N

N

A new computational model and its discipline of
programming

Jean-Pierre Banatre, Daniel Le Métayer

» To cite this version:

Jean-Pierre Banatre, Daniel Le Métayer. A new computational model and its discipline of program-
ming. [Research Report] RR-0566, Inria. 1986. inria-00075988

HAL Id: inria-00075988
https://inria.hal.science/inria-00075988
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00075988
https://hal.archives-ouvertes.fr

Rapports de Recherche

ANEW
COMPUTATIONAL MODEL 1
AND ITS ‘:
DISCIPLINE OF PROGRAMMING |

Jean-Pierre BANATRE
Daniel LE METAYER

Septembre 1986

l R] S a INSTITUT DE QECHERCHE EN INFORMATIQUE
ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
Avenue du Geéneral Leclerc
35042 - RENNES CEDEX
FRANCE

Teél : (99) 36.20.00

Telex : UNIRISA 95 D473 F

A NEN COMPUTATIONAL MODEL AND
ITS DISCIPLINE OF PROGRAVMING

I' : UN FORMALISVE FOUR LA OINSTRUCTION

Jean-Pierre BANATRE, Daniel LE METAYER
IRISA/INRIA
Campus de Beaulieu
35042 RENNES CEDEX
FRANCE

Publication Interne n° 305
Juillet, 1986
24 Pages

Abstract;

The objective of the work described in this paper is to take advantage of the functional
programming style in order to mechanize reasoning about programs. The underlying idea comes
from the observation of the weaknesses of functional languages, as far as program reasoning is
concerned, when dealing with recursive functions. Our approach advocates the use of a high level
combinator which makes explicit recursion unnecessary, thereby simplifying the reasoning about
programs. This combinator relies on the chemical reaction metaphor: the only data structure is the
multiset and the computation can be seen as a succession of chemical reactions consuming elements
of the multiset and producing new elements according to particular rules. The style of programming
implied by this new combinator is illustrated by some examples. Particular emphasis is put on fact
that this computational model provides a good basis for program synthesis. Furthermore we describe

. a small set of rules which can be used to derive significant properties of realistic programs. A
mechanization of the method is presented and the proofs of some non trivial programs, such as the
exchange-sort or the sieve of Eratosthenes, are detailed.

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE INSTITUT NATIONAL DE RECHERCHE
(L.A.227) " EN INFORMATIQUE ET EN AUTOMATIQUE

UNIVERSITE DE RENNES 1 I.N.S.A. DE RENNES . (LABORATOIRE DE RENNES)

rd P
.

L'objectif du travail décrit dans cet article consiste 2 exploiter les avantages des langages
fonctionnels pour mécaniser les raisonnements sur les programmes. Nous partons de la constatation
que l'utilisation de combinateurs de haut niveau facilite les raisonnements sur les programmes. Nous
proposons donc un combinateur qui permet d'écrire des programmes sans récursivité explicite. Ce
combinateur repose sur la métaphore de la réaction chimique: la seule structure de données est le
multiensemble et I'exécution peut étre vue comme une suite de réactions chimiques consommant des
€léments de I'ensemble et produisant de nouveaux €léments selon certaines régles. Nous illustrons
par quelques exemples le style de programmation impliqué par ce combinateur. Nous insistons sur le
fait que ce formalisme peut servir de base 2 un systéme de synthése de programmes. De plus, nous
décrivons un petit ensemble de régles qui sont utilisées pour dériver des propriétés des programmes.
Nous montrons comment cette dérivation peut étre mécanisée et nous présentons la preuve de
programmes non triviaux comme le crible d'Eratosthénes et le tri par échanges.

1. INTRODUCTION.

Programming languages and programming environments have attracted much
attention in the last few years. It is now recognized that further progress in these
fields rely on the ability to define the semantics of programming languages in a
concise and natural way and to design useful software tools based on this semantics
[3]; these tools should include semantic editors [7], program transformation systems
[4, 5] and program complexity evaluators [9].

Until now only functional languages seem to fulfil partially these requirements;
for example all realistic program transformation systems are based on a functional
programming language (4, 5]. The FP style of programming [1] is particularly well
suited to mechanical program manipulation [9, 10] mainly because of the structured
programming implied by its high level functional forms. These few functional forms |

express very common recursive patterns; for example:

(o f): <xq, ..., Xp> = <fixq, ... > fixp>

(/1) <Xq5 ooy Xp> = f<x1, fi<xy, ... fi<x > . >>

n-1> *n
Some programs can be written in a very elegant and concise way using these
functional forms; for example the program evaluating the length of a sequence can be

written:

length = (/ +) 0 (@ "1")

This definition is so obvious that it could almost be considered as a specification
of the program: the length of a sequence is obtained by counting one for every
element and addmg all these numbers. '

Furthermore a very powerful set of axioms is associated with these functional

forms, allowing the formal proof of some non trivial properties; for exa}nple the

following axioms are valid within FP semantics:

(auf) oapndlo[g, h] = apndlo[fo g, (af) oh]
(/f)o apndlo [g, h] = fo [g, (/f) o h]

where apndl is a primitive function defined by:

apndl : <X <Xy v 5 Xp>> = <]y e, Xp>

n n
We can use these axioms to prove that:

length o apndl o [f, g] = + 0 ["1", length o g]

~ in the following way:

length o apndlo [f,g] = /+ o0 ("1™ 0 apndl o [f, g]
=/+oapndlo["1"of, (¢ "1") 0 g)]
=/+oapndlo["1", (¢ "1") 0 g)]

=+0o["1",/+0 (@ "1") 0 g)]
=+0["1",(/+0(a@"1") 0 g]
=+0["1", length o g]

(A1)
(A2)

by definition

by Al

property of constants
by A2

associativity of "o"

by definition

So the proof of properties of FP programs are possible when these programs are
expressed in terms of the functional forms of the language, whithout explicitly using

recursion. However FP combinators are not powerful enough, so that recursion is

generally needed in order to design realistic programs, thus making reasoning about

programs far more difficult.

Another reason why the FP formalism is not well suited to the proof of real
programs is that FP is a first order language, that is to say it is not possible to define
higher order functions in FP. The basic principle underlying the proof of properties
in FP is to express the property in the language itself and to prove it by program
transformation. So the limitations of the language entail strong restrictions on the
class of properties that we can prove in FP. It is quite hard for example to achieve the
proof of a sorting program as the property itself is very difficult to write in FP. For
example, the program expressing the fact that a sequence is well ordered can be
written:

ordered = null ->"T" ; nullotl->"T" ;>0 [1, 2] ->"F" ; ordered otl

This is a recursive definition which is not well suited to a proof in FP; a non recursive
definition would be even more untractable:

ordered = (/ and) o (o <) o trans o [tlleft, tl]

tl, tlleft, and trans being the following primitive functions:

th: <X, e sXp> = <X9, we s Xp>

n

tlleft: <xq, ... ,Xp> = <X{, oo s Xp.1>
- trans: <<X{q, - > X{p>s o0 s <Xps o> Xmpn>> =

<<X11, coe g Xm1>, ey <X1n, ceo g an>>
To prove the correctness of a sorting program S we have to show that:

ordered o-S ="T"

which is quite difficult with any of the two definitions of ordered given above.
In order to overcome these difficulties we propose a new computational model
expressed by a combinator, called I, which can be used to define in a natural way a

large class of common programs. Furthermore the rules associated with this

combinator allow the proof of interesting properties of non trivial programs such as
sorting programs for example. Section 2 gives an informal definition of I" and put
emphasis on the systematic construction of I'-programs. A more formal description
of the T"-system is given in section 3. Section 4 proposes a method which generalizes
formal derivation techniques for conventional programs and makes it possible to

derive formal properties of programs written in the I'-system. Furthermore, a

mechanization of the method is described. Section 5 contains a brief review and
discussion.

2. SYSTEMATIC CONSTRUCTION OF PROGRAMS.

The computational model underlying the I combinator is based on the chemical
reaction metaphor; we consider the data as a set of molecules and the computation is a
succession of chemical reactions according to particular rules. These rules indicate
- which kind of molecules can react together and what these reactions produce; they are

represented by the arguments of T
Iq((I{P Al)) cee (Rm’ Am))

The R; functions are called "reaction conditions"; they are boolean functions

indicating in which case some elements of the multiset can react. The A, functions

("actions") describe the result of these reactions. We should point out that several

reactions may be possible at the same time. No assumption is made on the order in
which these reactions are actually achieved; we only impose that, when the reaction
condition holds for at least one subset of elements, at least one reaction occui:s; this
means that the computation does not stop until the reaction condition does not hold for
any subset of the multiset. This feature provides us with a very interesting property of
the result which is useful to prove the partial correctness of the program.

Let us now take a small example showing the interest of this computational model
with regard to program construction and program proof. We describe the
construction of a sorting program in a systematic way to suggest how this model can
be used for semi-automatic program synthesis.

We first have to define the representation of the data as a multiset. The natural
choice consists in representing a value "v" whose index is "i" as a couple (v, i). Let
M be any multiset of couples (v, i); we denote by M.v and M.i respectively the
multiset of the values of elements of M and the multiset of the indexes of elements of
M.

Then we have to give the specification of the program; let Mg be the initial

multiset and M, the result of the computation. The specification of a sorting program

could be:
Mr.V = Mo.V ' (Sl)
Mpi={1,.., card(Mg)} : (S2)
Vep,e0€e My epi>eni = ep.v>epv (S3)

S1 expresses the fact that the values of the result are exactly the values of the
argument; S2 ensures that two different elements have two different indexes and that

all indexes are comprised between 1 and card(M(); S3 is the well ordering property

(we assume that all values of the initial multiset are different).

5

The next step is the definition of the initial state. Actually this choice is connected
with the definition of the general strategy of the algorithm; the idea consists in
splitting the set of specifications in two parts:

- the invariant property which will be true at every step of computation; in particular
this property will hold at the initial and the final steps;
- the variant property which will only be true at the last step of computation.

The invariant property gives a restriction on the initial state and the action while
the variant property is used to find the reaction condition and the action. The reaction
condition must express the fact that the variant property is not yet satisfied (so there is
yet something to do) and the action must transform the multiset "in the right
direction" (so as to reach a state verifying the variant property in a finite number of
steps).

A possible choice in our example could be to take (S1 and S2) as the invariant
property and S3 as the variant property; this means that the multiset of values must be
preserved throughout the computation and that indexes must always be unique and

comprised between 1 and card(My). Any initial state verifying these two properties is
valid; so we can associate any index with each value, provided that it is uniqué and
between 1 and card(Mp). The reaction condition must express the fact that S3 does

not hold, that is to say that the sequence is not well ordered:
Jeq, epe M, (eqi> ey.i)and (ej.v< €y.v)
In our formalism the condition relation would be:

R(el, €9) = (e.i> e,.i) and (e1.v<ey.v)

The next step is to find the action to transform the multiset "in the right direction”
- while preserving the invariant property. The invariant property tells us that we
cannot remove or add any value or index, so we can only exchange them; in our

formalism this would be written:
A(eq, eg) = {(e1.v, e2.1), (en., e}

This means that the elements (eq.v, e;.1) and (e5.v, €.i) of the multiset are replaced

by the elements (eq.v, €5.i), (€5.v, €1.i). In order to prove that this action transforms

the multiset "in the right direction”, that is to say that computation terminates, we
have to find a positive function of the state which is decreased throughout the
computation. In our case we just have to remark that the reaction condition does not
hold for the elements produced by the action. Actually it is easy to show that the total
number of couples of elements verifying the reaction condition is a strictly
decreasing function of the state. So action A fulfil all the requirements and we have

the following sorting program:

sort=T(R, A) with
R(el, 62) = (el.i > e2.i) and (el.v < e2.v)

A(eq, eg) = {(e1.v, ep.1), (e3.v, er.i)}

Furthermore we know, by construction, that our program is correct.

Let us now describe the execution of this program applied to the sequence <3,1,4, 2>.
This sequence is répresented by the multiset {(3,1), (1,2), (4,3), (2,4)} which is the
initial state. Two reacting elements are linked by an horizontal line:

(3i1) (1,‘2) (4i 3) (2l, 4)

(3.2) (1,1) (4,4) (2,3)
L |

(3,3) (1,1 4,4 2,2)

The stable state is reached as no couple of elements verify the reaction condition; so
the result is the sequence <1, 2, 3, 4>. Of course this is only one of the possible sets of
configurations leading to the result.

This program can be seen as a generalized form of the exchange sort algorithm as
any couple of ill-ordered elements can exchange their positions at any time. Many
other choices could have been made during the construction of this program yielding
very different algorithms. We do not want to go into further details on program
synthesis here as the purpose is only to suggest the discipline of programming entailed
by this model. As automatic program synthesis will not be possible in all cases, an

environment for the I'-system should include a tool for the proof of properties of

programs. We give in next sections a more formal description of the I'-system and its

associated derivation technique.

3. FORMAL DEFINITION OF THE SYSTEM.

3.1. Data structures.

The basic information structuring facility is the multiset which is the same as a set
except that it may contain multiplé occurrences of the same element. Atomic
components of multisets may be of type real, character, integer, multisetof type ...
Any type t is associated with a boolean function t yielding the value true if its
argument is of type t; for example integer:3 = T. We introduce a new type, called

8

index, whose elements are represented by relief integers; index elements are used for
the construction of sequences which represent particular indexed multisets; an

indexed multiset is a multiset composed of multisets containing one and only one
element of type index. For example S = {{1,x},{2,y}} is an indexed multiset. From
now on we shall call "sequence" any indexed multiset M with a set of indexes equal to

{1, ..., card(M)}; for example the above multiset S can be written: <x,y>.

3.2. primitive functions.

Apart from the traditionnal operations on multisets (\, N, -, card, empty) we
define the extraction primitive which is denoted by:
b: S = x if x is the unique element of the multiset S such that b:x =true.
b: S = 1 otherwise.
This function allows the extraction of an element verifying a certain condition; for
example positive:{-3, 1, 2} = L, index:{5, 2,4} =4. ‘
Given the definition valof = not o index, the function valof yields the unique element
of a multiset which is not an index; for example valof: {5, 2,4} = 5. '
We assume that all primitive funétions of the FP system are available in the I'-system
(for example 1:<x, y> = x but if M is not a sequence then 1:M = 1). FP primitives
whose application to a multiset is meaningful (basically symmetric and associative
primitives) are also avaﬂable on multisets: for example + : {2,5}= 7,
distl : <1,{3,4}> = {<1,3>,<1,4>}. For a detailed description of the FP language the
reader should refer to [1]. '

3.3, combinators.

The I'-system contains four combinators:

(1) composition.
(fog):x=1f:(g:x)
(2) multiset construction.

{f; s fyhix = {f1:x, ... s £:x}

As no confusion is possible we use the same symbols for the multiset constructor
and the multiset denotation ({}).

(3) constant.

now o,

(4) T combinator.

T((Ry,A D), s R, Ap)):M =
3 X1s - Xp1 € M such that Ry <xyy s Xp1> ->

F((Rl,Al), cony (Rm,Am))I(M - {Xl, ceey an }) . A12<X1, ceoy Xn1>;
3 X1s -+ Xnm € M such that Ry <xq, sy Xnm> ->

F((Rl,Al), e (Rm,Am)):(M - {X15 e xnm}) U Api<xq, , Xnm>s

otherwise M.

10

Let us point out that if several Ri hold at the same time, the choice which is made
among them is not deterministic. However appropriate restrictions on the definition
of actions A; may ensure determinécy; this point is not developed here. The recursive
combinators of FP (/, &) can be defined from the above four combinators (somé
examples are given in next section).

This is the most general definition of I'; however most common programs can be

expressed with m = 1, so we will restrict our discussion to this particular case and set

R = Rl and A = Al' From now on we shall call R the reaction condition.

34. Exgmples of I"-programs,

Let us now take some examples to illustrate the programming style entailed by the
combinator I'. We use extended definitions proposed by Backus [2] to describe
functions as they provide a concise way to specify the arity of functions. We just give

an informal description of this notation here; let d be the following FP function:
d=eqo["2", length] ->squarerooto + o [*o[1,1],*0([2,2]]; L

A definition of d using extended definitions would be:
d o [X1, X2] = squareroot 0 + o [* o [X1, X1}, * o [X2, X2]]

Example 1.
The tree combinator proposed by Williams [11] can be defined in the following way:

tree f = T'(R,A) with
R o[X1,X2] ="T"
Ao [X1,X2] = {fo [X1, X2]}

11

The following figure describes the computation .of (tree +):<2,4,7,1,2>:
{2,4,7,1,2}
{9, 4,3}
9,7}
{16}
Of course this is again one among the possible paths leading to the stable state. This

combinator is slightly more general than the original one presented in [11], as it
operates on sets rather than sequences; so elements can be combined in many ways.

Example 2.

This is the definition of the combinator o, on multisets:

af=T(R,A)odistlo["0",id] with
Ro[X]=indexo10X
Ao[X]={fo20X}

In this case indexes are used as tags indicating that an element has not yet been dealt
with. The following figure describes one possible evolution of the state during the
evaluation of (ovodd): <3,4,6, 1>;

12

<0, 3> <0,4> <0,6> <0, 1>

| |

T <0,4> F <0 1>

| |

T F F T

As the reaction condition is unary in this case all the computations could have been
done in a single step.

Example 3.

Let us come back to the sorting problem. We want to sort a sequence <Xj, ..., Xp>
of different integers represented by an indexed multiset {{1, x}, ..., {n,x,}}. So we

want for any couple (Xi = {i,x;}, Xj = {j, x;}) of the multiset the following -
relationship:

i<j = Xj <X that is to say

< o [index o Xi, index 0 Xj] = < o [valof o Xi, valof o Xj]

A straightforward solution can be:

sort =I'(R,A) with
R 0 [X1,X2] = and o [< o [index o X1, index o X2], > o [valof o X1, valof 0 X2]]
A 0 [X1,X2] = {{index o X1, valof o0 X2}, {index o X2, valof o X1}}

R expresses the fact that two elements are ill-ordered and A exchanges the indexes...
so these two elements will be well ordered and so on and so forth till the relation R is

false for any couple (x;, xj) which means that the whole set is well ordered.

13

Example 4.

The sieve of Eratosthenes can be written in a concise an elegant way using I™:

sieve =I'(R,A)oiota m with
R o [X1, X2] = multiple o [X1, X2]
Ao [X], X2] = {X2}

where multiple o [X1, X2] is true if and only if X1 is a multiple of X2 (X2 # l) and
iota_m is defined by iota m: n = {1, ..., n}. ‘
One possible computation of sieve:8 may be figured as:

123

L

123

L

12357

.(;
()
N

7 8

(V]
~]
o0

4. MECHANIZATION OF PROOF OF PROPERTIES.

The power of the I'-style of programming has still to be further explored in order
to assess its full capability; in order to limit our discussion let us only point out that
when computation terminates, R is false for any sequence of elements of the multiset;
this property can be stated in the following way:

le, X € T(R,A) : M such that Ri<x{, vy Xp>

14

This information is an interesting property of the result which is directly available

from the body of the program. For example, one can deduce that if the sieve program

terminates, then the resulting multiset will not contain any elements Xj» Xj such that x;

is a multiple of X;e In order to check the (partial) correctness of the program we have

to prove that (1) all elements of the resulting multiset belong to the initial multiset
and that (2) no prime number has been eliminated. Properties (1) and (2) are called
invariance properties [6, 8]. We are now going to describe a method for the

mechanical evaluation of I'-program invariance properties.

4.1. Mechanical evaluation of invariance properties.

In order to mechanize the evaluation of invariance properties, we start with the
following remark: during a computation step of I'(R,A) (application of action A to a
sequence of elements of the multiset) three kinds of events may occur: some elements
of the multiset may disappear, some elements may be kept in the multiset and some
elements may be created. So invariance properties that we would like to find can be
classified into two main categories: conservation properties and generation
properties. For the sake of briefness we shall restrict ourselves to the description of

the conservation properties which are sufficient to treat the examples of this paper.

Notations.
we denote by € a generalization of the € relation:

xeM & xe Mor x e M' with Me M

Let us now consider the program P = I'(R,A) with R and A being functions of arity n

and A:<Xq, v, Xp> = {AqI<X], s Xp>s oo s Ai<XY, ey Xp>t

15

The relation CRA is defined as follows;
CRAGXM) = Vs (((oyalof):s ¢ M and xes and Ris) = xgA:x)

The function (o valof) is used to translate a sequence into a multiset. Cra(X.M) is

true if and only if x cannot be eliminated from M in one step of computation: either x
cannot be involved in a transformation or x belongs to the result of such a

transformation.

We say that Cp, 5 is preserved if:
Cra(X, M) and M'= (M - {x15 -, xpH U A: <Xy, .., Xp> and Ri<xqy, ..., Xp>=T

= CRA(X,M')

This means that if the property CRr A holds for a multiset M and an element x of M,

then it holds for any multiset M produced from M using I'(R, A). In other words CraA
is preserved through the computation of I'R,A). |

The most general property that we can state about the conservation of elements is the
following one:

Conservation property:
(CP) xe M and CrA(X,M) and Cra ispreserved) = xe 'R,A): M

This means that if x cannot be eliminated from M in one step of computation and
cannot be eliminated from any M' produced from M (using T'(R,A)) then x will

necessarily be present in I'(R,A): M. This property is too general to be completely

16

mechanized. So we have worked out three weaker properties which can be
automatically verified.

Rearrangement property.
(RP) (af)oA = (af) oavalof = (@f)ol(RA) = af

This property can be syntactically verified when the result of the action A is a

rearrangement of its arguments.

Eliminat;’gn properties. .
(EP1) (Ai<x, o, Xp> < {X, .., X)) = TRAM M

(EP2) (Ai<xy, ..., Xp> < {X{,...,Xp} and x€ M and
VY X{5 e Xp-1 €M (R:i<xq, . X, oy X 1> = X E A <Xy, o X ...xn_1>))

= xe IRA:M

Property EP2 states that, if the result of A is included into the set of its arguments, an

element of M which cannot be eliminated in the first step will never be eliminated.
Relation A:<Xy, ..., X,> < {X{, ..., X,} can be established by a static analysis of the

body of A.
4.2, Some ex les of proof:

Let us come back to the examples of section 2.4. to illustrate the use of our rules.

The exchange-sort program was defined by (Example 3):

17

sort = I'(R,A) _with
R 0[X1,X2] = and o [< o [index o X1, index o X2], > o [valof 0 X1, valof o X2]j
Ao [X1,X2] = {Al 0 [X1, X2], A2 0 [X1, X2]}
with
Al o [X1,X2] = {index o X1, valof o0 X2}
A2 o0 [X1,X2] = {index o X2, valof 0 X1}

It is clear that EP1 and EP2 do not hold as:
A o [X1, X2] &' {X1, X2}
On the other hand a static analysis of the body of A shows that:

index 0 X1 € Al o [X1, X2] index 0 X2 € A2 0[X1,X2] and
valof 0 X1 € A2 0 [X1, X2] valof 0 X2 € Al o [X1, X2]

As Al o [X1,X2] and A2 o [X1,X2] contain only two elements, one of which being of
type index the following properties hold:

index o X1 = index 0 Al o [X1, X2]
index o X2 = index 0 A2 o [X1, X2]
valof o X1 = valof 0 A2 o [X1, X2]
valof 0 X2 = valof 0 Al o [X1, X2]

18

So we have:

(i

ndex) o A o [X1,X2] = (o index) o {X1,X2} and
(o valof) o A o [X1,X2] = (o valof) o {X1,X2}

So the rearrangement properties hold and we can conclude that:

(& index) o I'(R, A) = (o index) and

(v valof) o I'(R,A) = (o valof)
So we know that the set of indexes of the result is the same as the set of indexes of the
argument and that the values are preserved as well. Furthermore the reaction
condition does not hold for any couple of elements of the result, which means that the
sequence is well ordered. These properties are sufficient to prove the (partial)

correctness of the sort program.

The sieve of Eratosthenes has been defined by (Example 4):
sieve =I'(R,A)oiota m with
R o [X1, X2] = multiple o [X1, X2]
Ao [X1, X2] = {X2}
A straightforward analysis of the body of A shows that :

Ao [X1, X2] c {X1, X2}

So the elimination properties EP1 and EP2 hold and we have:

19

INRRAYMc M and

i

x €M and A'xye M such that multiple : <x, X9> = xe [(RA:M

This property means that the result is a subset of the argument and that a number
which is not a multiple of any other number can not be eliminated. So we know that
the set of prime numbers of the argument is included in the result. Furthermore we

know that there are no non-prime numbers in the result (as multiple : <xq, x9> is

false for any couple (x{, x5) of elements of the result); so the result is exactly the set

of prime numbers of the argument. We can see that the partial correctness of the
program is again a straightforward consequence of the the invariance property and of
the falseness of the reaction condition.

5. CONCLUSION.

The I'-system is currently under development as an extension of an already
existing functional environment. As the I'-system is a very high level formalism,
optimization techniques have to be designed so as to produce a reasonably efficient
implementation. Further work has still to be done in this area.

For the sake of briefness only the main ideas underlying our work have been
described. In particular the problem of the termination of I'-programs has not been
tackled here. Let us only point out that the termination proof is straightforward when
properties EP1 and EP2 hold, as the size of the multiset argument is decreasing
through the computation. In general we have to exhibit a monotonic decreasing
function from the reaction condition and the body of the action.

However the properties defined (rearrangement property and elimination
properties) are often used to derive significant invariants. Furthermore we should

mention that, even in cases where the invariance property we can synthetize is weak,

20

the falseness of the reaction condition does provide a relevant property.

Another promising area of research concerns the mechanization of the
construction of I'-programs. Examples of ihe sort program and the sieve program
show that the body of the programs are quite close to the speéification of these
problems (Section 2.4.) and might be derived from these specifications. Current work
on this problem seems to confirm this belief; the idea consists in deriving I'-programs
by dividing systematically the specification in two parts: the invariant part which is
used to generate the action and the variant part which allows us to find the reaction
condition. This method has already allowed us to produce some original algorithms.

21

References,

1. Backus, J. W. Can prdgramming be liberated from the Von Neumann style? A
functional styie and its algebra of progfams. Commun. ACM 21, 8 (Aug. 1978),
613-641.]

2. Backus, J. W. The algebra of functional programs: function level reasoning, linear
equations, and extended definitions. Lecture Notes in Computer Science, vol.
107. Springer-Verlag, New York, 1981, 1-43.

3. Bahlke, R., and Snelting G. The PSG - Programming System Generator. In
Proceedings 1985 Conference on Language Issues in Programming
Environments, (Seattle, 1985), 28-33.

4. Boyer, R., and Moore J. Proving theorems about LISP functions. J.ACM 22,1
(Jan. 1975), 129-144.

5. Burstall ,R. M., and Darlington J. A transformation system for developmg
recursive programs. J. ACM 24, 1 (Jan. 1977), 44-67.

6. Dijkstra, E. W. A discipline of programming. Prentice-Hall, Englewood Cliffs,
N.J., 1976.

7. Dybvig, R. K., and Smith, B. T. " A semantic editor. In Proceedings 1985
Conference on Language Issues in Programming Environments, (Seattle 1985),
74-82.

8. Gries, D. The science of programming. Springér-Verlag, New York, 1981.

9. Le Métayer, D. Mechanical analysis of program complexity. In Proceedings 1985
Conference on Language Issues in Programming Env1ronments (Seattle, 1985),
69-73.

10. Wadler, P. Applicative style programming, program transformation, and list
operators. In Proceedings 1981 Conference on Functional Programming,
Languages, and Computer Architecture, (Portsmouth, 1981), 25-32.

11. Williams, J. Notes on the FP style of functional programming. Advanced course
on functional programming and its applications, (Newcastle upon Tyne, 1981)

22

Imprim¢é ez France

: par
I’ Institut Nationai de Recherche en Injormatique et en Automatique

