calculus of Martin-Lofi!"). This can be
seen as the generalisation of the calculus of Church (but, in an intuitionistic framework), where we
add that there is a type T'ype of all types. °

Definition. The class of term of the calculus with T'ype: T'ype is the class-defined by the following
inductive rules ‘

1. Typeis a term

2. an identifier is a term

12

¥y

an integer (de Bruijn index) is a term
if M and N are terms, then (M N) is a term

if M is a termn, then A(M) is a term

= I

if M and N are terms, then II(M, N) is a term

We extend our notion of conversion betwceen terms so that it is the least relation which contains
the B-reduction and is a congrucnce for the abstraction, the application and the product. This
system constructs some typing sequents, i.e. sequents of the form '+ M : P, where T is a list of
typings z : A, where z is an identifier and M, P are terms. Thls relation can be rcad as “M is a
valid term of type P in the type assignment I,

8.1 Assignments

the empty environment is valid
Tis va.hd I'M:Type z doesnotoccurinl
T,z : M is valid

8.2 Type Inference Rule

T is valid
T+ Type : Type
- T'isvalid z occurs in I’ with the type M
TrFaz: M
z: MFN:P
TFAz.N: (Ilz: M)P
I'z: M+ N : Type
"T+ (ITz: M)N : Type
T'tM:(lz: A)R THN:A
T'+(MN):|[N/z]R
T'FM:P THQ:Type P conv@®
TFM:Q

Some comments are necessary, to make the connection between this type system and the pre-
vious extension of Church’s calculus. Note we do not have —, = and II any more, but all these
constants are replaced by the same binding (ITz : M)N, which may be thought of as the product
over the type M of the family N. Indeed, if N does not depend on z, we get intuitively the type
M—N. For getting the = and II of the calculus of Church, the idea is to think of a proposition
as the type of its proof. Then we sce that (Ilz : M)N is effectively the type of proofs of the
proposition M = N if M and N are propositions, and that (IIz : M)N is the type of proofs of the
proposition II({(Az.N)) if M is a type and N is a proof.

The original motivation of this system was the identification of the types and the propositions.
Then Prop is identificd with T'ype and if we write down what becomes the calculus of Church with
this identification, we get this calculus. Each proposition must be thought of as the type of its
proof, but conversely each type also becomes a proposition: namely, the proposition that this type
is non empty. We have no longer any need of inductive rules for the notion of provable formula.

13

We define simply a provable formula {or typ(‘) ag a term M such that M : Type and M as a type,
is non empty. This is a very elegant aspeet of this calculus as a formal system.

There is something wrong however, since the inconsistency of Church’s system with second order
type can be done here. Indeed, as a logical caleulus, the present system contains the intuitionistic
Church calenlus, but also second order quantification over types (as propositions and types are now
ideutificd). So, we get that the “proposition” (IIp : Type)p is provable, i.c., with the definition of
truth, we get a closed term of type (IIp : Type)p. Such a term cannot be in head normal form,
hence it is not normalisable. ’

So we must give up the identification of propositions and types. A possible solution is the

calculus of constructions[o], where we keep only the identification of a proposition with the type of |

its proof, but we no longer identify every type with a proposition.

There have been proposed somne programming or specification langnages which contains the
idea of a type Type of all types, together with the fact that this type is also of type Typel®T. It
is indeed possible, by using ideas from Scott and Martin-Lofl?) to build models of the theory with
Type : Type (in this notion of “model”, the logical side of the calculus docs not appear). Though
the termination property is not the primary concern of the computer programmer, it seems very
important to study the “computationnal® relevance of Girard’s Paradox (what seems to be lost
forever is the possibility of doing proofs about programs in such systems).

9 The calculus o'f(constructions with four levels

“All attemps to strengthen this system (the system of constructions), in particular to temper
with the fourth level, should be very cautious: the Tarpeian Rock is close to the Capitol.” (J.Y.
Girard)

The general idea now is to write all the previous results with explicit proofs. We are going
to apply our results to the study of some extension of the calculus of construction!'%, which is a
general formalism for a mechanical study of higher-order proofs (it seemed thus natural to check
on a computer Girard’s paradox in that formalism).

We present rules of typing of the extension of the construction calculus where we allow - contcxt”
variables and general polymorphism on them. This corresponds t;o the extension of Church’s
calculus with second-order types.

We first extend our class of terms, which are now representing as well proofs and terms.

Definition. The class of term of the calculus of construction is the class defined by the followmg
inductive rules:

1. Type and Prop are terms ‘

. an identifier is a term

. an integer (de Bruijn index) is a term

. if M and N are terms, then (M N) is a term

. if M is a term, then A(M) is a term

- R~ T O X)

if M and N are terms, then II(M, N) is a term

Note that we introduce a binary operator for products. We shall not need then any special
constant such as =; neither special rules of ihference. The motivation is that we shall simply

14

»

express the proposition-as-types principle: we identify a proposition with the type of its proofs, so
that the previous quantifier (Vz : A)p becomes the product TI(A,). Then, A— B is definable as
H(A B). It scems so that for building a type system with an associated logic, all we n(‘od is to
have the A-operation and the product formation. All the (semantic) rule about provable formulae
of Churel’s calculus appear as derived rules of a very simple typing mechanism.

We shall generalize the previous rules of the construction calculus!® 14 , by the introduction of
Type, the type of so-called “contexts”®), and we shall try to extend this (a](ulus with four levels.

9.1 Assignments.

the empty assignment is valid
Tisvalid T+ M: Prop =z does not appear inT
T,z : M is valid
Tisvalid ' M:Type z does not appearinT’
T,z : M is valid
T is valid z does not appear in T ‘
* T,z : Type is valid ' ()

9.2 Type Inference Rules

T is valid -
T+ Prop : Type
Tis valid z occurs in T’ with the type M
'tz M
T'z: MNP
'k Az.N:(Ilz: M)P
T,z: M+ N : Prop
T+ (Iz : M)N : Prop
T,z2: MF N : Type
't (Iz : M)N : Type
T'M:(llz: A)R THFN:A
I'H(MN):[N/1R
I'M:A THR:Prop AconvR
THFM:R
'M:A THR:Type AconvR
TFM:R
If we want the usual calculus of constructions®, we simply delete the rule of type variable
introduction. We can see in this way that this calculus is very close to the one presented in an
unpublished paper of de Bruijnl6l.

Note the fact that Type and Prop play a very similar role. We can, as in Automath-like
languages, define the degree of a term ¥ with degree(Type) = 0. We have then

Definition. We shall say that M is a T'ype if, and only if, degree(M) = 1, and that M is a Prop
if, and only if, T+ M : N with N conv Prop.

Proposition 1. If '+ M : N, then degree(M) = degree(N) + L, and degree(M) is 1,20r3.

Proposﬂ;lon 2. fTHM: N, and de _]TL(’(M) = 3 (resp. 2) then we have T F N : Prop (resp.
' N: Type). ' .

This shows mtultwvly that this systems has four levels: the proofs, the propositions, the typos,
and the “supertypes”, as Type of degree 0.

Nearly all we have said for the system with Type : Type could be repeated in the present
context. In particular, we can define the arrow by M—N = II(M, N) if M, N are both Types, and
M=N =TI(M, N) if M, N arc both Props, in the same type assigniment. We have here two notions
of “arrows”. We must view Type as the collection of all sets (and the—is viewed as exponontlatlon),
and Prop as the type of propositions (and the=>is viewed as implication).

In the same way, we have two sorts of quantifications on a variable of type Type. A quantification

at the level of types (IIz : Type)N : Type, if N : Type (with the hypothesis z :-Type) and a
quantification on the level of propositions, (Ilz : Type)N : Prop, if N : Prop (with the hypothesis
z : Type). We have scen that the core of the paradox lies in this double quantification (the second
one must represent a product over all set, while the first represents simply the usual quantification
over scts).

It is worth it to compare this presentation of a typed calculus, which contains higher-order
logic, with more standard presentations of higher-logic, such as the onc of Takeutil®

If we want the usual higher-order type system, all we have to do is to restrict the formation of

type assignments by forbidding the introduction of type variables. We obtain thus the calculus of

constructions (923,

The main addition in relation to the calculus of Church is that we have now a very concise
notation for proofs. We shall be able to study manipulations on proefs, especially the cut-elmination
(here simply the S-reduction). It is straigthforward to show that this calculus is more general than
Church’s calculus with second order type in the following sense: let us define a provable formula as
a term of type Prop such that there exists a terin N of type M (in the empty environment). Then
all provable formula of Church’s calculus with second order type are provable (up to a translation)
in the present calculus. : '

We can now apply the previous results, obtaining thus:

Theorem. There exists a term M such that F M (Hp Prop)p, and no term satisfying this
condition is normalisable.

Indeed, no A-term in head-normal form can be of type (IIp : Prop)p.

If we look at the process of reduction as the process of “understanding” one proof we can say .

that the “proof” of Girard’s paradox becomes more and more complex when one try to understand
it!

10 The calculus of constructions with sumé

We shall study now two notions of sums: the weak one (or “package”, which is actually defin-
able in the pure calculus of construction) versus the strong one (with the two projections) in the
framework of the calculus of constructions. This result may be interesting in the analysis of the
representation of “abstract data types” in typed system(22] 18], '

For a notion of sum, we nced first, as previously, the operation of pairing (M, N) and the two
projections m; and 2. Finally, one adds the sum formation £(A, B) (with the same convention as
the one for the product). .

16

o

The rules of derivation for the construction calculus with the strong sum are

the empty assignment is valid

Tisvalid THM: Prop z does not appear in T'
I'yz: M is valid
Tisvalid TFHM:Type <« does not appear inl
I'z: M is valid
T is valid-
't Prop: Type
Tis valid z occurs in I' with the type M
Thz:M
. Tyz:M-N:P
I'tAz.N:(llz: M)P
T,z2: M+ N: Prop
I'+(Ilz : M)N : Prop
T,z: MV N: Prop
't (Zz: M)N : Prop
I‘,é;:MI—N:Type
Ik (Mz : M)N : Type
THFM:(llz: A)R T+HN:A
TF(MN): [N/
Tkt:A Thu:|t/7)C
Tk (tu):(Zz: A)C

Lkt:(Zz: A)C
TFm(t):A ()
THt:(Zz: A)C (+)

T Fma(t) : [m1(t)/z]C _

I'M:A T+HR:Prop AconvR

TFM:R

THFM:A T+F+R:Type AconvR
THFM:R . .
For the weak notion of sum, we need to introduce a new binary operator rep with the fact that
rep((M, N), A(P)) is convertible to (PMN). We replace then the starred’ rules by the followmg
one:

I'+t:(2z: A)C T+D:Prop Thu: (lz: A)(C—vD)
't rep(t,u): D

Note that the weak notion of sum is definable in the calculus of constructions. This is the usual
translation of the existence quantifier in higher-order intuitionistic logic: we define (Zz : A)B as
(VC : Prop)((Vz : A)B = C) = C. So the calculus of construction with the weak notion of sum is
still consistent, and has still the normalisation property.

For the strong notion of sum however, it is possible to build at the level of propositions a
universal system of notation for relation: A¢ = (XC : Prop)C —C —Prop. Hence, our previous

17

considerations show that it is possible to build a term of type (Ilp : Prop)p, and such a term cannot
be normalisable (aclually, it is a term without head normal form).

This result appears as a metamathematical justification of the idea of “package™: if we allow
the user to “sec” the program, i.c. if we have the two projections for the sum, then the type system
becomes inconsistent. This idea of package has actually purcly “programming” motivation!22l,

11 Consistent extensions of the construction calculus

We can apply the various consistent extensions of Church’s calculus described previously to the
construction calculus. Here is the formal system actually implemented in ML. The terms are:

. Type(s), for 1 integer, and Prop are terms

. an identifier is a term

. an integer (de Bruijn index) is a term

. if M and N are terms, then (M N) is a term

. if M is a term, then A(M) is a term

(- T A " I

. if M and N are terms, then II(M, N) is a term.

11.1 Assignments

the empty assignment is valid
Tisvalid THM: Prop‘ z does not appear in T’
. T,z: M is valid
Tisvalid T+ M :Type(i) z does not appear in I’
T,z : M is valid

11.2 Type Inference Rule

T is valid
T+ Prop : Type(0)
T is valid
I’ F Type(s) : Type(s + 1)
T'F M : Type(s)
' M : Type(i + 1)

T is valid z occurs in T with the type M
T'Fz: M
'z:MFN:P
T'+ Az.N: (Tllz : M)P
I'ns: M+ N : Prop
I't (Ilz : M)N : Prop
' M: Type(j) T,z: Mk N: Type(s)
T+ (TIz : M)N : Type(maz(z, 7))

18

'\l

4

-

'-M:(Ilz:A) THN:A
L'k (MN): [N/1)R
T'FM:A TFR:Prop AconvR
r-M:R
TFM:A T+ R:Type(i) Aconv R
T-FM:R
The author does not know the proof-thcorctic strength of such a systemn (conjecture: it excecds
the one of Zermelo). Since it is possible to prove in this system the normalisation theorem of
Girard’s systein, it is8 more powerful than higher-ordcr arithmetic. It could be possible also to add

sums and inductive types.
But the important point is less the power of this calculus than the fact that, as a formal

: system, it is the natural (and “predicative”) expression of a reflection principle over the calculus

of construction, and Girard’s paradox show that the “impredicative” extension, what we call here
the system with four levels, is inconsistent. This scems actually to show that the predicativity
and non-predicativity are not contradictory concepts: simply, the level of proposition may be

non-predicative and the level of type must be predicative. '

Conclusion

- All these considerations raise the following problem about the Curry-Howard isomorphism
between propositions and types: is this really an isomorphism? It seéms that there is a problem
of “levels”. We have the choice a priori for the level of programs, as term of degree 3 or of degree
2. If we choose the degree 3, then we have the general polymorphism for programs. The calculus
of construction!® shows that we can add the dependent product in a consistent way. If we choose
the degree 2, then we lose definitely the general polymorphism, but we have a clear set-theoretic
semantics for the programs and a clear way for the development of proofs about programs in the
construction system. The paper of MacQueen!9 is relevant here.

Girard’s paradox seems to have some connections with the result of Reynolds(?” that there is
no set-theoretical models of the second-order calculus. Actually, this can be used to show that
there is no extensional models with a polymorphic notion of equality{13], but it does not seem that
it entails directly Reynolds’ theorem, as his definition of what is a set-theoretic model has very
weak conditions. It is likely that the derivation of Reynolds can produce a non-normalisable term
in the general polymorphic calculus, but not shorter that the typed-checked one. More generally,
this raises the following questions: is it possible to derive another kind of paradox in the general
polymorphic calculus (for example, Russel’s paradox)? If possible, could the different ideas behind
these paradoxes be characterized by the behavior of the corresponding A-terms by reduction?

The derivation of a paradox in the general polymorphic system can be seen as the syntactical
counterpart of the fact that there is no set-theoretical model of the second-order typed calculus.
This is morever perhaps an explanation of this non-existence: the typed systems showed in this
paper are formal systems whose syntax is as complex as what is usually regarded as semantics (i.e.
set-theory). '

o

Acknowledgements

J.Y. Girard told me that his results on the system U must show that the calculus of constructions .. **

with four levels is inconsistent.

19

References
(1] R. Amadio, G. Longo. “A type-free look at types as parameters” Universita’ di Piéa, 1985
(2] H. Barendregt. “The lambda -Calculus: Its Syntax and Semantics.” North-Holland (1980).

[3] R. Burstall and B.Lampson. “A kernel language for abstract data types and modules.”
Leceture Notes in Computer Science 173, Springer-Verlag, 1984. . ‘ N

[4] N.G. de Bruijn. “lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic
Formula Manipulation, with Application to the Church-Rosser Theorem.” Indag. Math. 34,5
(1972), 381--392. .

[5] N;G. de Bruijn. “A survey of the project Automath.” in Curry Volume, Acc. Press (1980).

[6] N.G. de Bruijn. “Some cxtcnsions of Automath: the Aut-4 family.” Unpublished paper
(1974).

[7] L. Cardelli. “A Polymorphic A-calculus with Type:Type.” Private communication (1986).

[8] A. Church. “A formulation of the simple theory of types.” Journal of Symbolic Logic (1940),
56-68. .

[9] Th. Coquand. “Une Théorie des Constructions.” these de 3eme cycle, Paris VII (1985).
[10] Th. Coquand. “Some extensions of the Theory of Constructions.” In preparation (1986).

{11} Th. Coquand, G. Huet. “Constructions: A Higher Order Proof System for Mechanizing :
Mathematics.” EUROCALS5, Linz, Springer-Verlag LNCS 203 (1985). 'y

[12] Th. Coquand, G. Huet. “Concepts Mathématiques et Informatiques formalisés dans le Calcul
des Constructions.” Papier presenté au Colloque de Logique d’Orsay (1985).

[13] J.Y. Girard. “Interpretation fonctionnelle et elimination des coupures de Parithmetique
d’ordre superieur.” These d’Etat, Paris VII (1972).

[14] M. Gordon. “HOL A Machine Oriented Formulation of Higher Order Logic.” Cambridge
Technical Report, no. 68.

[15] J. Lambek. “From types to sets.” Advances in mathematics 35 (1980). ,
[16] D.B. MacQueen. “Using Dependent Types to Express Modular Structure.” ACM (1986).
-{17] P. Martin-Lof. “A Theory of Types.” unpublished (1971). .

(18] P. Martin-Lof. “An intuitionistic theory of types: predicative part.” Logic Colloquium,
North-Holland (1975). /

{19] P. Martin-Léf. “Intuitionistic Type Theory.” Bibliopolis, (1980).
[20] A.R. Meyer and J.C. Mitchell. “Second-order Logical Relations.” Extended abstract (1985).
[21] R. Milner. “A theory of type polymorphism in programming.” JCSS 17(3), 348-375 (1978).

20

P

—~

[22] J.C. Mitehell. *Lambda Calenlus Models of Typed Progranming Languages.” Ph. D, thesis,
M.LT. (1984).

[23] €. Mohring “Algorithm Developruent in the Caleulus of Constructions.” This volnme (1986).
(24] W.0. Quine. “Mathematical logic.” Harvard University Press (1940).
(25} J.B. Rosser. “The Burali-Forti paradox.” Journal of Symbolic Logic 7, 117 (1942).

[26] J. C. Reynolds. “Towards a Theory of Type QIruchu(‘ " Prograring Sym[msuun, Paris,
Springer Verlag LNCS 19 (1974) 408 420

[27] J.C. Reynolds. “Polymorphism is not Se t-Theoretic.” Lecture Notes in Computer Science
173, Springer-Verlag, 1084,

(28] B. Russcl and A.N. Whitchead. “Principia Mathematica.” Volume 1,2,3 Cambridge Univer-
sity Press (1912).

[29] D. Scott. “Data Types as Lattices.” STAM Journal of Computing 5 (1976) 522- 587.
[30] G. Takeuti. “Proof Theory.” North-Holland, part II (1975).

Imprimé en France

w *
I'Institut National de Recherche en Informatique et en Automatique

-

