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Résumeé : Nous montrons comment utiliser l'algrorithme de Knuth et
Bendix comme une procédure de semi-décision pour les problémes de mots,
méme en présence d'équations non orientables.

Abstract : The Knuth-Bendix procedure for word problems in universal
algebra is known to be very effective when it is applicable. However, the
procedure will fail if it generates equations which cannot be oriented into
rules (i.e, the 'system is not noetherian), or if it generates infinitely many
rules (i.e, the system is not confluent). In 1980 Huet showed that even if
the system is not confluent, the Knuth-Bendix procedure still yiels a
demi-decision procedure for word problems, provided that every equation
can be oriented. In this paper we show that even if there are
non-orientable equations, the Knuth-Bendix procedure can still be modified
into a reasonably efficient semi-decision procedure for word problems in
equational theories. Thus, we have lifted the noetherian requirement in the
Knuth-Bendix procedure. Several confluence results are also given in the
paper together with some experiments. Our method can also be extended to
more general theories. Comparison with related works is also given.

The proof of completeness, which is an interesting subject by itself,
employs a new proof technique which utilizes a notion of transfinite
semantic trees which is designed for proving refutational completeness of
theorem proving methods in general.
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Abstract

The Knuth-Bendix procedure for word problems in universal algebra is known to be A

very effective when it is applicable. However, the procedure will fail if it generates
equations which cannot be oriented into rules (i.e., the system is not noetherian ), or if it
generates infinitely many rules (i.e., the system is not confluent). In 1980 Huet showed
that even if the system is not confluent, the Knuth-Bendix procedure still yields a semi-
decision procedure for word problems, provided that every equation can be oriented. In
this paper we show that even if there are non-orientable equations, the Knuth-Bendix
procedure can still be modified into a reasonably efficient semi-decision procedure for
word problems in equational theories. Thus, we have lifted the noetherian requirement
in the Knuth-Bendix procedure. Several confluence results are also given in the paper,
together with some experiments. Our method can also be extended to more general
theories. Comparison with related works is also given. "

The proof of completeness, which is an interesting subject by itself, employs a new
proof technique which utilizes a notion of transfinite semantic trees which is designed for
proving refutational completeness of theorem proving methods in general.

1. Introduction

Given an equational theory £, a term rewriting system for E is a finite set of
rewrite rules R={/; —r; }."_| such that {l;=r;},"_; and E are equivalent (i.e., s =t is
true in {l;=r; },"_, if and only if s=t¢ in E). A term ¢ is reduced using rule ! —r if a
subterm s of ¢, which is an instance of the left hand side !, is replaced by the
corresponding instance of the right hand side r. A term s is reachable from ¢ if ¢

IResearch supported in part by the NSF grant DCS-8401624, and the Greco de Prog.rammation of France.



can be reduced to s after a finite number of reductions. A term is srreducible if no rule
can be applied to it. We use ¢° to denote an irreducible form of ¢t. We call a term
rewriting system noetherian if there js no infinite sequence of reductions from any
term, and confluent if for any distinct terms ¢, r, and s, if r and s are both
reachable from ¢, then there is another term u which is reachable from both r and s.
A rewriting system satisfying these two properties is called a canonical term
rewriting system. It is easy to see that if R is a canonical term rewriting system,
then every term has a unique irreducible form with respect to R. Thus, to check if an
equation s =g ¢ is valid, all that needs be done is to reduce both s and ¢ to their
irreducible forms and see if they are identical.

Knuth and Bendix ([KnB70]) gave a necessary and sufficient condition for a
noetherian term rewriting system to be confluent (and therefore canonical). They also
presented a completion procedure for extending a non-canonical system to a canonical
one without changing the original theory (although the method does not always
terminate successfully). The most basic construct in the Knuth-Bendix procedure is the
superposition process:

Given two rules g [u]—d and [ —r, if there is 2 most general unifier o
such that uwo=I, then <g[r]o, do> is called a critical pair of the
two rules.

A critical pair <s,t > is divergent if the irreducible terms of s and ¢ are not identical.
The Knuth-Bendix completion procedure consists of finding divergent critical pairs and
orienting them into rules, and in the meantime keep terms fully reduced with respect to
the current set of rules. From now on we shall call the Knuth-Bendix completion
procedure the KB procedure.

However, this procedure fails when it

e  generates an incomparable (unorientable) critical pair, or it

-

e  generates infinitely many rules.

The first problem is in general undecidable ([HuL78]). That is, there is no decision
procedure for deciding whether there is a well-founded reduction ordering for any given
set of equations. Some special cases of non-orientable equations, such as the
commutative axioms, have been studied individually (|[LaB77, PeS81]) by incorporating
special unification algorithms into the completion procedure. This approach of
incorporating special unification algorithms for non-orientable equations has been taken
more systematically in [JoK84], where an extension called E-term rewriting is proposed.

A “semi-solution” for the second problem was given in {Hue8i]. While proving the
correctness of the Knuth-Bendix procedure, Huet showed that even if the procedure
generates infinitely many rules, it still provides a semi-decision procedure for the word



problem. To be more precise, assuming that all critical pairs generated are orientable
(under the same reduction ordering), and the superposition process is fasr (no equation is
left un-considered), then s =y ¢ if and only if the KB procedure eventually generates
enough rules to reduce both to the same term. Thus, Huet showed that even if
infinitely many rules are generated, the KB-procedure still provides a semi —decision
procedure for the word problem of an equational theory. This observation improves the
functionality of the original KB-procedure considerably, since it demonstrates the use of
a rewriting system even if it is not confluent. However, once again, Huet's algorithm
does not work when a critical pair is non-orientable.

2. A Knuth-Bendix Type Procedure that Does Not Fail

In this paper we present an extension of the Knuth-Bendix procedure which
removes the noetherian requirement. We show that even if there are non-orientable
equations, we still have a reasonably efficient semi-decision procedure for the word
problem of equational theories.

Our method is motivated from the following refutational formulation of Huet's
result: Given an equational theory £ and an equation s=t¢. Let 3£t be the
skolemized inequality resulting from the negation of s =t. Since all variables in all
- equations are universally quantified, all variables in s and ¢ are replaced by skolem
constants in §5£¢ (thus, § and { are ground terms). From now on we use § for the
skolemized term of s. Huet's result can be stated refutationally as follows: Given E
and s =¢. Assume the noetherian and fairness properties as stated before, then s =t is
a theorem of E if and only if the Knuth-Bendix procedure will eventually generate
enough rules to reduce § £f to some # #7+. To paraphrase it in theorem proving terms,
EU{s‘#t‘,zzz} is E-unsatisfiable if and only if the Knuth-Bendix procedure will
eventually generate enough rules to reduce §7#f to some 73f which, with z=z,

generates a contradiction.

2.1. Strong Simplification Ordering
We start with the following definition.
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Let F be a (finite) set of operators, and T be the set of terms generated
from F and a countably infinite set of variables. A strong
simplification ordering > on T is an ordering which satisfies the fol-

lowing properties:
(i) c[t}]>t, where c and ¢t arein T. (sublerm property)
(i)~ s>t implies ¢ [s]>c[t], where s, ¢, and ¢ are in T. (mono-
tonicity property)

(11) 8 >t implies so>t o, where s and ¢ arein T, and o is a sub-
stitution. (subststution property)

(iv) > is total on the set of ground terms (the Herbrand universe).

Conditions (i) through (iii) form what is usually called simplification orderings ([Der82}),
which also includes condition (iv) in [Pla78].

Theorem (Dershowitz) A strong simplification ordering is well-founded
on T.

We remark that most of the commonly used orderings (e.g., the recursive path ordering
[Der82], recursive decomposition ordering [JLR82], path of subterm ordering [Pla78]) are
either strong simplification orderings or can be modified easily into one.

From now on, we assume that > is a strong simplification ordering on the term
algebra. Note that such an ordering always exists. The problem usually encountered in

term rewriting is to find one which can orient all equations into rules.?

2.2. Extended Critical Pairs and Reductions _
The basic ingredient in our method is the following:

Definition Given two equations g [u]=d, I=r, where u is a nonvari-
able subterm of ¢g. if there is an mgu o such that

(1) rvo=lo,
(i) ro}plo, and
() doPgo,

then <do, g[r]o> is an extended critical pair.

We call the process of generating an extended critical pair the extended superposition
process. Note that if /| =r and g =d are orientable, then (ii) and (iii) become

At is also known that there are noetherian term rewriting systems which cannot be oriented by simplification orderings
([Ders2)).



(i) lo>ro, and
(i') go>do,

and the above procedure is equivalent to the superposition and critical pair definitions in
the original KB-procedure.

The definition of reduction is modified accordingly:

Definition A term s[u] is reducible by an equation / =r if there is a
substitution o such that

() -lo=u, and

(1) lo>ro.
We also say that s[u] is reduced to s [r o] using | =r.

Since the ordering > is well-founded, no term can be reduced indefinitely. For example,
given a ground term a+b and an equation z#y=y»*z. Assume that the ordering orders
a*b >b+a, then a*b can be reduced to b#a using the equation, but not from b#a to
a*b. On the other hand, this equation cannot be used to reduce the (non-ground) term
w#z, since w#z P z+w. This modification of reductions is important, without which we
cannot obtain the confluence results to be given later. '

The notions of extended superposition and reduction form the foundation of our
inference rules.

2.3. Inference Rules for the Unfailing KB Procedure

Before giving our procedure and the inference rules, we give an informal description
of the procedure. Suppose we start from a set of equations E, a (skolemized) § %£{, and
a strong simplification ordering >. The goal is to prove that EU{.éyétA}' is E-
unsatisfiable or, equivalently, s =¢ is a theorem of E. Our strategy is very similar to
the KB-procedure. It generates divergent extended critical pairs from two equations,
orients the critical pairs into rules if possible, and tries to use this new equation to
reduce the inequality. If either no divergent critical pair can be generated, or the
inequality has been reduced to some 7547, the procedure stops. If 57 is generated,
then this inequality and z =z generates the contradiction. Otherwise s;ét is
consistent with £

The above description can be separated into the following three inference rules:
Equation Generation

Find an extended critical pair <u,v >, reduce it using the existing equations as
much as possible. If the resulting pair still diverges, orient it into a rule if possible.



Target Reduction
Reduce § 3t using the new equation if possible, and replace §7#t by the new

inequality.

Final Refutation
When some 7 ## is generated, use # %+ and z =z to produce the contradictjon.

We assume that the procedure is fair, in other words, all pairs of equations will be
considered for equation generation eventually. We call this method the unfailing
Knuth-Bendix pracedure or UKB-procedure in short. Note that there is only one
inequality in the current set at all time.

The UKB-procedure is complete for word problems in equational theories. In other
words,

Theorem 1: Given £ and s=t, then s=t s a theorem of E iff the
above procedure, when applied to E U{s =1}, produces 1=0.

This implies that, if s =¢ is a theorem of E, this fac;, can be established by reducing
§ £t using equations and rules generated from E. The proof of the theorem uses a
refutational proof technique, based on transfinite semantic trees, introduced in [HsR85).
It is given in a later section of the paper.

Similar to the original Knuth-Bendix procedure, our procedure yields a canonical
system when it terminates. However, if the system contains equations which cannot be
oriented, then only the canonicity of the ground terms is guaranteed.

Theorem 2: If no more divergent eritical pair 13 found, and all rules are
orientable, then the resulting rewrite system is canonical. That 1s, qll
provably equal terms have the same normal form.

Theorem 3: If no more divergent critical pair 1s found, then the resull-
ing system is canonical on ground terms.

Both theorems are easy consequences of Theorem 1. Theorem 3 means that, if no
divergent critical pair can be found, and if some of the equations in the resulting set
(call it R) cannot be oriented, then R only yields a unique normal form for every
ground term, but not terms with variables. That is, all provably equal ground terms
have the same normal form. We call such a system a ground canonical system. As a
typical example of a ground canonical system, consider a set B with only one equation
Z*¥y=y+*z. Clearly R has no critical pair while the term z+y has no unique normal

Is either a+b or b+a, depending on which term is smaller in the ordering. Also notice
that we do not require the equivalent classes imposed by the non-orientable equations to
be finite (such restrictions are usually imposed in term rewriting methods with special



unification algorithms, e.g. [LaB77], [JoK84]).

Although a ground canonical system does not guarantee a unique normal form for
every term, it still provides a linear decision procedure for the word problem of the
general terms via reduction. The procedure is this: Given an equation s =t, we take its
negation, skolemize it, and obtain an inequality é;éf with all the variables in s and ¢
replaced by new skolem constants. In order to maintain the well-foundedness and
normal forms of the original system, we may extend the ordering by choosing the
skolem constants to be larger than the existing ones. Since there is no more critical pair
in R, the only applicable inference is to reduce § 7£t to its normal form. By Theorem
1, 8 and t can be reduced to the same term if and only if s =¢ in the original theory.
Moreover, there is practically no search space in. the reduction process since only one
mgquahty is kept in the data base at all time. Thus, we have

Theorem 4: If no more divergent critical pair is found, then the result-
ing rewriting system provides a (linear) decision procedure Jor deciding
the word problem of the given theory.

2.4. Discussions

Before proceed further, we discuss a few features of our method and some
differences between our procedure and the Knuth-Bendix-Huet procedure and its other

extensions.

(1) There is no noetherian requirement in our method. That 1s, even if equations
are not orientable, our procedure does not fail. Thus, our method provides a fully
general semi-decision procedure for equational theory without any ‘‘side-effects”.
Similar to the Huet’s version of the KB-procedure, we also do not require the system to

be confluent.

(2) We require the ordering used for ordering terms to be a simplification ordéring
and to be total on ground terms. The KB-procedure allows any well-founded reduction

ordering and is more general. .

(3) When no divergent critical pair can be found and all equations can be oriented
" into rules (as in Theorem 2), the resulting canonical system is only guaranteed to be
left-reduced (all left hand sides of rules are not reducible by any other rule), but may
not be inter -reduced (i.e., all terms appeared in rules are not reducible by any other
rule). For example, given two equations {a=b5,b=c }, our procedure may produce a
system {@a —b, b —c¢ }, but not {a —c,b —c}. This is due to the inference rules which
we choose. However, this is not a serious problem, because every left-reduced, critical
pair free canonical system can be transformed into an inter-reduced one without too
much difficulty. '



(4) One of the most important recent advances in term rewriting is the notion of
E-term rewriting ([JoK84]), which utilizes special unification algorithms and has a
weaker Church-Rosser property. Our procedure is different in that it does not require
any special unification algorithm. One advantage with the E-term rewriting approach is
that, if such an E-unification algorithm exists, sometimes the corresponding E-
completion procedure (which employs the FE-unification algorithm) terminates and
returns a canonical system (with respect to E). Unfortunately such specialized
unification algorithms are rare and difficult to find. Our method, on the other hand, is
completely general since it does not-reply on the existence of any special unification
algorithm. As we shall see later in an example involving a permutative axiom (which
cannot be oriented), our method eventually generates a ground canonical system while
E -completion fails since there is no known unification algorithm for this particular
axiom. A disadvantage of our method, however, is that for certain axioms our process
may continue indefinitely while E-completion will terminate if special unification
algorithms are used. An typical example is the AC-theory ([PeS81], [LaB77]). We
believe that our method can be combined with E -term rewriting, although we have not
worked out the details completely. Also, we emphasize that the major purpose of our
method is to achieve a failure-proof semi-decision procedure, not for generating decision

procedures.

(5) Some historical remarks: In [Lan75], Lankford described a procedure which is
similar to the unfailing KB given here, although no proof was given in that paper.
Similar results were also discovered by Plaisted [Pla85]. Interestingly enough, all these
results, including ours, have the same restriction on orderings (simplification ordering
which is total on ground terms). A weaker version (which requires a simplification
ordering which is order isomorphic to w on ground terms) was mentioned in [Pet83].
Our paper is diflerent from the others in several ways. First of all, we give a
completeness proof, which was not given in any of these papers. More importantly, the
notion of extended reduction does not seem to exist in the other methods.
Consequently, they could not derive the confluence results. The most important aspect
is that our notion of extended critical pairs is closer to the original notion in the
Knuth-Bendix method. In the other papers such as [Pet83], critical pairs may be
generated from the right hand side of a rule. This would certainly increase the search
space during the completion process considerably. (Peterson’s method can only impose
the ordering restriction on one of the two equations used in superposition, not both of
them. It does not seem obvious to inodify his proof to have stronger restrictions such as
ours.) Recently, using another proof technique, a method similar to ours was also
derived in [BDHS5].



3. Extending to More General Theories

The UKB-procedure can be extended to a more general theory, which allows
inequalities with free variables. ‘

We call a theory an extended equational theory if it contains a (finite) set of
equalities and mequahtles with all variables (implicitly) universally quantified. The
differences between equational theories and extended equational theories are that the
latter (1) allows more than one inequality, and (2) allows inequalities with variables.
The UKB-procedure can be modified to become a semi-decision procedure by adding the

following inference rule:

Extended Narrowing
Given an equality [ =r and an mequallty g [u ]7éd if there is an mgu o such that

(1) vo=lo, and

(i1) ro}lo,
then (g [r|#d )o is narrowed from ¢ [u]4d using [ =r.

Note that the target reduction inference rule is a special case of extended narrowing.
They are identical if the inequality is ground. The final refutation inference rule also
needs be modified to cope with variables:
Reflexive Refutation ‘
Given an inequality g5£d. If there is a unifier ¢ such that go=do, then we
achieve the contradiction NJL . .
The complete strategy for extended equational theory includes the equation generation,

reflezive refutation, and the ertended narrowing inference rules. We also assume that
the application of inference rules to equalities and inequalities is fair. We call this

strategy the S-strategy.

~ Theorem 5: The S-stralegy is complete for extended equational theorses.
That 1s, given an ertended equational theory T, T is E-unsatisfiable if
and only tf contradiction can be generated from TU{z =z} using the S-
strategy.

4. Proof of Completeness
We now prove the completeness of the S-strategy. The completeness of UKB
follows as a corollary.

4.1. A Completeness Proof Method based on Transfinite Semantic Trees

In this subsection we describe a proof method based on transfinite semantic trees
which we use to prove the completeness of the given strategies. Since the domain we



10

are dealing here has only equality and its negation but not other logical connectives, we
shall only introduce the concepts in the proof method which are directly related. For a
more general description of the proof method, see [HsR85].

An inference rule is a rule for deducing a consequence from a set of formulas. A
(theorem proving) strategy is a set of inference rules. Let Inf be a theorem proving
strategy and S a set of clauses, /nf{S) denotes the set of clauses obtained by adding to
S all clauses generated by applying some rule in Inf to S. Let
Inf**Y(S)=Inf(Inf*(S)) and Inf’(S) be the limit of Inf*(S) when n approaches
infinity. When there is no ambiguity about Inf, we simply use S* for Inf*(S).

A strategy Inf is (refutationally) complete if, given any unsatisfiable set of clauses
S, Inf can deduce NIL, the empty clause. The following trivial result will serve as the
basis of our development.

Proposition: Inf is (refutationally) complete if for every unsatisfiable set
of clauses S, NIL (the empty clause) belongs to S+ .

The equality predicate cannot be treated as any other predicate because it assumes

the axioms of a congruence relation:

Vz(z=1)

Viy(z=y)D(y=2)

Vz,y,z(z =y Ay =2)D(x =2)

Given any f, (z=y)DA---,z, - )DA -y, ),
These axioms can be satisfied in a special class of interpretations called the
E -interpretations. Let TERM (resp. GT) be the set of terms (resp. ground terms),

ATOM (resp. GA) the set of atomic formulas (resp. ground atomic formulas). An
E -interpretation is a function I with domain D([) included in GA and range

{true false} satisfying :
e=a in D(]) implies /(a =a )=true,
¢=b, Bla], B[b]in D(I)and I(a=b)=T implies I(Bla])=I(B[b])
Note that we consider a=b and b =a as the same atom.
We have the following well-known result (see, e.g., [ChL73)):

Theorem: Call the set of equational azioms K, and let S be a set of
clauses. Then SUK s unsatisfiable (we say that S is E-unsatisfiable) iff
S 18 not valid in any E-interpretation on GA .

This motivates us to build semantic trees which capture the E-interpretations. For
this purpose, we need GA to be well-ordered in such a way that every ground atom
occurs before any atom it can reduce. For example, given two atoms g(a)=a and
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flg(a))=a, if an E-interpretation evaluates g (a )=a as true, then it can be c(‘)-nsidered_c
as g(a)—a which can reduce flg(a))=a to Ra)=a. Therefore the value of
flg(a))=a should be determined after both fla)=a and g(a)=a are evaluated, since
the value of the former may depend on those of the other two. The strong
simplification orderings introduced before satisfy our requirement. Under such an
ordering, let s=¢ be a ground atom and’ assuming that s >¢, then any atom

containing s as a proper subterm will appear later in the ordering. Also, since the
ordering is total on ground atoms, any two ground atoms are comparable.

4.1.1. Transfinite E-Semantic Treesl

Let > be a strong simplification ordering. We build an E-semantic tree which
contains the set of E-interpretations and nothing else. This E-semantic tree is unique
with respect to the ordering < on the set GA .

Let I be an E-interpretation / and B a ground atom in GA, a partial E-
interpretation of I at B is a partial interpretation of I which is defined on all the
members of GA which are smaller than B (not including B). Given two partial E-
interpretations I and J, one at B, and one at B,, we say that J is an extension of I
if By<B, and [ is a partial interpretation of J at B (i.e. I and J are identical when
they are both defined).

The E-semantic tree (denoted ET) is a (downward) tree whose nodes at level B
(where B is an element in GA) are all the partial E-interpretations at B. To
paraphrase it in a more formal way, the E-semantic tree (with respect to an ordering <)
can be defined inductively as follows:

e the root is the empty interpretation

e the successors of a node I at level B are the extensions of I where, according to
the definition of E-interpretations, can be one of the following cases:

Case 1:1f B=(a=a) then I has only one successor J and J satisfies
J(a=a)=true.

Case 2:1f B=B(s], s=t <B, B[t|<B, and (s =t)=true, then I has one
successor J which satisfies J(B)=I(B [t]).

Case 3: Otherwise, I has two successors [, and R with: L (B)=true and
R (B )=/alse.

- Case 2, where the major difference between this definition of E-semantic tree and the
other definitions occurs, is explained as follows. If s >¢, then by the monotonicity of
the ordering which ensures that B[s]>B[t], the atom B[t] must have appeared before
B[s]. By the way the E-semantic tree is defined, /(B[t]) must have already been
assigned a value. If /(s =t)=true, then by the definition of E-interpretations, /(B [s])
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must have the same value as /(B|[t]). Therefore there is only one consistent extension
of I to the atom B, not two. Case 2 also hints the use of reduction in paramodulation:
if s=t is true and s >¢t, then B[s] can be reduced-to B(t] by using s —¢, and the
two atoms (B [s] and B|[t]) must have the same truth value.

This definition of E-semantic tree is similar to the one in [Pet83]. However, by the
way we define the orderings, the semantic trees so constructed are in general transfinite. -
We emphasize that it is not easy to extend Peterson'’s proof method to transfinite
semantics trees, because his method is based on induction which does not work on
transfinite trees.

The closed E-semantic tree of a set of clauses S, denoted by ET(S), is the
maximal subtree of ET such that for every node I in ET(S), every clause C in S, and
every ground substitution # such that the atoms of C# are in the domain of I, we do
not have I(C0)=false (I(C 60)%false). In other words, if [ is the last node of a
maximal path in a closed semantic tree, then any extension of [/ will refute some
ground instance of some clause C in S. If | refutes some C#, that is, I(C 0)=false,
then we call / a failure node. The most significant difference between our definition of
semantic trees and others (e.g. [KoH69], [ChL73], [Pet83]) is that the closed semantic
tree we defined may not be finite. It is because our trees are transfinite in general.
Therefore, Herbrand’s Theorem (cf. Theorem 4.3, page 61, [ChL73]) is not needed in our
framework. All we need is the following (trivially true) theorem

Theorem If S s an E-unsatisfiable set then every mazimal path in
ET(S) has an extension (thus, can be extended to a failure node).

Two other crucial properties of the closed semantic trees are that (1) they are
topologically closed, and (2) the closed E-semantic tree is unique with respect to the
ordering > and S.

Closure Lemma: The limit of an increasing sequence of nodes of
ET(S) belongs to ET (S).

The relationship between the F£-semantic trees and the completeness of inf is
captured by the following Fundamental Theorem. First we define the sclosed E-
semantic tree of S to be ET(S#). (Recall that S* with respect to a set of inference
rules Inf includes all the consequences which can be deduced from S using the inference
rules.) It is clear that a set contains the empty clause NIL if and only if its closed E -
semantic tree is empty. Therefore we have:

Fundamental Theorem: /nf s complete if and only if ET(S#) is emp-
ty whenever S is E-unsatisfiable.
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Now we outline the proof method. Suppose inf is not complete. By the
Fundamental Theorem, there is an E -unsatisfiable set of clauses S (including the clause
z =z ) whose *closed E - semantic tree is not empty. If we can show that, no matter
what the closed tree is, it can always be “‘shrunk” into a smaller closed tree for S+,
then by the uniqueness (and the maximality) of the E-closed semantic tree, we have a
contradiction. Consequently, infis complete.

4.2. Completeness of the Strategies

In what follows, we give the proof of completeness of the S-strategy based on the
method given above. The completeness of UKB is an easy corollary. We first prove the
completeness for the ground case, the non-ground case follows from a lifting lemma to
be given later.

Assume that the S-strategy is not complete, then by thc Fundamental Theorem
there is an E-unsatisfiable set of (ground) clauses S such that ET(S+) is not empty.
We define a maximal path of nodes in ET (S#) by transfinite induction as follows:

The first element of the path is the root of ET(S+).

Suppose [ is the last element of the sequence which we have defined so far. / can
be viewed as a partial E-interpretation defined up to some ground equality say a =b
where a >b. The path is extended (or stops) according to the following rules:

(1) if I has no successor in ET (S¥) then the path is completed.
(2) if 1 has one successor J in ET(S+) then the next element of the path will be J.

(3) if I has two successors L and R in ET (S+#) with L(a—-b)-—true and
R (a =b )=/false then

(3.1) if there is a=¢, a>c3, in S* such that [(c =b)=true, the next
element will be L .

(3.2)  otherwise the next element is R .

This path of nodes is not empty since ET(S+) is not empty. Let K be the limit
node of the path. By the Closure Lemma, K has an extension labeled by some s =t.
(without loss of generality, we assume that s >¢.) K may have one or two successors.
However, by the definition of the path, any immediate successor of K- must be a failure
node. We now show that in every possible case some inference rule in inf can be applied
to force either K or one of its ancestor node to be a failure node, thus, reaches a
contradiction. As a remark, Condition 3.1 is needed to exclude the possibility of

%It is obvious that ¢ >6 .



. y -
superimposing into the right hand side ,of.a., rule (see Case 2.2 in the proof).

The following enumerates all possibilities.

" Case 0
8 =t is K -irreducible.

Case 0.1: (See Figure 1) , ,
s="{ is a ground equality ¢ =a. Since K has no successor in ET(S+), a#a
must be a member.of S¥. Then by reflezive refutation (between a 7#a and z=z),
the empty clause also belongs to S*. This contradicts to the assumption that

ET (S+#) is not empty.

Case 0.2: (See Figure 2) . C = L
Otherwise, K has two successors in ET. Then-both s=t and- s34t must be
members of S+. By ertended narrowing on s £t usin-g 8=t (noting that s —¢
since s >t), we produce ¢4t which is also in S». Since ¢ =t is a smaller atom
than s =t, t =t must have appeared in the partial interpretation K . By the
definition of E-interpretations, K(t =t)=true. Therefore K must falsify ¢ =t
contradicting to the assumption that X does not falsify anything in S«.

Case 1: (See Figure 3)

s=t is K -reducible to some equality ¢ such that K (g)=true. Then by the
definition of E-semantic trees and K, s #t belongs to S*. We denote s #t by the
expression e. Let /=r be the smallest equality such that I >r I is a subterm of
e, and K (I=r)=true. It is easy to see that /=r is K -irreducible (otherwise it
will not be the smallest such element as chosen). Let J be the node of the path at
I=r. By the definition of the chosen path, the right child of J must lead to an
equality [=u such  that I>u, (1=y belongs to S, and
J(u=r)=K(u=r)=true. Since | is a subterm of e, e[u] is an ertended
narrowing of l=u on e. Therefore, e [u] belongs to S#. Once again, since both
e[r] and e [u] are smaller atoms than e [{], they must have been defined in X . By
the definition of E-interpretations, But K(e[u])=K (e[r])=false. Thus, K will
falsify e [u], contradicting the assumption that K is in ET (S+).

Case 2:
8=t is K -reducible to some equality g such that K (g)=false. Then s=t¢
belongs to S+, since K is the last node of the chosen path.

Case 2.1: (See Figure 4)
There is an equality {—=r (with {>r) such that K(l=r)=true and ! is a
subterm of s. We can assume that | —r ijs the smallest (w.r.t. >) such atom.
This implies that [=r is K -irreducible. Let J be the node of the path at | =r.
As in Case 1 there is I=u in S¢ such that J(u=r)=K(u=r)=true. By
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extended superposition of |=u and s=t, we obtain s[u]=t. Note that it is a
legitimate inference since {>u and s>t. Thus, s[u]=t belongs to S¢.
However, since 8=t can be K -reduced to s|r]=t,
K (s[u]=t)=K(s[r]=t)=false. Therefore K falsifies s [u]=t, contradiction.

Case 2.2: (See Figure 5)

There is no equality [=r (with I>r) such that K (I=r)=true and ! is a
subterm of s. In other words, ¢ is K -reducible and s is not. Let u be the smallest
term such that K (¢ =u)=true and ¢ >u. It is clear that s =u is K -irreducible.
Let J be the node of the path at s =u. Since s =t is K -reducible to s =u, we
have K (s =u )=false. Therefore the node following J in the path is its right child.
This contradicts (3.1) of the construction of the path which forces the path to
choose the left child at J since s =u is J-irreducible, s =¢ is in S*, t >u, and
J(t=u)=K(t =u)=true.

4.2.1. The Lifting Arguments
To lift the above proof from ground to non-ground, we need the following:

Paramodulation Lifting Lemma Let C| and C, be two clauses and 8
be a ground substitution. Also let r be a proper (i.e. nonvariable) sub-
term of C'y and C° be an oriented paramodulant from paramodulating
C'10 into C'[r]y0 at r8. Then there is a paramodulant of C, into C,olr]
at r.

In order to use the paramodulation lifting lemma, we need to ensure that whenever
extended superposition or extended narrowing is applied to a ground clause (say C|s])
in the above proof.. s has a corresponding nonvariable subterm in the original clause.
This can be ensured by the following lemma:

Lemma Suppose 0 is a ground substitution and C 8 is a clause such that
[(C 0)=false. Then there exists an I-trreducible ground substitution o
such that I(C o)=/false.

With this lemma, we can choose C[s] so that the substitutions corresponding to its
non-ground  clause (call it D) are [I-irreducible. Thus, the extended
- superposition/narrowing which is performed on Cls] has to be on a subterm
corresponding to a nonvariable subterm of D.

Both lemmas above are proved in [Pet83]. Consequently,
Theorem The S-strategy s complete for the extended equational

theortes.

The difference between the probiem domains of the S-strategy and UKB is that one
can have arbitrary inequalities while the other only have those that are ground.
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Consequently, Extended Narrowing instead of Target Reduction and Reflexive
Refutation instead of Final Refutation must be employed in the S-strategy. However, it
is easy to see that Target Reduction and Final Refutation are merely instances of the
other two inference rules (e.g. reduction is narrowing without instantiating any
variables). Therefore, by replacing Extended Narrowing and Reflexive Refutation in the
proof of completeness of the S-strategy by the corresponding inference rules in the UKB,
we have:

Corollary UKB is complete for equational theories. That is, UKB is a
semi-decision procedure for deciding the word problem of equational

theories.

5. An Implementation and Some Examples

In this section we describe an implementation of UKB and the S-strategy and show
some examples. Our implementation (called Sbreve) is based on modified version of the
term rewriting laboratory Reve 2.4 [For84] and is written by J. Mzali on a Sun3/75 in
the language CLU. In addition to the inference rules and strategies given above, we
have also implemented a subsumption check, which detects and eliminates critical pairs
which are instances of the already existing equations. This check is needed to prevent
UKB from generating the same (non-orientable) critical pair indefinitely. Note that
such a mechanism is not needed in the original KB-procedure since the KB-procedure
assumes that every critical pair can be oriented.

In order to handle the situation of an equation with different variables on the two
sides, Knuth-Bendix introduced a simple technique of splitting. Assume that an

equation ! =r has common variables zy, ' ,r,, | has some other variables which are
not in r and vice versa, then a new function fz,, ...,z,) is created, along with two rules
l—=fz,, -+ ,z,) and r—flz;, - - ,z,). This feature is also implemented in Reve

and has been used in [Hsi®5]. Because splitting was designed mainly for resolving non-
orientable critical pairs, it is not a necessity in UKB. However, splitting is still a
convenient feature since it can reduce the complexity of terms (by eliminating non-
essential variables). Another feature incorporated in Sbreve is a simple device for
detecting inconsistent theories, that is, theories with only models of one element.

In what follows we give a couple of examples. The first one is from [Ped85).

An entropic groupoid is an algebraic structure with two axioms:
(zy )(zw )=(zz )(yw)
(zy )z ==z.

Note that the first axiom is a permutative axiom and cannot be oriented. Thus, the
KB-completion procedure fails for this problem (so does E-term rewriting). With our
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method, the axioms are arranged as

(zy )(zw )=(2z )(yw) el
(uv Ju —u r2

By unifying u in r2 with (zw) of the left hand side of el, we produce a critical pair
((zw)z)(yw)=(zw),
which becomes a rule
z (yw )—w. , r3
R3 simplifies el into |
(ry )w=(zz)w. e4

Eventually, the following canonical system is generated:

(ry )z —2z r2
r(yz )—zz r3
(2y)z =(zw )z ' ed
((xy)z)w—zw r5

By Theorem 3, this system is a ground canonical system which reduces every ground
term to a unique normal form. It took Sbreve 6 cpu-scconds on a Sun3/75 to complete
this example.

The next example is for the S-strategy. This problem is given by Overbeek in [85),
and is due to Smullyan according to Overbeek. Given the following extended theory

S(z,S(y,:)=Sf(z.y)z) el
S{m,r)=S(z,z) - e2
S(a,r)#z e3

If the ordering is first by size, then lexicographically from left to right, then the first
equation can be ordered as '

S(x.y)z2)—=S(x,S(y,2)) rl

Note that the only extended critical pair between rl and e2 that can be obtained by
superposing the left hand side of rl and S(z,z) is:

S(z,S(y,/{z,y)))——»S(m,/(z,y)) r4

It should be obvious why it can indeed be oriented. Rule r4 and e3, using extended

narrowing, derives
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S(m,ﬂz,y));éS(y,j(:t,y)) ) ed

Now €5, using reflexive refutation by unifying y and m, deduces
S(m flz,m}))5£S (m ,fz,m)), which leads to the contradiction.

If el is ordered the other way (by right-to-left lexicographic ordering), then the

search space is larger since there are more extended superpositions. However the proof
can still be obtained after generating about 6 equations (among them only 2 are useful).

The proof is found by Sbreve in 4 cpu-seconds.
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